Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

The distribution, significance and vulnerability of Australian rhodolith beds: a review

A. S. Harvey A C , R. M. Harvey A and E. Merton B

A Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Vic. 3083, Australia.

B Centre for Water Policy and Management, La Trobe University, Bundoora, Vic. 3083, Australia.

C Corresponding author. Email: a.harvey@latrobe.edu.au

Marine and Freshwater Research - https://doi.org/10.1071/MF15434
Submitted: 17 November 2015  Accepted: 4 February 2016   Published online: 16 May 2016

Abstract

Rhodolith beds are major marine benthic macrophyte communities, comparable in size and significance to kelp beds, seagrass meadows and coralline reefs. Rhodolith beds are currently ‘at risk’, both around the world and in Australia, from anthropogenic disturbances such as ocean acidification, coastal degradation and sedimentation. However, knowledge of rhodolith distribution in Australia is limited and beds are currently largely considered to be uncommon and isolated. An extensive review was undertaken using herbarium collections, and relevant scientific and grey literature (journal publications, marine surveys, ships’ logs, reference books and websites) for references to rhodoliths and rhodolith beds. Our study has shown that rhodoliths are common throughout 70% of Australia’s coastline, ranging from tropical to cold-temperate waters, down to 117 m, forming a vast natural resource in terms of area covered, biodiversity and carbonate production. This review has created a solid foundation for future rhodolith research in Australia by documenting the extent of known rhodolith distribution. It will help inform and influence future research and policy planning on these largely unexplored, highly diverse marine ecosystems.

Additional keywords: biogeography, coralline red algae, marine resource management.


References

Aguado-Giménez, F., and Ruiz-Fernández, J. M. (2012). Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community. Marine Environmental Research 74, 47–55.
Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community.CrossRef | 22209704PubMed | open url image1

Aguilar, R., Pastor, X., de la Torriente, A., and Garcia, S. (2009). Images from ROV dives on the seamounts in the study (different stages of coralligenous concretions and species found on the seamounts researched). In ‘The first Mediterranean Symposium on the Coralligenous and other Calcareous Bio-concretions’, Tabarka, Tunisia, January 2009. (Eds R. Aguilar, X. Pastor, A. de la Torriente, and S. Garcia.) pp. 1–18. (Oceana, Madrid, Spain.)

Althaus, F., Hill, N., Edwards, L., Ferrari, R., Case, M., and Colquhoun, J. (2013). CATAMI Classification Scheme for scoring marine biota and substrata in underwater imagery – a pictorial guide to the collaborative and annotation tools for analysis of marine imagery and video (CATAMI) classification scheme. (Version 1). Available at http://catami.org/classification [Verified 1 October 2015].

Amado-Filho, G. M., Moura, R. L., Basto, A. C., Salgado, L. T., Sumida, P., Guth, A. Z., Francini-Fihlo, R. B., Pereira-Filho, G. H., Abrantes, D. P., Brasileiro, P. S., Bahia, R. G., Leal, R. N., Kaufman, L., Kleypas, F. A., Farina, M., and Thompson, F. L. (2012). Rhodolith beds are major CaCO3 biofactories in the tropical South West Atlantic. PLoS One 7, e35171.
Rhodolith beds are major CaCO3 biofactories in the tropical South West Atlantic.CrossRef | 1:CAS:528:DC%2BC38XmslOkt7k%3D&md5=b04237595810ee01f92b3ca9f71a7103CAS | 22536356PubMed | open url image1

Avila, E., Riosmena-Rodriguez, R., and Hinojosa-Arango, G. (2013). Sponge–rhodolith interactions in a subtropical estuarine system. Helgolaender Meeresuntersuchungen 67, 349–357. open url image1

Bahia, R. G., Abrantes, D. P., Brasileiro, P. S., Pereira Filho, G. H., and Amado Filho, G. M. (2010). Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Brazilian Journal of Oceanography 58, 323–337.
Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil.CrossRef | open url image1

Ball, D., Blake, S., and Plummer, A. (2006). Review of marine habitat classification systems. Parks Victoria Technical series, number 26. Parks Victoria, Melbourne.

Ballesteros, E. (2003). The coralligenous in the Mediterranean Sea. Definition of the coralligenous assemblage in the Mediterranean, its main builders, its richness and key role in benthic ecology as well as its threats. Project for the preparation of a Strategic Action Plan for the Conservation of the Biodiversity in the Mediterranean Region (SAP BIO), UNEP-MAP-RAC/SPA. (RAC/SPA – Regional Activity Centre for Specially Protected Areas.) Available at http://sapbio.rac-spa.org/b1eng.pdf [Verified 16 March 2016].

Barton, J., Pope, A., and Howe, S. (2012). Marine natural values study summary. Parks Victoria. Melbourne.

Basso, D. (2012). Carbonate production by calcareous red algae and global change. Geodiversitas 34, 13–33.
Carbonate production by calcareous red algae and global change.CrossRef | open url image1

Bax, N. J., and Williams, A. (2001). Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Marine and Freshwater Research 52, 491–512.
Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring.CrossRef | open url image1

Blake, C., and Maggs, C. A. (2003). Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42, 606–612.
Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe.CrossRef | open url image1

Boreen, T., James, N., Wilson, C., and Heggie, D. (1993). Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia. Marine Geology 112, 35–56.
Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia.CrossRef | open url image1

Borissova, I., Kennard, J., Lech, M., Wang, L., Johnston, S., Lewis, C., and Southby, C. (2013). Integrated approach to CO2 storage assessment in the offshore South Perth basin, Australia. Energy Procedia 37, 4872–4878.
Integrated approach to CO2 storage assessment in the offshore South Perth basin, Australia.CrossRef | 1:CAS:528:DC%2BC3sXhs1OjtrzL&md5=6c657da39d851742d951f612775107cbCAS | open url image1

Bosence, D., and Wilson, J. (2003). Maerl growth, carbonate rates and accumulation rates in the northeast Atlantic. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S21–S31.
Maerl growth, carbonate rates and accumulation rates in the northeast Atlantic.CrossRef | open url image1

Bridge, T. C. L., Done, T. J., Beaman, R. J., Friedman, A., Williams, S. B., Pizarro, O., and Webster, J. M. (2011). Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153.
Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia.CrossRef | open url image1

Brooke, B., Nichols, S., Hughes, M., McArthur, M., Anderson, T., Przeslawski, R., Siwabessy, J., Heyward, A., Battersill, C., Colquhoun, J., and Doherty, P. (2008). Carnarvon shelf survey post-survey report, 12 August–15 September 2008. Geoscience Australia, Canberra.

Brooke, B. P., Woodroffe, C. D., Linklater, M., McArthur, M. A., Nichol, S. L., Jones, B. G., Kennedy, D. M., Buchanan, C., Spinoccia, M., Mleczko, R., Cortese, A., Atkinson, I., and Sexton, M. (2010). Geomorphology of the Lord Howe Island shelf and submarine volcano. Geoscience Australia, Canberra.

Bruno, J. F., and Bertness, M. D. (2001). Habitat modification and facilitation in benthic marine communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines and M. E. Hay.) pp. 201–218. (Sinauer: Sunderland, MA.)

Carannante, G., Esteban, M., Milliman, J. D., and Simone, L. (1988). Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology 60, 333–346.
Carbonate lithofacies as paleolatitude indicators: problems and limitations.CrossRef | open url image1

Carro, B., Lopez, L., Pena, V., Barbara, I., and Barreiro, R. (2014). DNA barcoding allows the accurate assessment of European maerl diversity: a proof-of-concept study. Phytotaxa 190, 176–189.
DNA barcoding allows the accurate assessment of European maerl diversity: a proof-of-concept study.CrossRef | open url image1

Chidgey, S., and Crockett, P. (2010). The Canberra. Marine ecosystem monitoring program. 6-months post scuttling. CEE Consultants Pty Ltd, Melbourne. Available at http://parkweb.vic.gov.au/explore/parks/ex-hmas-canberra-recreation-reserve [Verified 6 March 2016].

Chisholm, J. R. M. (2000). Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography 45, 1476–1484.
Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia.CrossRef | 1:CAS:528:DC%2BD3cXosFymtrY%3D&md5=c70f24595e97aea11f6a9f1ecf14e5dbCAS | open url image1

Chisholm, J. R. M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography 48, 1376–1387. open url image1

Clarke, J. D. A., Bone, Y., and James, N. P. (1996). Cool-water carbonates in an Eocene palaeoestuary, Norseman Formation, Western Australia. Sedimentary Geology 101, 213–226.
Cool-water carbonates in an Eocene palaeoestuary, Norseman Formation, Western Australia.CrossRef | open url image1

Collins, L. B. (1988). Sediments and history of the Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin. Sedimentary Geology 60, 15–49.
Sediments and history of the Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin.CrossRef | open url image1

Collins, L. B., France, R. E., Zhu, Z. R., and Wyrwoll, K. (1997). Warm-water platform and cool-water shelf carbonates on the Abrolhos Shelf, Southwest Australia. In ‘Cool-Water Carbonates’. (Eds N. P. James and J. A. D. Clarke.) Special Publication 56, pp. 23–36. (Society for Sedimentary Geology.)

Council of the European Commission (1992). Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities – Legislation 206, 7–49. open url image1

Currie, D. R., Dixon, C. D., Roberts, S. D., Hooper, G. E., Sorokin, S. J., and Ward, T. M. (2009). Fisheries-independent by-catch survey to inform risk assessment of the Spencer Gulf Prawn Trawl Fishery. SARDI publication number F2009/000369-1. SARDI research report series, number 390. Report to PIRSA Fisheries. South Australian Research and Development Institute (Aquatic Sciences), Adelaide.

Daume, S., Brand-Gardner, S., and Woelkerling, W. J. (1999a). Settlement of abalone larvae (Haliotis laevigata Donovan) in response to non-geniculate coralline red algae (Corallinales, Rhodophyta). Journal of Experimental Marine Biology and Ecology 234, 125–143.
Settlement of abalone larvae (Haliotis laevigata Donovan) in response to non-geniculate coralline red algae (Corallinales, Rhodophyta).CrossRef | open url image1

Daume, S., Brand-Gardner, S., and Woelkerling, W. J. (1999b). Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae. Aquaculture 174, 243–254.
Preferential settlement of abalone larvae: diatom films vs. non-geniculate coralline red algae.CrossRef | open url image1

Demers, M. A., Davis, A. R., and Knott, N. A. (2013). A comparison of the impact of ‘seagrass-friendly’ boat mooring systems on Posidonia australis. Marine Environmental Research 83, 54–62.
A comparison of the impact of ‘seagrass-friendly’ boat mooring systems on Posidonia australis.CrossRef | 1:CAS:528:DC%2BC3sXjvVChsw%3D%3D&md5=96fa7e900d197e00c4333712ed9ef6e9CAS | open url image1

Edmunds, M., Mustoe, S., Stewart, K., Sheedy, E., and Ong, J. (2010). VNPA nature conservation review: marine conservation priorities and issues for Victoria. Appendices. Report to Victoria National Parks Association. Australian marine ecology report 405, Melbourne.

Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., Okazaki, R., Muehllehner, N., Glas, M. S., and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165–169.
Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations.CrossRef | 1:CAS:528:DC%2BC3MXmvFOktrg%3D&md5=799b95450e6d030b0e516587ef8474b9CAS | open url image1

Felder, D. L., Thoma, B. P., Schmidt, W. E., Sauvage, T., Self-Krayesky, S. L., Chistoserdov, A., Bracken-Grissom, H. D., and Fredericq, S. (2014). Seaweeds and decapod crustaceans on gulf deep banks after the Macondo oil spill. Bioscience 64, 808–819.
Seaweeds and decapod crustaceans on gulf deep banks after the Macondo oil spill.CrossRef | open url image1

Ferns, L. W., and Hough, D. (2002). ‘High Resolution Marine Habitat Mapping of the Bunurong Coast (Victoria), Including the Bunurong Marine and Coastal Park.’ (Flora and Fauna Division, Department of Natural Resources and Environment: Melbourne.)

Foster, M. S. (2001). Rhodoliths: between rocks and soft places. Journal of Phycology 37, 659–667.
Rhodoliths: between rocks and soft places.CrossRef | open url image1

Foster, M. S., Fihlo, M. A., Kamenos, N. A., Riosmenos-Rodriguez, R., and Steller, D. (2014). Rhodoliths and rhodolith Beds. In ‘Research and Discoveries: the Revolution of Science through SCUBA. Vol. 39’. (Eds M. A. Lang, R. L. Marinelli, S. J. Roberts, and P. R. Taylor.) Smithsonian Contributions to Marine Sciences Series 39, pp. 143–155. (Smithsonian Institution Scholarly Press: Washington, DC.)

Frantz, B. R., Kashgarian, M., Coale, K. H., and Foster, M. S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 1773–1777.
Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry.CrossRef | open url image1

Fredericq, S., Arakaki, N., Camacho, O., Gabriel, D., Krayesky, D., Self-Krayesky, S., Rees, G., Richards, J., Sauvage, T., Venera-Ponton, D., and Schmidt, W. (2014). A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico. Cryptogamie. Algologie 35, 77–98.
A dynamic approach to the study of rhodoliths: a case study for the northwestern Gulf of Mexico.CrossRef | open url image1

Freiwald, A. (1998). Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway. Journal of Sedimentary Research. Section A, Sedimentary Petrology and Processes 68, 763–776.
Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway.CrossRef | open url image1

Fuller, M. K., Bone, Y., Gostin, V. A., and Von Der Borch, C. C. (1994). Holocene cool-water carbonate and terrigenous sediments from southern Spencer Gulf, South Australia. Australian Journal of Earth Sciences 41, 353–363.
Holocene cool-water carbonate and terrigenous sediments from southern Spencer Gulf, South Australia.CrossRef | open url image1

Goldberg, N. (2006a). Age estimates and description of rhodoliths from Esperance Bay, Western Australia. Journal of the Marine Biological Association of the United Kingdom 86, 1291–1296.
Age estimates and description of rhodoliths from Esperance Bay, Western Australia.CrossRef | open url image1

Goldberg, N. (2006b). Ecological and historical processes maintaining macroalgal diversity in the Recherche Archipelago, Western Australia. In ‘Strategic Research Fund for the Marine Environment Final Report. Vol. 1: the SRFME Initiative and Collaborative Linkages Program’. (Eds J. K. Keesing and J. N. Heine.) pp. 22–28. (Strategic Research Fund for the Marine Environment, CSIRO: Wembley, WA.)

Goldberg, N., and Heine, J. N. (2008). Age estimates of Sporolithon durum (Corallinales, Rhodophyta) from Rottnest Island, Western Australia, based on radiocarbon-dating methods. Journal of the Royal Society of Western Australia 91, 27–30. open url image1

Goldberg, N. A., and Kendrick, G. A. (2005). A catalogue of the marine plants found in the western islands of the Recherche Archipelago (Western Australia), with notes on their distribution in relation to island location, depth, and exposure to wave energy. WA Museum, Perth.

Gostin, V. A., Belperio, A. O., and Cann, J. H. (1988). The Holocene non-tropical coastal and shelf carbonate province of southern Australia. Sedimentary Geology 60, 51–70.
The Holocene non-tropical coastal and shelf carbonate province of southern Australia.CrossRef | open url image1

Halfar, J., and Riegl, B. (2013). From coral framework to rhodolith bed: sedimentary footprint of the 1982/1983 ENSO in the Galapagos. Coral Reefs 32, 985.
From coral framework to rhodolith bed: sedimentary footprint of the 1982/1983 ENSO in the Galapagos.CrossRef | open url image1

Hall-Spencer, J. M., Grall, J., Moore, P. G., and Atkinson, R. J. A. (2003). Bivalve fishing and maerl-bed conservation in France and the UK: retrospect and prospect. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S33–S41.
Bivalve fishing and maerl-bed conservation in France and the UK: retrospect and prospect.CrossRef | open url image1

Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.CrossRef | 1:CAS:528:DC%2BD1cXotVertLc%3D&md5=be8b0396a62a75fdde556dc30f86ad6eCAS | 18536730PubMed | open url image1

Hamilton, L. J., and Parnum, I. (2011). Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves. Continental Shelf Research 31, 138–148.
Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves.CrossRef | open url image1

Harrington, L., Fabricius, K., Eaglessham, G., and Negri, A. (2005). Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae. Marine Pollution Bulletin 51, 415–427.
Synergistic effects of diuron and sedimentation on photosynthesis and survival of crustose coralline algae.CrossRef | 1:CAS:528:DC%2BD2MXitF2gurc%3D&md5=d2ad1543ff298e3207c428fcdc0c7e34CAS | 15757740PubMed | open url image1

Harris, P. T., Tsuhi, Y., Marshall, J. F., Davies, P. J., Honda, N., and Matsuda, H. (1996). Sand and rhodolith-gravel entrainmant on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. Marine Geology 129, 313–330.
Sand and rhodolith-gravel entrainmant on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia.CrossRef | open url image1

Hart, D. E., and Kench, P. S. (2007). Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia. Coral Reefs 26, 53–68.
Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia.CrossRef | open url image1

Harvey, A., and Bird, F. L. (2008). Community structure of a rhodolith bed from cold-temperate waters (southern Australia). Australian Journal of Botany 56, 437–450.
Community structure of a rhodolith bed from cold-temperate waters (southern Australia).CrossRef | open url image1

Harvey, A., and Woelkerling, W. (2007). A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Ciencias Marinas 33, 411–426. open url image1

Harvey, A., Woelkerling, W., Farr, T., Neill, K., and Nelson, W. (2005). Coralline algae of central New Zealand: an identification guide to common ‘crustose’ species. NIWA Information Series number 57. National Institute of Water & Atmospheric Research, Wellington, New Zealand.

Harvey, A., Phillips, L. E., Woelkerling, W., and Millar, A. J. K. (2006). The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia. Australian Systematic Botany 19, 387–429.
The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia.CrossRef | open url image1

Harvey, A. S., Woelkerling, W. J., and Millar, A. J. K. (2009). The genus Lithophyllum (Lithophylloideae, Corallinaceae, Rhodophyta) in south-eastern Australia, with the description of L. riosmenae, sp. nov. Australian Systematic Botany 22, 296–317.
The genus Lithophyllum (Lithophylloideae, Corallinaceae, Rhodophyta) in south-eastern Australia, with the description of L. riosmenae, sp. nov.CrossRef | open url image1

Harvey, E. S., Butler, J. J., McLean, D. L., and Shand, J. (2012). Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia. Journal of Experimental Marine Biology and Ecology 426–427, 78–86.
Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia.CrossRef | open url image1

Haskoning UK Ltd (2006). Investigation into the impact of marine fish farm deposition on maerl beds. Scottish Natural Heritage commissioned report number 213, ROAME number AHLA10020348, Scottish Natural Heritage, Perth, UK.

Hauton, C., Hall-Spencer, J. M., and Moore, P. G. (2003). An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl. ICES Journal of Marine Science 60, 381–392.
An experimental study of the ecological impacts of hydraulic bivalve dredging on maerl.CrossRef | open url image1

Hetzinger, S., Halfar, J., Riegl, B., and Godinez-Orta, L. (2006). Sedimentology and acoustic mapping of modern rhodolith beds on a non-tropical carbonate shelf (Gulf of California, Mexico). Journal of Sedimentary Research 76, 670–682.
Sedimentology and acoustic mapping of modern rhodolith beds on a non-tropical carbonate shelf (Gulf of California, Mexico).CrossRef | open url image1

Holmes, K. W., Grove, S. L., Van Niel, K. P., and Kendrick, G. A. (2007). Point Addis Marine National Park. Mapping the Benthos in Victoria’s Marine National Parks number 42. Parks Victoria, Melbourne.

Hopley, D. (1982). ‘The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs.’ (Wiley: Brisbane.)

Ierodiaconou, D., Monk, J., Rattray, A., Laureson, L., and Versace, V. L. (2011). Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations. Continental Shelf Research 31, S28–S38.
Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustics and video observations.CrossRef | open url image1

Irving, A. D., Connell, S. D., and Elsdon, T. S. (2004). Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. Journal of Experimental Marine Biology and Ecology 310, 1–12.
Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae.CrossRef | open url image1

James, N. P., and Bone, Y. (2011). Carbonate production and deposition in a warm-temperate macroalgal environment, Investigator Strait, South Australia. Sedimentary Geology 240, 41–53.
Carbonate production and deposition in a warm-temperate macroalgal environment, Investigator Strait, South Australia.CrossRef | open url image1

James, N. P., Bone, Y., Von Der Borch, C. C., and Gostin, V. A. (1992). Modern carbonate and terrigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacepede, southern Australia. Sedimentology 39, 877–903.
Modern carbonate and terrigenous clastic sediments on a cool water, high energy, mid-latitude shelf: Lacepede, southern Australia.CrossRef | open url image1

James, N. P., Boreen, T. D., Bone, Y., and Feary, D. A. (1994). Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf. Sedimentary Geology 90, 161–177.
Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf.CrossRef | open url image1

James, N. P., Bone, Y., Hageman, S. J., Feary, D. A., and Gostin, V. A. (1997). Cool-water carbonate sedimentation during the terminal quaternary sea-level cycle: Lincoln Shelf, southern Australia. In ‘Cool-water Carbonates’. (Eds N. P. James and J. A. D. Clarke.) SEPM Special Publication 56, pp. 53–75. (Society for Sedimentary Geology.)

James, N. P., Collins, L. B., Bone, Y., and Hallcock, P. (1999). Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. Journal of Sedimentary Research 69, 1297–1321.
Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf.CrossRef | 1:CAS:528:DyaK1MXotVSnurs%3D&md5=1831c489b83cfaafd78ccb27d07b6eefCAS | open url image1

James, N. P., Collins, L. B., and Kyser, T. K. (2001). Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cold-water carbonate shelf. Journal of Sedimentary Research 71, 549–567.
Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cold-water carbonate shelf.CrossRef | open url image1

James, N. P., Bone, Y., Kyser, K. T., Dix, G. R., and Collins, L. B. (2004). The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia. Sedimentology 51, 1179–1205.
The importance of changing oceanography in controlling late Quaternary carbonate sedimentation on a high-energy, tropical, oceanic ramp: north-western Australia.CrossRef | open url image1

James, N. P., Bone, Y., Brown, K. M., and Cheshire, A. (2012). Calcareous epiphyte production in cool-water carbonate seagrass depositional environments – Southern Australia. In ‘Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg’. (Eds P. K. Swart, G. P. Eberli, and J. A. McKenzie.) Special Publication 41 of the International Association of Sedimentologists, pp. 123–148. (Wiley: Chichester, UK.)10.1002/9781444312065.CH9

James, N. P., Reid, C. M., Bone, Y., Levings, A., and Malcolm, I. (2013). The macroalgal carbonate factory at a cool-to-warm temperate marine transition, southern Australia. Sedimentary Geology 291, 1–26.
The macroalgal carbonate factory at a cool-to-warm temperate marine transition, southern Australia.CrossRef | open url image1

Jenkins, G., Kenner, T., and Brown, A. (2013). ‘Determining the Specificity of Fish–Habitat Relationships in Western Port.’ (Melbourne Water: Melbourne.)

Kamenos, N. A., Moore, P. G., and Hall-Spencer, J. M. (2003). Substratum heterogeneity of dredged vs un-dredged maerl grounds. Journal of the Marine Biological Association of the United Kingdom 83, 411–413.
Substratum heterogeneity of dredged vs un-dredged maerl grounds.CrossRef | open url image1

Kamenos, N. A., Moore, P. G., and Hall-Spencer, J. M. (2004). Attachment of the juvenile queen scallop (Aequipecten opercularis L.) to maerl in mesocosm conditions; juvenile habitat selection. Journal of Experimental Marine Biology and Ecology 306, 139–155.
Attachment of the juvenile queen scallop (Aequipecten opercularis L.) to maerl in mesocosm conditions; juvenile habitat selection.CrossRef | open url image1

Keene, J., Baker, C., Tran, M., and Potter, A. (2008). Geomorphology and Sedimentology of the East Marine Region of Australia. Geoscience Australia, Record 2008/10, Canberra.

Kendrick, G. A., and Brearley, A. (1997). Influence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef. Botanica Marina 40, 517–521.
Influence of Sargassum spp. attached to rhodoliths on sampling effort and demographic analyses of Sargassum spp. (Sargassaceae, Phaeophyta) attached to a reef.CrossRef | open url image1

Kendrick, G., Harvey, E., McDonald, J., Pattiaratchi, C., Cappo, M., Fromont, J., Shortis, M., Grove, S., Bickers, A., Baxter, K., Goldberg, N., Kletczkowski, M., and Bulter, J. (2005). Characterising the fish habitats of the Recherche Archipelago. Fisheries Research and Development Corporation report project number 2001/060. Available at http://frdc.com.au/research/Documents/Final_reports/2001-060-DLD.pdf [Verified 11 March 2016].

Kennedy, D. M. (1999). Reef growth and lagoonal sedimentation at high latitudes, Lord Howe Island. Ph.D. Thesis, University of Wollongong, NSW. Available at http://ro.uow.edu.au/theses/1980 [Verified 11 March 2016].

Kennedy, D. M., and Woodroffe, C. D. (2000). Holocene lagoonal sedimentation at the latitudinal limits of reef growth, Lord Howe Island, Tasman Sea. Marine Geology 169, 287–304.
Holocene lagoonal sedimentation at the latitudinal limits of reef growth, Lord Howe Island, Tasman Sea.CrossRef | open url image1

Kennedy, D. M., Woodroffe, C. D., Jones, B. G., Dickson, M. E., and Phipps, C. V. G. (2002). Carbonate sedimentation on subtropical shelves around Lord Howe Island and Balls Pyramid, Southwest Pacific. Marine Geology 188, 333–349.
Carbonate sedimentation on subtropical shelves around Lord Howe Island and Balls Pyramid, Southwest Pacific.CrossRef | 1:CAS:528:DC%2BD38XmvVGrt74%3D&md5=1d472c3da0fa26f52da474f40f39a38dCAS | open url image1

Kline, D. I., Teneva, L., Schneider, K., Miard, T., Chai, A., Marker, M., Headley, K., Opdyke, B., Nash, M., Valetich, M., Caves, J. K., Russell, B. D., Connell, S. D., Kirkwood, B. J., Brewer, P., Peltzer, E. J., Silverman, J., Caldeira, K., Dunbar, R. B., Koseff, J. R., Monismith, S. G., Mitchell, B. G., Dove, S., and Hoegh-Guldberg, O. (2012). A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Scientific Reports 2, 413.
A short-term in situ CO2 enrichment experiment on Heron Island (GBR).CrossRef | 22639723PubMed | open url image1

Littler, M. M., Littler, D. S., and Hanisak, M. D. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology 150, 163–182.
Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation.CrossRef | open url image1

Lund, M., Davies, P. J., and Braga, J. C. (2000). Coralline algal nodules off Fraser Island, eastern Australia. Facies 42, 25–34.
Coralline algal nodules off Fraser Island, eastern Australia.CrossRef | open url image1

MacDiarmid, A., Bowden, D., Cummings, V., Morrison, M., Jones, E., Kelly, M., Neil, H., Nelson, W., and Rowden, A. (2013). Sensitive marine benthic habitats defined. NIWA client report number WLG2013-18. National Institute of Water and Atmospheric Research, Wellington, New Zealand.

Marrack, E. C. (1999). The relationship between water motion and living rhodolith beds in southwestern Gulf of California, Mexico. Palaios 14, 159–171.
The relationship between water motion and living rhodolith beds in southwestern Gulf of California, Mexico.CrossRef | open url image1

Marshall, J. F., and Davies, P. J. (1978). Skeletal carbonate variation on the continental shelf of eastern Australia. Bureau of Mineral Resources, Geology and Geophysics 3, 85–92.
Skeletal carbonate variation on the continental shelf of eastern Australia.CrossRef | open url image1

Marshall, J. F., Tsuji, Y., Matsuda, H., Davies, P. J., Iryu, Y., Honda, N., and Satoh, Y. (1998). Quaternary and Tertiary subtropical carbonate platform development on the continental margin of southern Queensland, Australia. In ‘Reefs and Carbonate Platforms in the Pacific and Indian Oceans’. (Eds G. F. Camoin and P. J. Davies.) Special Publication 25 of the International Association of Sedimentologists, pp. 163–195. (Blackwell: Oxford, UK.)10.1002/9781444304879.CH9

Martín, J. M., Braga, J. C., Konishi, K., and Pigram, C. (1993). A model for the development of rhodoliths on platforms influenced by storms: the Middle-Miocene carbonates of the Marion Plateau (northeastern Australia). In ‘Proceedings Ocean Drilling Program, Volume 133: Scientific Results – Northeast Australian Margin’. (Eds J. A. McKenzie, P. J. Davies, A. Palmer-Julson, C. G. Betzler, T. C. Brachert, M.-P. P. Chen, J.-P. Crumière, G. R. Dix, A. W. Droxler, D. A. Feary, S. Gartner, C. R. Glenn, A. Isern, P. D. Jackson, R. D. Jarrard, M. E. Katz, K. Konishi, D. Kroon, J. W. Ladd, J. Manuel Martin, D. F. McNeill, L. F. Montaggioni, D. W. Muller, S. Khan Omarzai, C. J. Pigram, P. K. Swart, P. A. Symonds, K. F. Watts, and W. Wei.) pp. 455–460. (Ocean Drilling Program, Texas A&M University.)10.2973/ODP.PROC.SR.133.1993

Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S. J., Buia, M., Gattuso, J., and Hall-Spencer, J. (2008). Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters 4, 689–692.
Effects of naturally acidified seawater on seagrass calcareous epibionts.CrossRef | 18782731PubMed | open url image1

Martone, P. T., Alyono, M., and Stites, S. (2010). Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation. Marine Ecology Progress Series 416, 57–67.
Bleaching of an intertidal coralline alga: untangling the effects of light, temperature, and desiccation.CrossRef | open url image1

Mathis, B. J., Kohn, A. J., and Goldberg, N. A. (2005). ‘Rhodoliths: the Inside Story.’ (Western Australian Museum: Perth.)

McArthur, M. A., Brooke, B. P., Przeslawski, R., Ryan, D. A., Lucieer, V. L., Nichol, S., McCallum, A. W., Melli, C., Cresswell, I. D., and Radke, L. C. (2010). On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, Coastal and Shelf Science 88, 21–32.
On the use of abiotic surrogates to describe marine benthic biodiversity.CrossRef | open url image1

McConnico, L. A., Foster, M. S., Stellar, D. L., and Riosmena-Rodriguez, R. (2014). Population biology of a long-lived rhodolith: the consequences of becoming old and large. Marine Ecology Progress Series 504, 109–118.
Population biology of a long-lived rhodolith: the consequences of becoming old and large.CrossRef | open url image1

McCoy, S., and Kamenos, N. A. (2015). Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological and geochemical responses to global change. Journal of Phycology 51, 6–24.
Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological and geochemical responses to global change.CrossRef | 26986255PubMed | open url image1

Melville, A. J., and Connell, S. D. (2001). Experimental effects of kelp canopies on subtidal coralline algae. Austral Ecology 26, 102–108. open url image1

Monk, J., Ierodiaconou, D., Bellgrove, A., Harvey, E., and Laurenson, L. (2011). Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability. Continental Shelf Research 31, S17–S27.
Remotely sensed hydroacoustics and observation data for predicting fish habitat suitability.CrossRef | open url image1

Nash, M. C., Opdyke, B. N., Troitzsch, U., Russell, B. D., Adey, W. H., Kato, A., Diaz-Pulido, G., Brent, C., Gardiner, M., Pritchard, J., and Kline, D. J. (2012). Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Climate Change 3, 268–272.
Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions.CrossRef | open url image1

Nelson, C. S. (1988). An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology 60, 3–12.
An introductory perspective on non-tropical shelf carbonates.CrossRef | open url image1

Nelson, W. A. (2009). Calcified macroalgae: critical to coastal ecosystems and vulnerable to change. Marine and Freshwater Research 60, 787–801.
Calcified macroalgae: critical to coastal ecosystems and vulnerable to change.CrossRef | 1:CAS:528:DC%2BD1MXhtVGju7jL&md5=6a4905475ec1ef738e46b684cb82dd13CAS | open url image1

Nelson, W. A., Neill, K., Farr, T., Barr, N., D’Archino, R., Miller, S., and Stewart, R. (2012). Rhodolith beds in northern New Zealand: characterisation of associated biodiversity and vulnerability to environmental stressors. Number 99. Ministry for Primary Industries, Wellington, New Zealand.

Nicholas, W. A., Borissova, I., Radke, L., Tran, M., Bemardel, G., Jorgenson, D., Siwabessy, J., Carroll, A., and Whiteway, T. (2013). Marine data for the investigation of the geological storage of CO2 GA0334 post-survey report. Seabed environments and shallow geology of the Vlaming sub-basin, Western Australia. Record 2013/09 GeoCat 74626. Geoscience Australia, Canberra.

Nicholas, W. A., Howard, F., Carroll, A., Siwabessy, J., Tran, M., Radke, L., Picard, K., and Przeslawski, R. (2014). Seabed environments and shallow sub-surface geology of the Vlaming sub-basin, offshore Perth basin: summary results from marine survey GA0334. Record 2014/49. Geoscience Australia, Canberra.

OSPAR (2010). ‘Background Document for Maerl Beds.’ (OSPAR Commission: London.)

Pardo, C., Lopez, L., Pena, V., Hernandez-Kantun, J., Le Gall, L., Barbara, I., and Barreiro, R. (2014). A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area. PLoS One 9, e104073.
A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area.CrossRef | 25111057PubMed | open url image1

Pedley, M., and Carannante, G. (2006). Cool-water carbonate ramps: a review. Geological Society of London, Special Publications 255, 1–9.
Cool-water carbonate ramps: a review.CrossRef | open url image1

Peña, V., Bárbara, I., Grall, J., Maggs, C., and Hall-Spencer, J. (2014). The diversity of seaweeds on maerl in the NE Atlantic. Marine Biodiversity 44, 533–551.
The diversity of seaweeds on maerl in the NE Atlantic.CrossRef | open url image1

Penrose, D. L. (1992). Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia. Phycologia 31, 338–350.
Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia.CrossRef | open url image1

Pereira-Filho, G. H., Francini-Filho, R. B., Perozzi-Jr, I., Pinheiro, H. T., Bastos, A. C., de Moura, R. L., Moraes, F. C., Matheus, Z., da Gama Bahia, R., and Amado-Filho, G. M. (2015). Sponges and fish facilitate succession from rhodolith beds to reefs. Bulletin of Marine Science 91, 45–46.
Sponges and fish facilitate succession from rhodolith beds to reefs.CrossRef | open url image1

Pérès, J. M., and Picard, J. (1952). Les corniches calcaires d’origine biologique en Mediterrane occidentale. Recueil des Travaux de la Station Marine d’Endoume 4, 2–33. open url image1

Perry, C. T., Edinger, E. N., Kench, P. S., Murphy, G. N., Smithers, S. G., Steneck, R. S., and Mumby, P. J. (2012). Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868.
Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire.CrossRef | open url image1

Pitcher, C. R., Doherty, P., Arnold, P., Hooper, J., Gribble, N., Bartlett, C., Browne, M., Campbell, N., Cannard, T., Cappo, M., Carini, G., Chalmers, S., Cheers, S., Chetwynd, D., Colefax, A., Coles, R., Cook, S., Davie, P., De’ath, G., Devereux, D., Done, B., Donovan, T., Ehrke, B., Ellis, N., Ericson, G., Fellegara, I., Forcey, K., Furey, M., Gledhill, D., Good, N., Gordon, S., Haywood, M., Hendriks, P., Jacobsen, I., Johnson, J., Jones, M., Kinninmoth, S., Kistle, S., Last, P., Leite, A., Marks, S., McLeod, I., Oczkowicz, S., Robinson, M., Rose, C., Seabright, D., Sheils, J., Sherlock, M., Skelton, P., Smith, D., Smith, G., Speare, P., Stowar, M., Strickland, C., Van der Geest, C., Venables, W., Walsh, C., Wassenberg, T., Welna, A., and Yearsley, G. (2007). Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area. Final report. AIMS/CSIRO/QM/QDPI CRC Reef Research Task. CSIRO Marine and Atmospheric Research. Cleveland, Qld, Australia.

Porzio, L., Buia, M. C., and Hall-Spencer, J. M. (2011). Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400, 278–287.
Effects of ocean acidification on macroalgal communities.CrossRef | 1:CAS:528:DC%2BC3MXltFymu70%3D&md5=344d51c21b91cf7c8cc713c3d6f059f6CAS | open url image1

Potin, P., Floc’h, J. Y., Augris, C., and Cabioch, J. (1990). Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204–205, 263–267.
Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France.CrossRef | open url image1

Richards, Z. T., Bryce, M., and Bryce, C. (2013). New records of atypical coral reef habitat in the Kimberley, Australia. Journal of Marine Biology 2013, 1–8.
New records of atypical coral reef habitat in the Kimberley, Australia.CrossRef | open url image1

Richardson, L., Mathews, E., and Heap, A. (2005). Geomorphology and Sedimentology of the South Western Planning Area of Australia: review and synthesis of relevant literature in support of Regional Marine Planning. Record 2005(17). Geoscience Australia, Canberra.

Riosmena-Rodríguez, R., Woelkerling, W., and Foster, M. S. (1999). Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38, 401–417.
Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico.CrossRef | open url image1

Rivera, M. G., Riosmena-Rodríguez, R., and Foster, M. S. (2004). Age and growth of Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Ciencias Marinas 30, 235–249. open url image1

Ryan, D. A., Brooke, B. P., Collins, L. B., Kendrick, G. A., Baxter, K. J., Bickers, A. N., Siwabessy, P. J. W., and Pattiaratchi, C. B. (2007). The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia. Estuarine, Coastal and Shelf Science 72, 379–386.
The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia.CrossRef | open url image1

Ryan, D. A., Brooke, B. P., Collins, L. B., Spooner, M. I., Siwabessy, P. J. W., and Pattiaratchi, C. B. (2008). Formation, morphology and preservation of a high-energy carbonate lithofacies: evolution of the cool-water Recherche Archipelago inner shelf, south-western Australia. Sedimentary Geology 207, 41–55.
Formation, morphology and preservation of a high-energy carbonate lithofacies: evolution of the cool-water Recherche Archipelago inner shelf, south-western Australia.CrossRef | open url image1

Scientific Working Group (2011). ‘The Vulnerability of Coastal and Marine Habitats in South Australia.’ (Marine Parks, Department of Environment, Water and Natural Resources: Adelaide, SA.)

Shepherd, S. A. (2011) Rhodolith habitats. In ‘The Vulnerability of Coastal and Marine Habitats in South Australia’. (Ed. Marine Parks Scientific Working Group.) pp. 51–58. (Marine Parks, Department of Environment, Water and Natural Resources: Adelaide, SA.)

Shepherd, S. A., and Edgar, G. (2013). ‘Ecology of Australian Temperate Reefs.’ (CSIRO Publishing: Melbourne.)

Steller, D. L., and Caceres-Martinez, C. (2009). Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus. Marine Ecology Progress Series 396, 49–60.
Coralline algal rhodoliths enhance larval settlement and early growth of the Pacific calico scallop Argopecten ventricosus.CrossRef | open url image1

Steller, D. L., Riosmena-Rodríguez, R., Foster, M. S., and Roberts, C. A. (2003). Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine and Freshwater Ecosystems 13, S5–S20.
Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance.CrossRef | open url image1

Steller, D. L., Foster, M., and Riosmena-Rodriguez, R. (2007). Section 21. Sampling and monitoring rhodolith beds. In ‘Sampling Biodiversity in Coastal Communities. NaGISA Protocols for Seagrass and Macroalgal Habitats’. (Eds P.R. Rigby, K. Lken and Y. Shirayama.) pp. 93–97. (Kyoto University Press: Japan; and NUS Press: Singapore.)

Steneck, R. S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annual Review of Ecology and Systematics 17, 273–303.
The ecology of coralline algal crusts: convergent patterns and adaptive strategies.CrossRef | open url image1

Svane, I., Hammett, Z., and Lauer, P. (2009). Impacts of trawling on benthic macro-fauna and -flora of the Spencer Gulf prawn fishing grounds. Estuarine, Coastal and Shelf Science 82, 621–631.
Impacts of trawling on benthic macro-fauna and -flora of the Spencer Gulf prawn fishing grounds.CrossRef | open url image1

Tanner, J. E. (2005). Three decades of habitat change in Gulf St Vincent, South Australia. Transactions of the Royal Society of South Australia 129, 65–73. open url image1

Teichert, S. (2014). Hollow rhodoliths increase Svalbard’ shelf biodiversity. Scientific Reports 4, 6972.
Hollow rhodoliths increase Svalbard’ shelf biodiversity.CrossRef | 1:CAS:528:DC%2BC2cXhvFeisbfE&md5=09b0395e352d46b3948bc8fdb9ac66b7CAS | 25382656PubMed | open url image1

Tompkins, P. A. (2011). Distribution, growth, and disturbance of Catalina Island rhodolith. M.Sc. Thesis, paper 4077. San Jose State University, San Jose, CA. Available at http://scholarworks.sjsu.edu/etd_theses/4077 [Verified 11 March 2016].

Townsend, R. A., Woelkerling, W. J., Harvey, A. S., and Borowitzka, M. (1995). An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8, 85–121.
An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia.CrossRef | open url image1

Walker, D. I., and Woelkerling, W. J. (1988). Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia. Marine Ecology Progress Series 43, 71–77.
Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia.CrossRef | 1:CAS:528:DyaL1cXit1Knsb0%3D&md5=1236d5b397c1a4a8ffbcdae186116d1aCAS | open url image1

Walker, D. I., Lukatelich, R. J., Bastyan, G., and McComb, A. J. (1989). Effects of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany 36, 69–77.
Effects of boat moorings on seagrass beds near Perth, Western Australia.CrossRef | open url image1

Ward, T. M., Sorokin, S. J., Rogers, P. J., McLeay, L. M., and Turner, D. J. (2003). ‘Benthic Protection Zone of the Great Australian Bight Marine Park: 3 Pilot Study for Performance Assessment.’ (South Australian Research and Development Institute: Adelaide.)

Webster, J. M., and Davies, P. J. (2003). Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef. Sedimentary Geology 159, 61–80.
Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef.CrossRef | open url image1

Webster, N. S., Uthicke, S., Botte, E. S., Flores, F., and Negri, A. P. (2013). Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biology 19, 303–315.
Ocean acidification reduces induction of coral settlement by crustose coralline algae.CrossRef | 23504741PubMed | open url image1

Wilson, B., and Blake, S. (2011). Notes on the origins and biogeomorphology of Montgomery Reef, Kimberley, Western Australia. Journal of the Royal Society of Western Australia 94, 107–119. open url image1

Wilson, S., Blake, C., Berges, J. A., and Maggs, C. A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120, 279–289.
Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation.CrossRef | open url image1

Wilson, B., Blake, S., Ryan, D., and Hacker, J. (2011). Reconnaissance of species-rich coral reefs in a muddy, macro-tidal, enclosed embayment: Talbot Bay, Kimberley, Western Australia. Journal of the Royal Society of Western Australia 94, 251–265. open url image1

Woelkerling, W. J., and Campbell, S. J. (1992). An account of southern Australian species of Lithophyllum (Corallinaceae, Rhodophyta). Bulletin of the British Museum (Natural History) – Botany 22, 1–107. open url image1

Woelkerling, W. J., Irvine, L. M., and Harvey, A. S. (1993). Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6, 277–293.
Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta).CrossRef | open url image1

Womersley, H. B. S. (1996). ‘The Marine Benthic Flora of Southern Australia: Rhodophyta. Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales.’ (Australian Biological Resources Study: Canberra.)



Rent Article (via Deepdyve) Export Citation