Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Interactions between bivalves and zooplankton: competition or intraguild predation? Implications for biomanipulation in subtropical shallow lakes

Soledad Marroni A , Néstor Mazzeo A , Juan Pablo Pacheco A , Juan Clemente A and Carlos Iglesias A B

A Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología Teórica y Aplicada, Centro Universitario de la Región Este-Facultad de Ciencias, Universidad de la República, Tacuarembó s/n, CP 20000, Maldonado, Uruguay.

B Corresponding author. Email: caif@cure.edu.uy

Marine and Freshwater Research - http://dx.doi.org/10.1071/MF15454
Submitted: 7 April 2015  Accepted: 10 June 2016   Published online: 5 August 2016

Abstract

Zooplankton and bivalves are the main consumers of phytoplankton in shallow lakes; however, knowledge regarding trophic interactions between them is scarce. Competition for resources appears to be an obvious direct interaction, but the scheme may be more complex. Bivalves can consume all or only part of the zooplankton, constituting an intraguild predation module. In the present study we investigated the interaction between bivalves and zooplankton and its effects on phytoplankton grazing and community structure using an experimental approach in an aquarium. Two bivalve species were considered, namely Diplodon parallelopipedon (native) and Corbicula fluminea (non-native), in addition to a natural zooplankton community dominated by small-sized zooplankton. The findings indicate that phytoplankton consumption by the zooplankton is substantially less than that by the bivalves. Under the experimental conditions, the bivalves actively consumed small-sized zooplankton (rotifers and nauplii), but no consumption of medium-sized individuals (cladocerans and copepods) was observed. The differential consumption may have implications on the size and structure of zooplankton, favouring an average larger-sized community. Thus, phytoplankton may be negatively affected both directly by consumption and indirectly because of the resulting structure of the zooplankton community. The main results of the study are also discussed from the perspective of biomanipulation techniques in tropical and subtropical regions.

Additional keywords: experimental conditions, filtration rate, grazing, trophic interactions.


References

Alldredge, A. L., and Gotschalk, C. (1989). Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Research 36, 159–171.
Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates.CrossRef | 1:CAS:528:DyaL1MXks1emtrs%3D&md5=0ec1e80e8a5161388eb1d3f2d2dfce25CAS | open url image1

Arndt, H. (1993). Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255–256, 231–246.
Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review.CrossRef | open url image1

Bayne, B. L., Iglesias, J. I. P., Hawkins, A. J. S., Navarro, E., Héral, M., and Deslous-Paoli, J. M. (1993). Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. Journal of the Marine Biological Association of the United Kingdom 73, 813–829.
Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston.CrossRef | open url image1

Branco, C. W. C., Rocha, M. -I. A., Pinto, G. F. S., Gisele, A., Gômara, G. A., and De Filippo, R. (2002). Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes and Reservoirs: Research and Management 7, 87–92.
Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community.CrossRef | 1:CAS:528:DC%2BD38Xltlaqtbk%3D&md5=bf9d3ee118046ceb91550afe855bc5e0CAS | open url image1

Burns, C. W. (1968). The relationship between body size of filter-feeding Cladocera and maximum size of particleingested. Limnology and Oceanography 13, 675–678.
The relationship between body size of filter-feeding Cladocera and maximum size of particleingested.CrossRef | open url image1

Caraco, N. F., Cole, J. J., Raymond, P. A., Strayer, D. L., Pace, M. L., Findlay, S. E. G., and Fischer, D. T. (1997). Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78, 588–602.
Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing.CrossRef | open url image1

Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience 35, 634–639.
Cascading trophic interactions and lake productivity.CrossRef | open url image1

Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cochran, P. A., Elser, J. J., Elser, M. M., Lodge, D. M., Kretchmer, D., Xe, H., and von Ende, C. N. (1987). Regulation of lake primary productivity by food web structure. Ecology 68, 1863–1876.
Regulation of lake primary productivity by food web structure.CrossRef | open url image1

Carpenter, S. R., Cole, J. J., Kitchell, J. F., and Pace, M. L. (2009). Trophic cascades in lakes: lessons and prospects. In ‘Trophic Cascades’. (Eds J. Terborgh and J. A. Estes.) pp. 55–69. (Island Press: Washington, DC.)

Carroll, J., Gobler, C. J., and Peterson, B. J. (2008). Resource-restricted growth of eelgrass in New York estuaries: light limitation, and alleviation of nutrient stress by hard clams. Marine Ecology Progress Series 369, 51–62.
Resource-restricted growth of eelgrass in New York estuaries: light limitation, and alleviation of nutrient stress by hard clams.CrossRef | open url image1

Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Marine Biology 2, 356–358.
The estimation of filtering rate from the clearance of suspensions.CrossRef | open url image1

Crocker, K. M., and Passow, U. (1995). Differential aggregations of diatoms. Marine Ecology Progress Series 117, 249–257.
Differential aggregations of diatoms.CrossRef | open url image1

Dame, R. F. (1996). ‘Ecology of Marine Bivalves: an Ecosystem Approach.’ (CRC Press: Boca Raton, FL, USA.)

Dame, F. R., and Dankers, N. (1988). Uptake and release of materials by Wadden Sea mussels bed. Journal of Experimental Marine Biology and Ecology 118, 207–216.
Uptake and release of materials by Wadden Sea mussels bed.CrossRef | 1:CAS:528:DyaL1cXksl2htro%3D&md5=6ae86489939e3f7c2088a870540de2cfCAS | open url image1

Davenport, J., Ezgeta-Balić, D., Peharda, M., Skejić, S., Ninčević-Gladan, Ž., and Matijević, S. (2011). Size-differential feeding in Pinna nobilis (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Estuarine, Coastal and Shelf Science 92, 246–254.
Size-differential feeding in Pinna nobilis (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton.CrossRef | open url image1

Dumont, H. J. (1994). On the diversity of the Cladocera in the tropics. Hydrobiologia 272, 27–38.
On the diversity of the Cladocera in the tropics.CrossRef | open url image1

Elliott, P., Aldridgea, D. C., and Moggridgeb, G. D. (2008). Zebra mussel filtration and its potential uses in industrial water treatment. Water Research 42, 1664–1674.
Zebra mussel filtration and its potential uses in industrial water treatment.CrossRef | 1:CAS:528:DC%2BD1cXjt12ntr4%3D&md5=1718fcb574bcd32400c2f366262ed69dCAS | 17996272PubMed | open url image1

Ellner, S. P., and Becks, L. (2011). Rapid prey evolution and the dynamics of two-predator food webs. Theoretical Ecology 4, 133–152.
Rapid prey evolution and the dynamics of two-predator food webs.CrossRef | open url image1

Fleeger, J. W., Carman, K. R., and Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems. The Science of the Total Environment 317, 207–233.
Indirect effects of contaminants in aquatic ecosystems.CrossRef | 1:CAS:528:DC%2BD3sXovF2qtb0%3D&md5=c8e3f886c57959f4ba3990d8764fd56dCAS | 14630423PubMed | open url image1

Hakenkamp, C. C., and Palmer, M. A. (1999). Introduced bivalves in freshwater ecosystems: the impact of corbicula on organic matter dynamics in a sandy stream. Oecologia 119, 445–451.
Introduced bivalves in freshwater ecosystems: the impact of corbicula on organic matter dynamics in a sandy stream.CrossRef | open url image1

Hambright, K. D., Zohary, T., and Gude, H. (2007). Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography 52, 1018–1025.
Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake.CrossRef | 1:CAS:528:DC%2BD2sXms1ymt7g%3D&md5=6d41cb3f0262c19f8999f7f30d56a61cCAS | open url image1

Havens, K. E., and Beaver, J. B. (2011). Composition, size, and biomass of zooplankton in large productive Florida lakes. Hydrobiologia 668, 49–60.
Composition, size, and biomass of zooplankton in large productive Florida lakes.CrossRef | 1:CAS:528:DC%2BC3MXlsVCkt7g%3D&md5=2407860d58edbdbb1178a16a7fe1520aCAS | open url image1

Havens, K. E., Elia, A., Taticchi, M., and Fulton, R. (2009). Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628, 165–175.
Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy).CrossRef | 1:CAS:528:DC%2BD1MXls12gtLo%3D&md5=35194f90c28e6575bb93a414161363d0CAS | open url image1

Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.CrossRef | open url image1

Hiltunen, T., Jones, L. E., Ellner, S. P., and Hairston, N. G. (2013). Temporal dynamics of a simple community with intraguild predation: an experimental test. Ecology 94, 773–779.
Temporal dynamics of a simple community with intraguild predation: an experimental test.CrossRef | open url image1

Hwang, S. J., Kim, H. S., Shin, J. K., Ho, J. K., and Kon, D. S. (2004). Grazing effects of a freshwater bivalve (Corbicula leana prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515, 161–179.
Grazing effects of a freshwater bivalve (Corbicula leana prime) and large zooplankton on phytoplankton communities in two Korean lakes.CrossRef | open url image1

Iglesias, C. (2011). Cascading effects of predators in temperate and subtropical shallow lakes. Ph.D. Thesis, National Environmental Research Institute, Aarhus University, Silkeborg. Available at http://www.dmu.dk/Pub/PHD_ CIG.pdf [Verified 24 June 2016].

Iglesias, C., Mazzeo, N., Meerhoff, M., Lacerot, G., Clemente, J. M., Scasso, F., Kruk, C., Goyenola, G., García-Alonso, J., Amsinck, S. L., Paggi, J. C., José de Paggi, S., and Jeppesen, E. (2011). High predation is of key importance for dominance of small bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667, 133–147.
High predation is of key importance for dominance of small bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments.CrossRef | open url image1

Jeppesen, E., Jensen, J. P., Kristensen, P., Søndergaard, M., Mortensen, E., Sortkjær, O., and Olrik, K. (1990). Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes: threshold levels, long term stability and conclusions. Hydrobiologia 200–201, 219–227.
Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes: threshold levels, long term stability and conclusions.CrossRef | open url image1

Jeppesen, E., Meerhoff, M., Jacobsen, B. A., Hansen, R. S., Søndergaard, M., Jensen, J. P., Lauridsen, T. L., Mazzeo, N., and Branco, C. W. C. (2007). Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia 581, 269–285.
Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate.CrossRef | 1:CAS:528:DC%2BD2sXjtVWju7s%3D&md5=08294dfaf4d4cc5fd4788a414211c23aCAS | open url image1

Kâ, S., Mendoza-Vera, J. M., Bouvy, M., Champalbert, G., N’Gom-Ka, R., and Pagano, M. (2012). Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiologia 679, 119–138.
Can tropical freshwater zooplankton graze efficiently on cyanobacteria?CrossRef | open url image1

Lacerot, G. (2010). Effects of climate on size structure and functioning of aquatic food webs. Ph.D. Thesis, Wageningen University.

Lehane, C., and Davenport, J. (2002). Ingestion of mesozooplankton by three species of bivalve; Mytilus edulis, Cerastoderma edule and Aequipecten opercularis. Journal of the Marine Biological Association of the United Kingdom 82, 615–619.
Ingestion of mesozooplankton by three species of bivalve; Mytilus edulis, Cerastoderma edule and Aequipecten opercularis.CrossRef | open url image1

Lewis, W. M. Jr (1996). Tropical lakes: how latitude makes a different. In ‘Perspectives in Tropical Limnology’. (Eds F. Schiemer and K. T. Boland.) pp. 43–64. (SPB Academic Publishing: Amsterdam.)

Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology 23, 399–417.
The trophic-dynamic aspect of ecology.CrossRef | open url image1

Lopes-Lima, M., Lima, P., Hinzmann, M., Rocha, A., and Machado, J. (2014). Selective feeding by Anodontacygnea (Linnaeus, 1771): the effects of seasonal changes and nutritional demands. Limnologica – Ecology and Management of Inland Waters 44, 18–22.
Selective feeding by Anodontacygnea (Linnaeus, 1771): the effects of seasonal changes and nutritional demands.CrossRef | open url image1

Lund, J. W. G., Kipling, C., and Le Cren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170.
The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting.CrossRef | open url image1

Marroni, S., Iglesias, C., Mazzeo, N., Clemente, J., Texeira-de Mello, F., and Pacheco, J. P. (2014). Alternative food sources of native and non-native bivalves in a subtropical eutrophic lake. Hydrobiologia 735, 263–276.
Alternative food sources of native and non-native bivalves in a subtropical eutrophic lake.CrossRef | 1:CAS:528:DC%2BC3sXhslWltrzL&md5=8eb77521f9d42cba30b4fa9c7b298bcbCAS | open url image1

Mayer, C. M., Keats, R. A., Rudstam, L. G., and Mills, E. L. (2002). Scale dependent effects of zebra mussels on benthic invertebrates in a large eutrophic lake. Journal of the North American Benthological Society 21, 616–633.
Scale dependent effects of zebra mussels on benthic invertebrates in a large eutrophic lake.CrossRef | open url image1

Mazzeo, N., Garcia-Rodríguez, F., Rodríguez, A., Méndez, G., Iglesias, C., Inda, H., Goyenola, G., García, S., Marroni, S., Crisci, C., del Puerto, L., Clemente, J., Pacheco, J. P., Carballo, C., Kröger, A., Vianna, M., Meerhoff, M., Steffen, M., Lagomarsino, J. J., Masdeu, M., Vidal, N., Teixeira-de Mello, F., González-Bergozoni, I., and Larrea, D. (2010a). Estado trófico de Laguna del Sauce y respuestas asociadas. Bases técnicas para el manejo integrado de Laguna del Sauce y su cuenca asociada. In ‘Bases Técnicas para el Manejo Integrado de Laguna del Sauce y Cuenca Asociada’. (Eds M. Steffen and H. Inda.) pp. 31–51. (Universidad de la República – Instituto SARAS.)

Mazzeo, N., Iglesias, C., Teixeira-de Mello, F., Borthagaray, A., Fosalba, C., Ballabio, R., Larrea, D., Vilches, J., García, S., Pacheco, J. P., and Jeppesen, E. (2010b). Trophic cascade effects of Hoplias malabaricus (Characiformes, Erythrinidae) in subtropical lakesfood webs: a mesocosm approach. Hydrobiologia 644, 325–335.
Trophic cascade effects of Hoplias malabaricus (Characiformes, Erythrinidae) in subtropical lakesfood webs: a mesocosm approach.CrossRef | 1:CAS:528:DC%2BC3cXjvFagtLw%3D&md5=a7341d5da4698dfbbbe929227f6a7865CAS | open url image1

Meerhoff, M., Clemente, J., de Teixeira Mello, F., Iglesias, C., Pedersen, A. R., and Jeppesen, E. (2007). Can warm climate related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13, 1888–1897.
Can warm climate related structure of littoral predator assemblies weaken the clear water state in shallow lakes?CrossRef | open url image1

Meijer, M. L., de Boois, I., Scheffer, M., Portielje, R., and Hosper, H. (1999). Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia 408/409, 13–30.
Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies.CrossRef | open url image1

Molina, F., and José de Paggi, S. (2008). Zooplankton in the Parana River flood plain (South America) before and after the invasion of Limnoperna fortunei (Bivalvia). Wetlands 28, 695–702.
Zooplankton in the Parana River flood plain (South America) before and after the invasion of Limnoperna fortunei (Bivalvia).CrossRef | open url image1

Molina, F., José de Paggi, S., and Frau, D. (2012). Impacts of the invading golden mussel limnoperna fortunei on zooplankton: a mesocosm experiment. Zoological Studies 51, 733–744.
| 1:CAS:528:DC%2BC3sXhtFCrt70%3D&md5=e66df4ef4df74a9df5e555357151ad6fCAS | open url image1

Navarro, J. M., and Velasco, L. A. (2003). Comparison of two methods for measuring filtration rate in filter feeding bivalves. Journal of the Marine Biological Association of the United Kingdom 83, 553–558.
Comparison of two methods for measuring filtration rate in filter feeding bivalves.CrossRef | open url image1

Newell, C. R., Shumway, S. E., Cucci, T. L., and Selvin, R. (1989). The effects of natural seston particle size and type on feeding rates, feeding selectivity and food resource availability for the mussel Mytilus edulis, at bottom culture sites in Maine. Journal of Shellfish Research 8, 187–196. open url image1

Newell, R. I. E., Kemp, W. M., Hagy, J. D., Cerco, C. A., Testa, J. M., and Boynton, W. R. (2007). Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: comment on Pomeroy et al. (2006). Marine Ecology Progress Series 341, 293–298.
Top-down control of phytoplankton by oysters in Chesapeake Bay, USA: comment on Pomeroy et al. (2006).CrossRef | open url image1

Owen, G. (1974). Feeding and digestion in the Bivalvia. Advances in Comparative Physiology and Biochemistry 5, 1–35.
Feeding and digestion in the Bivalvia.CrossRef | 1:STN:280:DyaE2M%2Fis1Omuw%3D%3D&md5=27d442691e9573848b5b59961a8c1d80CAS | 4608370PubMed | open url image1

Pacheco, J. P., Iglesias, C., Meerhoff, M., Fosalba, C., Goyenola, G., Teixeira-de Mello, F., García, S., Gelós, M., and García-Rodríguez, F. (2010). Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach. Hydrobiologia 646, 187–197.
Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology-based approach.CrossRef | 1:CAS:528:DC%2BC3cXksF2rsr4%3D&md5=c19b7ef8bad7aa4b7f7cd44b90a7afb2CAS | open url image1

Paggi, J., and José de Paggi, S. (1974). Primeros estudios sobre el zooplancton de las aguas lóticas del Paraná medio. Physis 33, 94–114. open url image1

Passow, U., Alldredge, A. L., and Logan, B. E. (1994). The role of particulate carbohydrate exudates in the flocculationof diatom blooms. Deep-Sea Research 41, 335–357.
The role of particulate carbohydrate exudates in the flocculationof diatom blooms.CrossRef | 1:CAS:528:DyaK2cXls1egtrg%3D&md5=6e7c35404b5463f05e86d0748b29a296CAS | open url image1

Peharda, M., Ezgeta-Balic, D., Davenport, J., Bojanic, N., Vidjak, O., and Nincevic-Gladan, Z. (2012). Differential ingestion of zooplankton by four species of bivalves (Mollusca) in the Mali Ston Bay, Croatia. Marine Biology 159, 881–895.
Differential ingestion of zooplankton by four species of bivalves (Mollusca) in the Mali Ston Bay, Croatia.CrossRef | open url image1

Phillips, G. L., Eminson, D. F., and Moss, B. (1978). A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4, 103–126.
A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters.CrossRef | open url image1

Polis, G. A., and Holt, R. D. (1992). Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology & Evolution 7, 151–154.
Intraguild predation: the dynamics of complex trophic interactions.CrossRef | 1:STN:280:DC%2BC3M7itVOhsg%3D%3D&md5=c11a91a4cecac214bd8e3b0402253668CAS | open url image1

Polis, G. A., Myers, C. A., and Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics 20, 297–330.
The ecology and evolution of intraguild predation: potential competitors that eat each other.CrossRef | open url image1

Prins, T., and Escaravage, V. (2005). Can bivalve suspension-feeders affect pelagic food web structure? The comparative roles of suspension-feeders in ecosystems. NATO Science Series IV: Earth and Environmental Series 47, 31–51.
Can bivalve suspension-feeders affect pelagic food web structure? The comparative roles of suspension-feeders in ecosystems.CrossRef | open url image1

Ramirez García, P. R., Nandini, S., Sarma, S. S. S., Valderrama, E. R., Cuesta, I., and Hurtado, M. D. (2002). Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). Hydrobiologia 467, 99–108.
Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico).CrossRef | open url image1

Riisgård, H. U. (2001). On measurement of filtration rates in bivalves: the stony road to reliable data: review and interpretation. Marine Ecology Progress Series 211, 275–291.
On measurement of filtration rates in bivalves: the stony road to reliable data: review and interpretation.CrossRef | open url image1

Sanders, R. W., Caron, D. A., and Berninger, U. G. (1992). Relationships between bacteria and heterotrophic nanoplankton in marine and freshwaters: an inter-ecosystem comparison. Marine Ecology Progress Series 86, 1–14.
Relationships between bacteria and heterotrophic nanoplankton in marine and freshwaters: an inter-ecosystem comparison.CrossRef | open url image1

Sarma, S., Nandini, S., and Gulati, R. (2005). Life history strategies of cladocerans: comparisons of tropical and temperate taxa. In ‘Aquatic Biodiversity II’. (Eds H. Segers and K. Martens.) pp. 315–333. (Springer.)

Scheffer, M. (1998). ‘Ecology of Shallow Lakes.’ (Kluwer Academics Publishers.)

Scheffer, M., and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18, 648–656.
Catastrophic regime shifts in ecosystems: linking theory to observation.CrossRef | open url image1

Scheffer, M., and Jeppesen, E. (2007). Regime shifts in shallow lakes. Ecosystems 10, 1–3.
Regime shifts in shallow lakes.CrossRef | open url image1

Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275–279.
Alternative equilibria in shallow lakes.CrossRef | 1:STN:280:DC%2BC3M7itVyqtQ%3D%3D&md5=1c1264734f9340956062c8970b332346CAS | open url image1

Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L. R., and Van Nes, E. H. (1997). On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78, 272–282.
On the dominance of filamentous cyanobacteria in shallow, turbid lakes.CrossRef | open url image1

Søndergaard, M., and Moss, B. (1998). Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In ‘The Structuring Role of Submerged Macrophytes in Lakes’. (Eds E. Jeppesen, M. Søndergaard, M. Søndergaard, and K. Christoffersen.) pp. 115–132. (Springer: New York.)10.1007/978-1-4612-0695-8_6

Sosnovsky, A., Rosso, J. J., and Quiros, R. (2010). Trophic interactions in shallow lakes of the Pampa plain (Argentina) and their effects on water transparency during two cold seasons of contrasting fish abundance. Limnetica 29, 233–246. open url image1

Stephen, D., Balayla, D. M., Collings, S. E., and Moss, B. (2004). Two mesocosm experiments investigating the control of summer phytoplankton growth in a small shallow lake. Freshwater Biology 49, 1551–1564.
Two mesocosm experiments investigating the control of summer phytoplankton growth in a small shallow lake.CrossRef | 1:CAS:528:DC%2BD2MXhvV2iug%3D%3D&md5=8c6a33cb3b9fb5a0b268006607d9255eCAS | open url image1

Strayer, D. L. (2009). Twenty years of zebra mussels: lessons from the mollusk that made headlines. Frontiers in Ecology and the Environment 7, 135–141.
Twenty years of zebra mussels: lessons from the mollusk that made headlines.CrossRef | open url image1

Strayer, D. L., Caraco, N. F., Cole, J. F., Findlay, S., and Pace, M. L. (1999). Transformation of freshwater ecosystem by bivalves. Bioscience 49, 19–27.
Transformation of freshwater ecosystem by bivalves.CrossRef | open url image1

Ütermöhl, H. (1958). Zür Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung Limnologie 9, 1–38. open url image1

Vadeboncoeur, Y., and Steinman, A. D. (2002). Periphyton function in lake ecosystems. The Scientific World Journal 2, 1449–1468.
Periphyton function in lake ecosystems.CrossRef | 12805932PubMed | open url image1

Vanderploeg, H. A., Nalepa, T. F., Jude, D. J., Mills, E. L., Holeck, K. T., Liebig, J. R., Grigorovich, I. A., and Ojaveer, H. (2002). Dispersal and ecological impacts of Ponto-Caspian species in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59, 1209–1228.
Dispersal and ecological impacts of Ponto-Caspian species in the Great Lakes.CrossRef | open url image1

Vaughn, C. C., Nichols, S. J., and Spooner, D. E. (2008). Community and food web ecology of freshwater mussels. Journal of the North American Benthological Society 27, 409–423.
Community and food web ecology of freshwater mussels.CrossRef | open url image1

Wall, C. C., Peterson, B. J., and Glober, J. C. (2008). Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Marine Ecology Progress Series 357, 165–174.
Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves.CrossRef | 1:CAS:528:DC%2BD1cXmsV2mtbs%3D&md5=b07d19591afe6be66c3c4a5ee86ceb50CAS | open url image1

Ward, J. E., and Shumway, S. E. (2004). Separating the grain from the chaff: particle selection in suspension and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology 300, 83–130.
Separating the grain from the chaff: particle selection in suspension and deposit-feeding bivalves.CrossRef | open url image1

Way, C. M., Hornbach, D. J., Millerway, C. A., Payne, B. S., and Miller, A. C. (1990). Dynamics of filter feeding in Corbicula fluminea (Bivalvia, Corbiculidae). Canadian Journal of Zoology 68, 115–120.
Dynamics of filter feeding in Corbicula fluminea (Bivalvia, Corbiculidae).CrossRef | open url image1

Widdows, J., Fieth, P., and Worrall, C. M. (1979). Relationship between seston, available food and feeding activity in the common mussel Mytilus edulis. Marine Biology 50, 195–207.
Relationship between seston, available food and feeding activity in the common mussel Mytilus edulis.CrossRef | 1:CAS:528:DyaE1MXhvVGgurc%3D&md5=6160247f10e3c015f2c08aab6514f1e5CAS | open url image1

Wilken, S., Verspagen, J. M. H., Naus-Wiezer, S., Van Donk, E., and Huisman, J. (2014). Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory. Ecological Applications 24, 1235–1249.
Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory.CrossRef | 25154110PubMed | open url image1

Winder, M., and Jassaby, A. D. (2011). Shifts in zooplankton community structure: implications for food web processes in the Upper San Francisco Estuary. Estuaries and Coasts 34, 675–690.
Shifts in zooplankton community structure: implications for food web processes in the Upper San Francisco Estuary.CrossRef | open url image1

Winter, J. E. (1978). A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 1–33.
A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems.CrossRef | open url image1

Wong, W. H., and Levinton, J. S. (2006). The trophic linkage between zooplankton andbenthic suspension feeders: direct evidence from analyses of bivalve faecal pellets. Marine Biology 148, 799–805.
The trophic linkage between zooplankton andbenthic suspension feeders: direct evidence from analyses of bivalve faecal pellets.CrossRef | open url image1

Wong, W. H., Levinton, J. S., Twining, B. S., and Fisher, N. (2003). Assimilation of micro and mesozooplankton by zebra mussels: a demonstration of the food web link between zooplankton and benthic suspension feeders. Limnology and Oceanography 48, 308–312.
Assimilation of micro and mesozooplankton by zebra mussels: a demonstration of the food web link between zooplankton and benthic suspension feeders.CrossRef | open url image1

Yin, X. W., Liu, P. F., Zhu, S. S., and Chen, X. X. (2010). Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae. Hydrobiologia 655, 15–23.
Food selectivity of the herbivore Daphnia magna (Cladocera) and its impact on competition outcome between two freshwater green algae.CrossRef | open url image1

Zeldis, J., Robinson, K., Ross, A., and Hayden, B. (2004). First observations of predation by New Zealand green shell mussels (Perna canaliculus) on zooplankton. Journal of Experimental Marine Biology and Ecology 311, 287–299.
First observations of predation by New Zealand green shell mussels (Perna canaliculus) on zooplankton.CrossRef | open url image1

Zhu, B., Fitzgerald, D. G., Mayer, C. M., Rudstam, L. G., and Mills, E. L. (2006). Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes. Ecosystems 9, 1017–1028.
Alteration of ecosystem function by zebra mussels in Oneida Lake: impacts on submerged macrophytes.CrossRef | open url image1



Export Citation