Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Connecting the litterfall temporal dynamics and processing of coarse particulate organic matter in a tropical stream

Aurea Luiza Lemes da Silva A E , Leonardo Kleba Lisboa B , Ana Emília Siegloch C , Mauricio Mello Petrucio D and José Francisco Gonçalves Júnior A
+ Author Affiliations
- Author Affiliations

A Laboratório de Limnologia, Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Universidade de Brasília, DF, CEP 70910-900, Brazil.

B Laboratório de Ecologia de Rios e Córregos, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, CEP 20550-013, Brazil.

C Programa de Pós-Graduação em Ambiente e Saúde, Universidade do Planalto Catarinense, Campus Lages, Lages-SC, CEP 88509-900, Brazil.

D Laboratório de Ecologia de Águas Continentais, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis-SC, CEP 88040-900, Brazil.

E Corresponding author. Email: aurealuizalemes@gmail.com

Marine and Freshwater Research 68(7) 1260-1271 https://doi.org/10.1071/MF16032
Submitted: 29 January 2016  Accepted: 23 August 2016   Published: 4 October 2016

Abstract

We collected leaf litter monthly and analysed how the temporal dynamics of litterfall affect the breakdown rates, microbial and fungal biomass and aquatic invertebrate community in a tropical stream in southern Brazil. The results showed that total annual litterfall varied over time and was negatively associated with rainfall. Litter fell mostly in the spring months, but other peaks occurred throughout the year. In all, 122 tree species were identified; however, only seven represented >70% of the total of leaf litter vertical input. Leaf decomposition was higher in February and April (wet, warm months) than during the wet season. Fungal biomass was high in decomposing leaves (460 ± 28 μg g–1 of ash-free dry mass, AFDM), with a maximum of 655 μg g–1 AFDM in July. Microbial biomass in decomposing leaves was lower (326 ± 27 nmol g–1 AFDM), with a maximum of 504 nmol g–1 AFDM in October. Monthly variability in the fungal and microbial biomass and aquatic invertebrate colonisation were associated with litter quality. The results suggested that litterfall is the result of regional environmental factors and characteristics of the riparian vegetation and that modifications in the quality, quantity and timing of the delivery of litter input to the stream affect activity in the decomposer community, which then affects monthly litter-breakdown rates.


References

Abelho, M. (2001). From litterfall to breakdown in streams: a review. Scientific World 1, 656–680.
From litterfall to breakdown in streams: a review.CrossRef | 1:STN:280:DC%2BD3s3nvVyhug%3D%3D&md5=fb844f9a0d659c5dd4d69d06cb275ee6CAS |

Abelho, M. (2005). Extraction and quantification of ATP as a measure of microbial biomass. In ‘Methods to Study Litter Decomposition’. (Eds M. A. S. Graça, F. Bärlocher, and M. O. Gessner.) pp. 223–229. (Springer: Dordrecht, Netherlands.)

Abelho, M. (2008). Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream. International Review of Hydrobiology 93, 358–371.
Effects of leaf litter species on macroinvertebrate colonization during decomposition in a Portuguese stream.CrossRef |

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439–449.
Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship.CrossRef |

American Public Health Association (2005). ‘Standard Methods for the Examination of Water and Wastewater’, 22th edn. (American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA.)

Anderson, M. J., and Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525.
Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology.CrossRef |

Ardón, M., Pringle, C. M., and Eggert, S. L. (2009). Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry. Journal of the North American Benthological Society 28, 440–453.
Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry.CrossRef |

Artmann, U., Waringer, J. A., and Schagerl, M. (2003). Seasonal dynamics of algal biomass and allochthonous input of coarse particulate organic matter in a low-order sandstone stream (Weidlingbach, lower Austria). Limnologica 33, 77–91.
Seasonal dynamics of algal biomass and allochthonous input of coarse particulate organic matter in a low-order sandstone stream (Weidlingbach, lower Austria).CrossRef |

Averti, I., and Dominique, N. (2011). Litterfall, accumulation and decomposition in forest groves established on savannah in the Plateau Teke, central Africa. International Journal of Environmental Science and Technology 4, 601–610.
Litterfall, accumulation and decomposition in forest groves established on savannah in the Plateau Teke, central Africa.CrossRef |

Bärlocher, F., and Graça, M. A. S. (2005). Total phenolics. In ‘Methods to Study Litter Decomposition: a Practical Guide’. (Eds M. A. S. Graça, F. Bärlocher, and M. O. Gessner.) pp. 97–100. (Springer: Dordrecht, Netherlands)

Bergfur, J. (2007). Seasonal variation in leaf-litter breakdown in nine boreal streams: implications for assessing functional integrity. Fundamental and Applied Limnology 169, 319–329.
Seasonal variation in leaf-litter breakdown in nine boreal streams: implications for assessing functional integrity.CrossRef | 1:CAS:528:DC%2BD2sXht12ku7zM&md5=d51ddf7399b8dbcc914c4586488bf21fCAS |

Boyero, L., Pearson, R. G., Dudgeon, D., Ferreira, V., Graça, M. A. S., Gessner, M. O., Boulton, A. J., Chauvet, E., Yule, C. M., Albariño, R. J., Ramírez, A., Helson, J. E., Callisto, M., Arunachalam, M., Chará, J., Figueroa, R., Mathooko, J. M., Gonçalves Júnior, J. F., Moretti, M. S., Chará-Serna, A. M., Davies, J. N., Encalada, A., Lamothe, S., Buria, L. M., Castela, J., Cornejo, A., Li, A. O. Y., M’erimba, C., Villanueva, V. D., Del Carmen Zúñiga, M., Swan, C. M., and Barmuta, L. A. (2012). Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography 21, 134–141.
Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates.CrossRef |

Boyero, L., Pearson, R. G., Hui, C., Gessner, M. O., Pérez, J., Alexandrou, M. A., Graça, M. A. S., Cardinale, B. J., Albarinõ, R. J., Arunachalam, M., Barmuta, A. L., Boulton, A. J., Bruder, A., Callisto, M., Chauvet, E., Death, R. G., Dudgeon, D., Encalada, A. C., Ferreira, V., Figueroa, R., Flecker, A. S., Gonçalves, J. F., Jr, Helson, J., Iwata, T., Jinggut, T., Mathooko, J., Mathuriau, C., M’Erimba, C., Moretti, M. S., Pringle, C. M., Ramírez, A., Ratnarajah, L., Rincon, J., and Yule, C. M. (2016). Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proceedings of the Royal Society of London. B. Biological Sciences 283(1829), 20152664.

Bruder, A., Schindler, M. H., Moretti, M. S., and Gesnner, M. O. (2014). Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshwater Biology 59, 438–449.
Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders.CrossRef | 1:CAS:528:DC%2BC2cXptVKnsQ%3D%3D&md5=6869948502234f60f321f10b8464ac41CAS |

Cabrini, R., Canobbio, S., Sartori, L., Fornaroli, R., and Mezzanotte, V. (2013). Leaf packs in impaired streams: the influence of leaf type and environmental gradients on breakdown rate and invertebrate assemblage composition. Water, Air, and Soil Pollution 224, 1697–1710.
Leaf packs in impaired streams: the influence of leaf type and environmental gradients on breakdown rate and invertebrate assemblage composition.CrossRef |

Caruso, M. M. L. (1990). ‘O Desmatamento na Ilha de Santa Catarina de 1500 Aos Dias Atuais.’ (Universidade Federal de Santa Catarina: Florianópolis, Brazil.)

Chadwick, M. A., Thiele, J. E., Huryn, A. D., Benke, A. C., and Dobberfuhl, D. R. (2012). Effects of urbanization on macroinvertebrates in tributaries of the St Johns River, Florida, USA. Urban Ecosystems 15, 347–365.
Effects of urbanization on macroinvertebrates in tributaries of the St Johns River, Florida, USA.CrossRef |

Crawley, M. J. (2007). ‘The R Book.’ (Wiley: Chichester, UK.)

Cummins, K. W., Merritt, R. W., and Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40, 69–89.
The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil.CrossRef |

de Souza Rezende, R., Graça, M. A. S., dos Santos, A. M., Medeiros, A. O., Santos, P. F., Nunes, Y. R. F., and Gonçalves Júnior, J. F. (2016). Organic matter dynamics in a tropical gallery forest in a grassland landscape. Biotropica 48, 301–310.
Organic matter dynamics in a tropical gallery forest in a grassland landscape.CrossRef |

Dominguéz, E., and Fernández, H. R. (2009). ‘Macroinvertebrados Bentônicos Sudamericanos: Sistemática y Biologia.’ (Fundacion Miguel Lillo: Tucumán, Argentina.)

Fernandes, I., Duarte, S., Cássio, F., and Pascoal, C. (2015). Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams. Marine and Freshwater Research 66, 449–458.
Plant litter diversity affects invertebrate shredder activity and the quality of fine particulate organic matter in streams.CrossRef | 1:CAS:528:DC%2BC2MXnslGlsbk%3D&md5=2a191cccac97d80e24be26b836d8f64fCAS |

Ferreira, V., and Canhoto, C. (2014). Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences 76, 155–163.
Effect of experimental and seasonal warming on litter decomposition in a temperate stream.CrossRef | 1:CAS:528:DC%2BC2cXkslCksbk%3D&md5=5ee14bfe4cfd640add229e7aa68fcd04CAS |

Flindt, M. R., and Lillebø, A. I. (2005). Determination of total nitrogen and phosphorus in leaf litter. In ‘Methods to Study Litter Decomposition’. (Eds M. A. S Graça, F. Barlocher, and M. O. Gessner.) pp. 53–59. (Springer: Dordrecht, Netherlands.)

França, J. S., Gregorio, R. S., De Paula, J. D., Gonçalves Júnior, J. F., Ferreira, F. A., and Callisto, M. (2009). Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Marine and Freshwater Research 60, 990–998.
Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream.CrossRef |

Frost, P. C., Larson, J. H., Johnston, C. A., Young, K. C., Maurice, P. A., Lamberti, G. A., and Bridgham, S. D. (2006). Relationships of DOC and its chemistry in streams from a Lake Superior watershed with watershed land cover and geomorphology. Aquatic Sciences 68, 40–51.
Relationships of DOC and its chemistry in streams from a Lake Superior watershed with watershed land cover and geomorphology.CrossRef | 1:CAS:528:DC%2BD28XkslWhs7o%3D&md5=e08da24caa04a832a7c777c5327ec8a5CAS |

Gessner, M. O. (2005). Ergosterol as a measure of fungal biomass. In ‘Methods to Study Litter Decomposition’. (Eds M. A. S. Graça, F. Bärlocher, M. O. Gessner.) pp. 189–195. (Springer: Dordrecht, Netherlands.)

Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., and Haettenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution 25, 372–380.
Diversity meets decomposition.CrossRef |

Goering, H. K., and Van Soest, P. J. (1970). ‘Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications).’ (US Agricultural Research Service: Washington, DC, USA.)

Golterman, H. L., Clymo, R. S., and Ohnstad, M. A. M. (1978). ‘Methods for Physical and Chemical Analysis of Freshwater.’ (Blackwell Science: Oxford, UK.)

Gonçalves Júnior, J. F., and Callisto, M. (2013). Organic-matter dynamics in the riparian zone of a tropical headwater stream in southern Brazil. Aquatic Botany 109, 8–13.
Organic-matter dynamics in the riparian zone of a tropical headwater stream in southern Brazil.CrossRef |

Gonçalves Júnior, J. F., França, J. S., and Callisto, M. (2006). Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian Archives of Biology and Technology 49, 967–973.
Dynamics of allochthonous organic matter in a tropical Brazilian headstream.CrossRef |

Gonçalves Júnior, J. F., Martins, R. T., Ottoni, B. M. P., and Couceiro, S. R. M. (2013). Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In ‘Insetos Aquáticos: Biologia, Ecologia e Taxonomia’. (Eds N. Hamada, E. Wolanski, J. L. Nessimian, and R. B. Querino.) pp. 1–41. (Editora do INPA: Manaus, Brazil.)

Gonçalves Júnior, J. F., de Souza Rezende, R., Gregório, R. S., and Valentin, G. C. (2014). Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica 44, 40–48.
Relationship between dynamics of litterfall and riparian plant species in a tropical stream.CrossRef |

Graça, M. A. S. (2001). The role of invertebrates on leaf litter decomposition in streams: a review. International Review of Hydrobiology 86, 383–393.
The role of invertebrates on leaf litter decomposition in streams: a review.CrossRef |

Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolaño, F., Wantzen, K. M., and Boyero, L. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100, 1–12.
A conceptual model of litter breakdown in low order streams.CrossRef |

Greenwood, J. L., Rosemond, A. D., Wallace, J. B., Cross, W. F., and Weyers, H. S. (2007). Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151, 637–649.
Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.CrossRef | 17146682PubMed |

Hättenschwiler, S., and Vitousek, P. M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trees 15, 238–243.

Hennemann, M., and Petrucio, M. M. (2011). Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil. Environmental Monitoring and Assessment 181, 347–361.
Spatial and temporal dynamic of trophic relevant parameters in a subtropical coastal lagoon in Brazil.CrossRef | 21190080PubMed |

Hladyz, S., Gessner, M. O., Giller, P. S., Pozo, J., and Woodward, G. (2009). Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54, 957–970.
Resource quality and stoichiometric constraints on stream ecosystem functioning.CrossRef | 1:CAS:528:DC%2BD1MXlslCitbo%3D&md5=78d4c919a32c6a89b795863597e89abfCAS |

Hothorn, T. F., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biomedical Journal 50, 346–363.

Kleba Lisboa, L., Lemes da Silva, A. L., Siegloch, A. E., Gonçalves Júnior, J. F., and Petrucio, M. M. (2015). Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Marine and Freshwater Research 66, 674–680.
Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream.CrossRef |

Kochi, K., and Yanai, S. (2006). Shredder colonization and decomposition of green and senescent leaves during summer in a headwater stream in northern Japan. Ecological Research 21, 544–550.
Shredder colonization and decomposition of green and senescent leaves during summer in a headwater stream in northern Japan.CrossRef |

Kominoski, J. S., Hoellein, T. J., Kelly, J. J., and Pringle, C. M. (2009). Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species? Oikos 118, 457–463.
Does mixing litter of different qualities alter stream microbial diversity and functioning on individual litter species?CrossRef |

Kominoski, J. S., Shah, J. J. F., Canhoto, C., Fischer, D. G., Giling, D. P., González, E., Griffiths, N. A., Larrañaga, A., LeRoy, C. J., Mineau, M. M., McElarney, Y. R., Shirley, S. M., Swan, C. M., and Tiegs, S. D. (2013). Forecasting functional implications of global changes in riparian plant communities. Frontiers in Ecology and the Environment 11, 423–432.
Forecasting functional implications of global changes in riparian plant communities.CrossRef |

König, R., Hepp, L. H., and Santos, S. (2014). Colonisation of low- and high-quality detritus by benthic macroinvertebrates during leaf breakdown in a subtropical stream. Limnologica 45, 61–68.
Colonisation of low- and high-quality detritus by benthic macroinvertebrates during leaf breakdown in a subtropical stream.CrossRef |

Koroleff, F. (1976). Determination of nutrients. In ‘Methods of Sea Water Analysis’. (Ed. K. Grasshoff.) pp. 117–181. (Verlag Chemie: Weinheim, Germany.)

Lecerf, A., Risnoveanu, G., Popescu, C., Gessner, M. O., and Chauvet, E. (2007). Decomposition of diverse litter mixtures in streams. Ecology 88, 219–227.
Decomposition of diverse litter mixtures in streams.CrossRef | 17489470PubMed |

Lemes da Silva, A. L., Pagliosa, P. P., and Petrucio, M. M. (2014). Inter-and intra-guild patterns of food resource utilization by chironomid larvae in a subtropical coastal lagoon. Limnology 15, 1–12.
Inter-and intra-guild patterns of food resource utilization by chironomid larvae in a subtropical coastal lagoon.CrossRef |

Ligeiro, R., Moretti, M. S., Gonçalves Júnior, J. F., and Callisto, M. (2010). What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia 654, 125–136.
What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species?CrossRef |

Lowman, M. D. (1988). Litterfall and leaf decay in three Australian rainforest formations. Journal of Ecology 76, 451–465.
Litterfall and leaf decay in three Australian rainforest formations.CrossRef |

Marafiga, J. S., Viera, M., Szymczak, D. A., Schumache, M. V., and Peter Trüby, P. (2012). Deposição de nutrientes pela serapilheira em um fragmento de Floresta Estacional Decidual no Rio Grande do Sul. Revista Ceres 59, 765–771.
Deposição de nutrientes pela serapilheira em um fragmento de Floresta Estacional Decidual no Rio Grande do Sul.CrossRef | 1:CAS:528:DC%2BC3sXlvVegtLg%3D&md5=d121247f57f7d57bbc91ec05a5528c62CAS |

Mas-Martí, E., Muñoz, I., Oliva, F., and Canhoto, C. (2015). Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment. Freshwater Biology 60, 184–197.
Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment.CrossRef |

Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., and McClain, M. E. (2014). Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecological Indicators 46, 23–37.
Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams.CrossRef |

Mathuriau, C., Thomas, A. G. B., and Chauvet, E. (2008). Seasonal dynamics of benthic detritus and associated macroinvertebrate communities in a neotropical stream. Fundamental and Applied Limnology 171, 323–333.
Seasonal dynamics of benthic detritus and associated macroinvertebrate communities in a neotropical stream.CrossRef |

Menéndez, M., Hernández, O., and Comín, F. A. (2003). Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia 495, 159–169.
Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability.CrossRef |

Moretti, M. S., Gonçalves Júnior, J. F., Ligeiro, R., and Callisto, M. (2007). Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). International Review of Hydrobiology 92, 199–210.
Invertebrates colonization on native tree leaves in a neotropical stream (Brazil).CrossRef |

Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010). ‘Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro.’ (Techinal Books Editora: Rio de Janeiro, Brazil.)

Muto, E. A., Kreutzweiser, D. P., and Sibley, P. K. (2011). Overwinter decomposition and associated macroinvertebrate communities of three deciduous leaf species in forest streams on the Canadian Boreal Shield. Hydrobiologia 658, 111–126.
Overwinter decomposition and associated macroinvertebrate communities of three deciduous leaf species in forest streams on the Canadian Boreal Shield.CrossRef |

Neto, A. B. C., and Klein, R. M. (1991). ‘Mapeamento Temático do Município de Florianópolis: Vegetação – Síntese Temática.’ (IPUF: Florianópolis, Brazil.)

Pozo, J., González, E., Díez, J. R., Molinero, J., and Elosegi, A. (1997). Inputs of particulate organic matter to streams with different riparian vegetation. Journal of the North American Benthological Society 16, 602–611.
Inputs of particulate organic matter to streams with different riparian vegetation.CrossRef |

Richardson, J. S., Shaughnessy, C. R., and Harrison, P. G. (2004). Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Archiv für Hydrobiologie 159, 309–325.
Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream.CrossRef |

Riipinen, M. P., Fleituch, T., Hladyz, S., Woodward, G., Giller, P. S., and Dobson, M. (2010). Invertebrate community structure and ecosystem functioning in European conifer plantation streams. Freshwater Biology 55, 346–359.
Invertebrate community structure and ecosystem functioning in European conifer plantation streams.CrossRef | 1:CAS:528:DC%2BC3cXitlKnsL8%3D&md5=10e92fa0b992c16e74ad2ca16bf16602CAS |

Sales, M. A., Gonçalves Júnior, J. F., Dahora, J. S., and Medeiros, A. O. (2015). Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian cerrado: a 1-year study. Microbial Ecology 69, 84–94.
Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian cerrado: a 1-year study.CrossRef | 1:STN:280:DC%2BC2cbptFKktQ%3D%3D&md5=625867dbec7d0d4ad512f2fbdda5335dCAS | 25096988PubMed |

Sobral, M., Jarenkow, J. A., Brack, P., Irgang, B., Larocca, J., and Rodrigues, R. S. S. (Eds) (2006). ‘Flora Arbórea e Arborescente do Rio Grande do Sul, Brasil.’ (RiMA/Novo Ambiente: São Carlos, Brazil.)

Stout, B. M., Benfield, E. F., and Webster, J. R. (1993). Effects of a forest disturbance on shredder production in southern Appalachian headwater streams. Freshwater Biology 29, 59–69.
Effects of a forest disturbance on shredder production in southern Appalachian headwater streams.CrossRef |

Strickland, J. D. H., and Parsons, T. R. (1960). A manual of seawater analysis. Fisheries Research Board of Canada Bulletin 125, 2nd edn. (Ottawa, ON, Canada.) Available at http://www.dfo-mpo.gc.ca/Library/10025.pdf [Verified 27 September 2016].

Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T., Emmerson, M. C., Hails, R. S., Hays, G. C., Hodgson, D. J., Hutchings, M. J., Johnson, D., Jones, J. P. G., Keeling, M. J., Kokko, H., Kunin, W. E., Lambin, X., Lewis, O. T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E. J., Norris, K., Phillimore, A. B., Purves, D. W., Reid, J. M., Reuman, D. C., Thompson, K., Travis, J. M. J., Turnbull, L. A., Wardle, D. A., and Wiegand, T. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology 101, 58–67.
Identification of 100 fundamental ecological questions.CrossRef |

Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., and Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29, 118–146.
A review of allochthonous organic matter dynamics and metabolism in streams.CrossRef |

Tedesco, M. J., Gianello, C., Bissanica Bohnen, H., and Volkweiss, S. J. (1995). ‘Análises de Solo, Plantas e Outros Materiais.’ (UFRGS: Porto Alegre, Brazil.)

Touma, B. R., Encalada, A. C., and Fornells, N. P. (2009). Leaf litter dynamics and its use by invertebrates in a high-altitude tropical Andean stream. International Review of Hydrobiology 94, 357–371.
Leaf litter dynamics and its use by invertebrates in a high-altitude tropical Andean stream.CrossRef |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The river continuum concept.CrossRef |

Wantzen, K. M., Yule, C. M., Mathooko, J. M., and Pringle, C. M. (2008). Organic matter processing in tropical streams. In ‘Tropical Stream Ecology’. (Eds D. Dudgeon, and D. Cressa.) pp. 43–64. (Elsevier: Tokyo.)

Webster, J. R., and Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17, 567–594.
Vascular plant breakdown in freshwater ecosystems.CrossRef |

Webster, J. R., Golladay, S. W., Benfield, E. F., D’angelo, D. J., and Peters, G. T. (1990). Effects of forest disturbance on particulate organic matter budgets of small streams. Journal of the North American Benthological Society 9, 120–140.
Effects of forest disturbance on particulate organic matter budgets of small streams.CrossRef |

Wetzel, R. G. (1983). ‘Limnology.’ (Saunders College Publishing: Philadelphia, PA, USA.)

Wieder, W. R., Cleveland, C. C., and Townsend, A. R. (2009). Controls over leaf litter decomposition in wet tropical forests. Ecology 90, 3333–3341.
Controls over leaf litter decomposition in wet tropical forests.CrossRef | 20120803PubMed |

Zalamea, M., and González, G. (2008). Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. Biotropica 40, 295–304.
Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns.CrossRef |

Zar, J. H. (2010). ‘Biostatistical Analysis’, 5th edn. (Pearson Prentice-Hall: Upper Saddle River, NJ, USA.)

Zhang, H., Yuan, W., Dong, W., and Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20, 240–247.
Seasonal patterns of litterfall in forest ecosystem worldwide.CrossRef | 1:CAS:528:DC%2BC2MXlsFGjtL0%3D&md5=33af5a910776402830a347bbffcf4e64CAS |



Rent Article (via Deepdyve) Export Citation

View Altmetrics