Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Multiple stressors associated with acid sulfate soil effluent influence mud crab Scylla serrata predation on Sydney rock oysters Saccostrea glomerata

Cassandra N. Glaspie A B C and Rochelle D. Seitz A
+ Author Affiliations
- Author Affiliations

A Virginia Institute of Marine Science, College of William & Mary, Department of Biological Sciences, PO Box 1346, Gloucester Point, VA 23062, USA.

B Oregon State University, Department of Fisheries and Wildlife, 104 Nash Hall, Corvallis, OR 97731, USA.

C Corresponding author. Email: glaspiec@oregonstate.edu

Marine and Freshwater Research 68(4) 743-751 https://doi.org/10.1071/MF15350
Submitted: 12 September 2015  Accepted: 24 February 2016   Published: 20 June 2016

Abstract

Studies of long-term exposure to multiple stressors on predator–prey interactions are necessary to determine the effect of coastal degradation on organisms that have had generations to adapt and acclimate to change. In New South Wales, Australia, a natural gradient of multiple stressors produced by acid sulfate soil effluent was used to determine the impact of exposure to multiple stressors on predator–prey dynamics between mud crabs Scylla serrata and Sydney rock oysters Saccostrea glomerata. Wild oysters were collected from two polluted and two reference sites that varied in their distance away from a flood gate that acted as a point source of water with low salinity, low pH and low alkalinity. Oysters from sites affected by multiple stressors and those from reference sites were offered to mud crabs in 48-h laboratory no-choice feeding trials. Oysters from affected sites had lower mortality than those from a reference site that was farthest from the source of polluted water. Linear models containing distance from flood gate best explained oyster mortality. Differences in rates of mortality were due to the decreased time crabs spent foraging on affected oysters. Long-term exposure to acid sulfate soil effluent alters trophic dynamics between predators and prey, which may have consequences for coastal food webs.

Additional keywords: Australia, bivalve, pollution, predator–prey.


References

Amaral, V., Cabral, H. N., and Bishop, M. J. (2011). Resistance among wild invertebrate populations to recurrent estuarine acidification. Estuarine, Coastal and Shelf Science 93, 460–467.
Resistance among wild invertebrate populations to recurrent estuarine acidification.CrossRef | 1:CAS:528:DC%2BC3MXptVCis7g%3D&md5=91b9c8a2ca337468d9f1f6bcd3b0a602CAS |

Amaral, V., Cabral, H. N., and Bishop, M. J. (2012a). Effects of estuarine acidification on predator–prey interactions. Marine Ecology Progress Series 445, 117–127.
Effects of estuarine acidification on predator–prey interactions.CrossRef |

Amaral, V., Cabral, H. N., and Bishop, M. J. (2012b). Moderate acidification affects growth but not survival of 6-month-old oysters. Aquatic Ecology 46, 119–127.
Moderate acidification affects growth but not survival of 6-month-old oysters.CrossRef |

Anderson, M. J., and Connell, S. D. (1999). Predation by fish on intertidal oysters. Marine Ecology Progress Series 187, 203–211.
Predation by fish on intertidal oysters.CrossRef |

Anestis, A., Lazou, A., Pörtner, H. O., and Michaelidis, B. (2007). Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 293, R911–R921.
Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature.CrossRef | 1:CAS:528:DC%2BD2sXptlyqtrk%3D&md5=32fe706f5a7de4b774c70a99a42df04dCAS | 17522122PubMed |

Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169–193.
The value of estuarine and coastal ecosystem services.CrossRef |

Beniash, E., Ivanina, A., Lieb, N. S., Kurochkin, I., and Sokolova, I. M. (2010). Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series 419, 95–108.
Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica.CrossRef | 1:CAS:528:DC%2BC3MXhsVCiu7Y%3D&md5=4e4c0042a31cbf04614cbb383e178be2CAS |

Benner, I., Diner, R. E., Lefebvre, S. C., Li, D., Komada, T., Carpenter, E. J., and Stillman, J. H. (2013). Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20130049.
Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.CrossRef | 23980248PubMed |

Bibby, R., Cleall-Harding, P., Rundle, S., Widdicombe, S., and Spicer, J. (2007). Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biology Letters 3, 699–701.
Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea.CrossRef | 17939976PubMed |

Burkepile, D. E., and Hay, M. E. (2006). Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87, 3128–3139.
Herbivore vs. nutrient control of marine primary producers: context-dependent effects.CrossRef | 17249237PubMed |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach’, 2nd edn. (Springer-Verlag: New York.)

Calosi, P., Rastrick, S. P. S., Lombardi, C., De Guzman, H. J., Davidson, L., Giangrande, A., Hardege, J. D., Schulze, A., Spicer, J. I., Jahnke, M., Gambi, M., Giangrande, A., Hardege, J. D., Schulze, A., Spicer, J. I., and Gambi, M.-C. (2013a). Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120444.
Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.CrossRef | 23980245PubMed |

Calosi, P., Rastrick, S. P. S., Graziano, M., Thomas, S. C., Baggini, C., Carter, H. A., Hall-Spencer, J. M., Milazzo, M., and Spicer, J. I. (2013b). Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities. Marine Pollution Bulletin 73, 470–484.
Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities.CrossRef | 1:CAS:528:DC%2BC3sXivVWktrk%3D&md5=b4208b294da00ca8eeadc9b170b81742CAS | 23428288PubMed |

Cook, F. J., Hicks, W., Gardner, E. A., Carlin, G. D., and Froggatt, D. W. (2000). Export of acidity in drainage water from acid sulphate soils. Marine Pollution Bulletin 41, 319–326.
Export of acidity in drainage water from acid sulphate soils.CrossRef | 1:CAS:528:DC%2BD3MXhs1agsQ%3D%3D&md5=08ac4c2ce14e28752a0b32af4f64c9a6CAS |

Crain, C. M., Kroeker, K., and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11, 1304–1315.
Interactive and cumulative effects of multiple human stressors in marine systems.CrossRef | 19046359PubMed |

Cripps, I. L., Munday, P. L., and McCormick, M. I. (2011). Ocean acidification affects prey detection by a predatory reef fish. PLoS One 6, e22736.
Ocean acidification affects prey detection by a predatory reef fish.CrossRef | 1:CAS:528:DC%2BC3MXhtVyks7nO&md5=7432703b26e433766176169cc06973d0CAS | 21829497PubMed |

Cronin, T. W., and Forward, R. B. (1988). The visual pigments of crabs 1. Spectral characteristics. Journal of Comparative Physiology – A. Neuroethology, Sensory, Neural, and Behavioral Physiology 162, 463–478.
The visual pigments of crabs 1. Spectral characteristics.CrossRef | 1:CAS:528:DyaL1cXkslSks78%3D&md5=a9909c7b98ba6b56a1436f4b2e8e762cCAS |

Dachs, J., and Méjanelle, L. (2010). Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the Anthropocene? Estuaries and Coasts 33, 1–14.
Organic pollutants in coastal waters, sediments, and biota: a relevant driver for ecosystems during the Anthropocene?CrossRef |

Darling, E. S., and Côté, I. M. (2008). Quantifying the evidence for ecological synergies. Ecology Letters 11, 1278–1286.
Quantifying the evidence for ecological synergies.CrossRef | 18785986PubMed |

Davis, J., Sim, L., and Chambers, J. (2010). Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. Freshwater Biology 55, 5–18.
Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes.CrossRef |

Dent, D. (1986). ‘Acid Sulfate Soils: a Baseline for Research and Development.’ (ILRI Publications: Wageningen, Netherlands.)

Dixson, D. L., Jennings, A. R., Atema, J., and Munday, P. L. (2015). Odor tracking in sharks is reduced under future ocean acidification conditions. Global Change Biology 21, 1454–1462.
Odor tracking in sharks is reduced under future ocean acidification conditions.CrossRef | 25111824PubMed |

Dodd, L. F., Grabowski, J. H., Piehler, M. F., Westfield, I., Ries, J. B., and Dodd, L. F. (2015). Ocean acidification impairs crab foraging behaviour. Proceedings. Biological Sciences 282, 20150333.
Ocean acidification impairs crab foraging behaviour.CrossRef |

Donohue, P. J. C., Calosi, P., Bates, A. H., Laverock, B., Rastrick, S., Mark, F. C., Strobel, A., and Widdicombe, S. (2012). Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura. Aquatic Biology 15, 73–86.
Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura.CrossRef |

Dove, M. C., and Sammut, J. (2013). Acid sulfate soil induced acidification of estuarine areas used for the production of Sydney rock oysters, Saccostrea glomerata. Journal of Water Resource and Protection 05, 320–335.
Acid sulfate soil induced acidification of estuarine areas used for the production of Sydney rock oysters, Saccostrea glomerata.CrossRef |

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169.
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.CrossRef | 1:CAS:528:DC%2BC3MXmvFOktrg%3D&md5=799b95450e6d030b0e516587ef8474b9CAS |

Ferrari, M. C. O., McCormick, M. I., Munday, P. L., Meekan, M. G., Dixson, D. L., Lonnstedt, Ö., and Chivers, D. P. (2011). Putting prey and predator into the CO2 equation – qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecology Letters 14, 1143–1148.
Putting prey and predator into the CO2 equation – qualitative and quantitative effects of ocean acidification on predator–prey interactions.CrossRef |

Form, A. U., and Riebesell, U. (2012). Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology 18, 843–853.
Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa.CrossRef |

Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L., and Westman, B. A. (2004). Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnology and Oceanography 49, 727–734.
Dissolution mortality of juvenile bivalves in coastal marine deposits.CrossRef |

Halpern, B. S., Selkoe, K. A., Micheli, F., and Kappel, C. V. (2007). Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology 21, 1301–1315.
Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats.CrossRef | 17883495PubMed |

Hay, M. E. (2009). Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annual Review of Marine Science 1, 193–212.
Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems.CrossRef | 21141035PubMed |

Hiebenthal, C., Philipp, E., Eisenhauer, A., and Wahl, M. (2012). Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea Mytilus edulis and Arctica islandica. Aquatic Biology 14, 289–298.
Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea Mytilus edulis and Arctica islandica.CrossRef |

Hiebenthal, C., Philipp, E. E. R., Eisenhauer, A., and Wahl, M. (2013). Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology 160, 2073–2087.
Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.).CrossRef | 1:CAS:528:DC%2BC3sXht1GgtrvM&md5=17033f51b6d0c2470bebed985cb2237cCAS |

Hill, B. J. (1976). Natural food, foregut clearance-rate and activity of the crab Scylla serrata. Marine Biology 34, 109–116.
Natural food, foregut clearance-rate and activity of the crab Scylla serrata.CrossRef |

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, M., Peterson, C. H., Steneck, R. S., Tegner, M. J., Warner, R. R., and Pandolfi, J. M. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–638.
Historical overfishing and the recent collapse of coastal ecosystems.CrossRef | 1:CAS:528:DC%2BD3MXls1Khu7o%3D&md5=e3988fbaf003db0f44abb3e902a85ae7CAS |

Kroeker, K. J., Gambi, M. C., and Micheli, F. (2013). Community dynamics and ecosystem simplification in a high-CO2 ocean. Proceedings of the National Academy of Sciences of the United States of America 110, 12721–12726.
Community dynamics and ecosystem simplification in a high-CO2 ocean.CrossRef | 1:CAS:528:DC%2BC3sXht12htLvM&md5=5249ae5bf3e7ee1585c3aa84f7e8ef6bCAS | 23836638PubMed |

Kroeker, K. J., Sanford, E., Jellison, B. M., and Gaylord, B. (2014). Predicting the effects of ocean acidification on predator–prey interactions: a conceptual framework based on coastal molluscs. The Biological Bulletin 226, 211–222.
| 25070866PubMed |

Kroon, F. J. (2005). Behavioural avoidance of acidified water by juveniles of four commercial fish and prawn species with migratory life stages. Marine Ecology Progress Series 285, 193–204.
Behavioural avoidance of acidified water by juveniles of four commercial fish and prawn species with migratory life stages.CrossRef |

Landes, A., and Zimmer, M. (2012). Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology Progress Series 450, 1–10.
Acidification and warming affect both a calcifying predator and prey, but not their interaction.CrossRef |

Lannig, G., Eilers, S., Pörtner, H. O., Sokolova, I. M., and Bock, C. (2010). Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – changes in metabolic pathways and thermal response. Marine Drugs 8, 2318–2339.
Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas – changes in metabolic pathways and thermal response.CrossRef | 1:CAS:528:DC%2BC3cXhtVGnsb3I&md5=c997366594b86318e2354aa5bbca98d9CAS | 20948910PubMed |

Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809.
Depletion, degradation, and recovery potential of estuaries and coastal seas.CrossRef | 1:CAS:528:DC%2BD28XmtVSnt7Y%3D&md5=08bb60b7984d767a4378201c648e1b31CAS | 16794081PubMed |

Martínez, M. L., Intralawan, A., Vázquez, G., and Pérez-maqueo, O. (2007). The coasts of our world: ecological, economic and social importance. Ecological Economics 63, 254–272.
The coasts of our world: ecological, economic and social importance.CrossRef |

Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S., and Simpson, S. J. (2005). Nutrient-specific foraging in invertebrate predators. Science 307, 111–113.
Nutrient-specific foraging in invertebrate predators.CrossRef | 1:CAS:528:DC%2BD2MXnvFWh&md5=024cb44ebed1e270d7826b234e5511acCAS | 15637278PubMed |

Millennium Ecosystem Assessment (2005). ‘Ecosystems and Human Well-being: Wetlands and Water Synthesis.’ (World Resources Institute: Washington, DC.)

Mitra, A., and Flynn, K. J. (2005). Predator–prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad? Journal of Plankton Research 27, 393–399.
Predator–prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad?CrossRef |

Mosley, L. M., Fitzpatrick, R. W., Palmer, D., Leyden, E., and Shand, P. (2014). Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought. The Science of the Total Environment 485–486, 281–291.
Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought.CrossRef | 24727046PubMed |

Nakaoka, M. (2000). Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth. Ecology 81, 1031–1045.
Nonlethal effects of predators on prey populations: predator-mediated change in bivalve growth.CrossRef |

Nath, B., Birch, G., and Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. The Science of the Total Environment 463–464, 667–674.
Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.CrossRef | 23845858PubMed |

Nell, J. A. (1993). Farming the Sydney rock oyster (Saccostrea commercialis) in Australia. Reviews in Fisheries Science 1, 97–120.
Farming the Sydney rock oyster (Saccostrea commercialis) in Australia.CrossRef |

Ortmann, C., and Grieshaber, M. K. (2003). Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. The Journal of Experimental Biology 206, 4167–4178.
Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea.CrossRef | 1:CAS:528:DC%2BD2cXhvFGqsQ%3D%3D&md5=aa88a29bbeefa78bd1bebd47e0ca02e0CAS | 14555755PubMed |

Paine, R. T., Tegner, M. J., and Johnson, E. A. (1998). Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545.
Compounded perturbations yield ecological surprises.CrossRef |

Parker, L. M., Ross, P. M., and O’Connor, W. A. (2011). Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158, 689–697.
Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification.CrossRef |

Pyke, G. H. (1984). Optimal foraging theory. Annual Review of Ecology Evolution and Systematics 15, 523–575.
Optimal foraging theory.CrossRef |

Renick, V. C., Anderson, T. W., Morgan, S. G., and Cherr, G. N. (2015). Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish. Ecotoxicology (London, England) 24, 391–400.
Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish.CrossRef | 1:CAS:528:DC%2BC2cXhvFOhu7%2FO&md5=4bb2891ded36cc6fc346dd84db9d1294CAS |

Russell, D. J., and Helmke, S. A. (2002). Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia. Marine and Freshwater Research 53, 19–33.
Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia.CrossRef | 1:CAS:528:DC%2BD38XitVSns78%3D&md5=afe5f47811027a75461ac966c1a51709CAS |

Sala, O. E., Chaplin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Martin, T., Walker, B. H., Walker, M., and Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774.
Global biodiversity scenarios for the year 2100.CrossRef | 1:CAS:528:DC%2BD3cXhvVWltLk%3D&md5=977d54040c0f5c79bcef6b5cb1185196CAS | 10710299PubMed |

Sanford, E., Gaylord, B., Hettinger, A., Lenz, E. A., Meyer, K., and Hill, T. M. (2014). Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proceedings. Biological Sciences 281, 20132681.
Ocean acidification increases the vulnerability of native oysters to predation by invasive snails.CrossRef |

Small, D., Calosi, P., White, D., Spicer, J. I., and Widdicombe, S. (2010). Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquatic Biology 10, 11–21.
Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber.CrossRef |

Small, D. P., Calosi, P., Boothroyd, D., Widdicombe, S., and Spicer, J. I. (2015). Stage-specific changes in physiological and life-history responses to elevated temperature and pCO2 during the larval development of the European lobster Homarus gammarus (L.). Physiological and Biochemical Zoology 88, 494–507.
Stage-specific changes in physiological and life-history responses to elevated temperature and pCO2 during the larval development of the European lobster Homarus gammarus (L.).CrossRef | 26658247PubMed |

Smee, D. L., and Weissburg, M. J. (2006). Clamming up: environmental forces diminish the perceptive ability of bivalve prey. Ecology 87, 1587–1598.
Clamming up: environmental forces diminish the perceptive ability of bivalve prey.CrossRef | 16869434PubMed |

Tulau, M. J. (1999). Acid sulfate soil management priority areas in the Lower Hastings–Camden Haven floodplains. Report. NSW Department of Land and Water Conservation, Sydney.

Underwood, A. J., and Barrett, G. (1990). Experiments on the influence of oysters on the distribution, abundance and sizes of the gastropod Bembicium auratum in a mangrove swamp in New South Wales, Australia. Journal of Experimental Marine Biology and Ecology 137, 25–45.
Experiments on the influence of oysters on the distribution, abundance and sizes of the gastropod Bembicium auratum in a mangrove swamp in New South Wales, Australia.CrossRef |

Valiela, I., Bowen, J. L., and York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815.
Mangrove forests: one of the world’s threatened major tropical environments.CrossRef |

Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-C., Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
Ecological responses to recent climate change.CrossRef | 1:CAS:528:DC%2BD38XislantL8%3D&md5=8348be966eb33746a8de8e13c95a463fCAS | 11919621PubMed |

Weissburg, M. J., and Zimmer-Faust, R. K. (1993). Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74, 1428–1443.
Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation.CrossRef |

Wilson, S. P., and Hyne, R. V. (1997). Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney Rock oyster. Ecotoxicology and Environmental Safety 37, 30–36.
Toxicity of acid-sulfate soil leachate and aluminum to embryos of the Sydney Rock oyster.CrossRef | 1:CAS:528:DyaK2sXkt1yjtLs%3D&md5=68a374692efab95974a09eb35d651ce0CAS | 9212333PubMed |

Wootton, J. T., Pfister, C. A., and Forester, J. D. (2008). Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105, 18848–18853.
Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset.CrossRef | 1:CAS:528:DC%2BD1cXhsV2rtL3M&md5=523181187deaaf2f620d925e1c79eeffCAS | 19033205PubMed |



Rent Article (via Deepdyve) Export Citation

View Altmetrics