Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Discriminating populations of medusae (Chironex fleckeri, Cubozoa) using statolith microchemistry

Christopher J. Mooney A and Michael J. Kingsford A B
+ Author Affiliations
- Author Affiliations

A Marine Biology and Aquaculture, College of Science and Engineering and the ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.

B Corresponding author. Email: michael.kingsford@jcu.edu.au

Marine and Freshwater Research 68(6) 1144-1152 https://doi.org/10.1071/MF16104
Submitted: 31 March 2016  Accepted: 19 August 2016   Published: 13 September 2016

Abstract

The structure of medusae populations is poorly known. Natural geochemical signatures based on elemental composition of calcified structures are a common tool for investigating population structure or connectivity in marine systems. Chironex fleckeri (Cubozoa) medusae have a hard calcified structure, the statolith. Laser ablation–inductively coupled plasma mass spectrometry was used to determine the elemental composition of statoliths at varying spatial scales. We investigated medusae population structure using both univariate (element : Ca ratios) and multivariate (multi-element : Ca signature) analyses. Significant differences in some elemental ratios were found among regions (separated by hundreds of kilometres) and among many sites (separated by kilometres) within regions. Canonical discriminant analyses of multi-element : Ca signatures successfully distinguished between both regions and sites within regions with correct classifications of 100% of samples to some locations. Statolith microchemistry can help discriminate populations of jellyfish, but a multiseason comparison demonstrated the need to calibrate spatial differences by season. Our evidence and recent ecological data suggest that populations of C. fleckeri medusae are highly localised at spatial scales of kilometres; potential causal factors are discussed.

Additional keywords: box jellyfish, laser ablation–inductively coupled plasma mass spectrometry, LA-ICP-MS, population substructure.


References

Arkhipkin, A. I., Campana, S. E., Fitzgerald, J., and Thorrold, S. R. (2004). Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Canadian Journal of Fisheries and Aquatic Sciences 61, 1212–1224.
Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi).CrossRef | open url image1

Bailey, P. M., Little, M., Jelinek, G. A., and Wilce, J. A. (2003). Jellyfish envenoming syndromes: unknown toxic mechanisms and unproven therapies. The Medical Journal of Australia 178, 34–37.
| 12492389PubMed | open url image1

Barbosa, S. S., Klanten, S. O., Puritz, J. B., Toonen, R. J., and Byrne, M. (2013). Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biological Journal of the Linnaen Society 108, 821–833.
Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential.CrossRef | open url image1

Begg, G. A., and Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research 43, 35–44.
An holistic approach to fish stock identification.CrossRef | open url image1

Bergek, S., and Björklund, M. (2009). Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.). Biological Journal of the Linnaen Society 96, 746–758.
Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.).CrossRef | open url image1

Brown, T. (1973). ‘Chironex fleckeri: Distribution and Movements Around Magnetic Island, North Queensland.’ (James Cook University: Townsville, Qld, Australia.)

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.CrossRef | 1:CAS:528:DC%2BD3cXjtFKmtA%3D%3D&md5=1c1a0b19f44f50ec78fd6669fd952b22CAS | open url image1

Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., and Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46, 343–357.
Otolith elemental fingerprints as biological tracers of fish stocks.CrossRef | open url image1

Carrette, T., Alderslade, P., and Seymour, J. (2002). Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40, 1547–1551.
Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp.CrossRef | 1:CAS:528:DC%2BD38XotlKhs7c%3D&md5=94bff083f062b0c494ea22523153e285CAS | 12419505PubMed | open url image1

Cohen, J. (1988) ‘Statistical Power Analysis for the Behavioural Sciences.’ (Lawrence Erlbaum: Hillsdale, NJ, USA.)

Collins, A. G. (2016). Cubozoa. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=135219 [Verified 8 March 2016].

Darling, J. A., Reitzel, A. M., and Finnerty, J. R. (2004). Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Molecular Ecology 13, 2969–2981.
Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England.CrossRef | 1:CAS:528:DC%2BD2cXptFSku70%3D&md5=83f0a0a9bd60061560677094a89cff30CAS | 15367113PubMed | open url image1

Edmonds, J. S., Caputi, N., Moran, M. J., Fletcher, W. J., and Morita, M. (1995). Population discrimination by variation in concentrations of minor and trace elements in sagittae of two Western Australian teleosts. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean, and S. E. Campana.) pp. 655–670. (University of South Carolina Press: Columbia, SC, USA.)

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology – an Annual Review 46, 297–330.
Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences.CrossRef | open url image1

Fenner, P. J. (2005). Dangerous Australian box jellyfish. South Pacific Underwater Medicine Society 35, 76–83. open url image1

Fowler, A. J., Gillanders, B. M., and Hall, K. C. (2005). Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure. Marine and Freshwater Research 56, 661–676.
Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure.CrossRef | 1:CAS:528:DC%2BD2MXmsVyqsLc%3D&md5=84aa45fecfee906752c4ab5debe27b1eCAS | open url image1

Garm, A., Bielecki, J., Petie, R., and Nilsson, D. E. (2012). Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. The Biological Bulletin 222, 35–45.
| 1:STN:280:DC%2BC38vnsVSmsw%3D%3D&md5=19f8bb43fc59e92a5741132aa9d105bdCAS | 22426630PubMed | open url image1

Geffen, E., Anderson, M. J., and Wayne, R. K. (2004). Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology 13, 2481–2490.
Climate and habitat barriers to dispersal in the highly mobile grey wolf.CrossRef | 1:CAS:528:DC%2BD2cXmsl2qsrw%3D&md5=f0b754b1ca6349449bfd3ace935d51f3CAS | 15245420PubMed | open url image1

Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P., and Miller-Sims, V. (2007). Smelling home can prevent dispersal of reef fish larvae. Proceedings of the National Academy of Sciences of the United States of America 104, 858–863.
Smelling home can prevent dispersal of reef fish larvae.CrossRef | 1:CAS:528:DC%2BD2sXhtVegtrc%3D&md5=78f29aef00f5cf737b523547a8958669CAS | 17213323PubMed | open url image1

Gershwin, L., and Dabinett, K. (2009). Comparison of eight types of protective clothing against Irukandji jellyfish stings. Journal of Coastal Research 25, 117–130.
Comparison of eight types of protective clothing against Irukandji jellyfish stings.CrossRef | open url image1

Gillanders, B. M. (2002). Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Canadian Journal of Fisheries and Aquatic Sciences 59, 669–679.
Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations.CrossRef | 1:CAS:528:DC%2BD38XltlKrs74%3D&md5=f1a7d9ee4d7a896e5829c49e1fc405acCAS | open url image1

Gordon, M., and Seymour, J. (2009). Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616, 87–97.
Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry.CrossRef | open url image1

Gordon, M., and Seymour, J. (2012). Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contribution to understanding jellyfish ecology. PLoS One 7, e31277.
Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contribution to understanding jellyfish ecology.CrossRef | 1:CAS:528:DC%2BC38XjsFyltro%3D&md5=a989a487489426794bbfdbf1fd4ed6caCAS | 22384009PubMed | open url image1

Gordon, M., Hatcher, C., and Seymour, J. (2004). Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530–531, 339–345.
Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp.CrossRef | open url image1

Hamer, P. A., Kemp, J., Robertson, S., and Hindell, J. S. (2012). Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae. Fisheries Research 113, 21–34.
Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae.CrossRef | open url image1

Hamner, W. M., Hamner, P. P., and Strand, S. W. (1994). Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Marine Biology 119, 347–356.
Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia.CrossRef | open url image1

Hamner, W. M., Jones, M. S., and Hamner, P. P. (1995). Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa). Marine and Freshwater Research 46, 985–990.
Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa).CrossRef | open url image1

Hartwick, R. F. (1991). Distributional ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri. Hydrobiologia 216–217, 181–188.
Distributional ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri.CrossRef | open url image1

Jack, L., Wing, S. R., Hu, Y., and Roberts, M. (2011). Natural trace elemental markers for adult red rock lobsters Jasus edwardsii vary among replicate distinct water masses. Marine Ecology Progress Series 443, 141–151.
Natural trace elemental markers for adult red rock lobsters Jasus edwardsii vary among replicate distinct water masses.CrossRef | 1:CAS:528:DC%2BC38XislyhsbY%3D&md5=f232caf0ef827a1161c36c8194137856CAS | open url image1

Jacups, S. P. (2010). Warmer waters in the Northern Territory herald an earlier onset to the annual Chironex fleckeri stinger season. EcoHealth 7, 14–17.
Warmer waters in the Northern Territory herald an earlier onset to the annual Chironex fleckeri stinger season.CrossRef | 20376549PubMed | open url image1

Kawamura, M., Ueno, S., Iwanaga, S., Oshiro, N., and Kubota, S. (2003). The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan. Plankton Biology and Ecology 50, 37–42. open url image1

Kingsford, M. J. (1998) Reef fishes. In ‘Studying Temperate Marine Environments: a Handbook for Ecologists’. (Eds M. J. Kingsford and C. N. Battershill.) pp. 132–166. (Canterbury University Press: Christchurch.)

Kingsford, M. J., and Mooney, C. J. (2014). The ecology of box jellyfishes (Cubozoa). In ‘Jellyfish Blooms’. (Eds K. Pitt and C. Lucas.) pp. 267–302. (Springer.)10.1007/978-94-007-7015-7_12

Kingsford, M. J., Seymour, J. E., and O’Callaghan, M. D. (2012). Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia 690, 257–268.
Abundance patterns of cubozoans on and near the Great Barrier Reef.CrossRef | open url image1

Lowther, A. D., Harcourt, R. G., Goldsworthy, S. D., and Stow, A. (2012). Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Animal Behaviour 83, 691–701.
Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity.CrossRef | open url image1

Matsumoto, G. I. (1995). Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke. Marine and Freshwater Behaviour and Physiology 26, 139–148.
Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke.CrossRef | open url image1

Miller, S. H., Morgan, S. G., Wilson White, J., and Green, P. G. (2013). Interannual variability in an atlas of trace element signatures for determining population connectivity. Marine Ecology Progress Series 474, 179–190.
Interannual variability in an atlas of trace element signatures for determining population connectivity.CrossRef | open url image1

Mooney, C. J., and Kingsford, M. J. (2012). Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry. Hydrobiologia 690, 269–277.
Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry.CrossRef | 1:CAS:528:DC%2BC38XotValtro%3D&md5=316ec29e0f3cbfe57260c92d254a35efCAS | open url image1

Mooney, C. J., and Kingsford, M. J. (2016a). The influence of salinity on box jellyfish (Chironex fleckeri, Cubozoa) statolith elemental chemistry. Marine Biology 163, 103.
The influence of salinity on box jellyfish (Chironex fleckeri, Cubozoa) statolith elemental chemistry.CrossRef | open url image1

Mooney, C. J., and Kingsford, M. J. (2016b). Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes. PLoS One 11, e0155719.
Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes.CrossRef | 27192408PubMed | open url image1

Mooney, C. J., and Kingsford, M. J. (). Statolith morphometrics as a tool to distinguish among populations of three cubozoan species. Hydrobiologia , .
Statolith morphometrics as a tool to distinguish among populations of three cubozoan species.CrossRef | open url image1

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–2518.
Iolite: freeware for the visualisation and processing of mass spectrometric data.CrossRef | 1:CAS:528:DC%2BC3MXhsVKhs7rM&md5=08cee72054fa398cc91ede5cc1b36a3dCAS | open url image1

Sinclair, M. (1988). ‘Marine Populations: an Essay on Population Regulation and Speciation.’ (University of Washington Press: Seattle, WA, USA.)

Sötje, I., Neues, F., Epple, M., Ludwig, W., Rack, A., Gordon, M., Boese, R., and Tiemann, H. (2011). Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Marine Biology 158, 1149–1161.
Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach.CrossRef | open url image1

Thébault, J., Chauvaud, L., L’Helguen, S., Clavier, J., Barats, A., Jacquet, S., Pécheyran, C., and Amouroux, D. (2009). Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography 54, 1002–1014.
Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments?CrossRef | open url image1

Thorrold, S. R., Jones, G. P., Hellberg, M. E., Burton, R. S., Swearer, S. E., Neigel, J. E., Morgan, S. G., and Warner, R. R. (2002). Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin of Marine Science 70, 291–308. open url image1

Tibballs, J. (2006). Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 48, 830–859.
Australian venomous jellyfish, envenomation syndromes, toxins and therapy.CrossRef | 1:CAS:528:DC%2BD28Xht1WnsLfP&md5=8fc7b60487be547fcb2ceb4634b13524CAS | 16928389PubMed | open url image1

Tiemann, H., Sötje, I., Becker, A., Jarms, G., and Epple, M. (2006). Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zoologischer Anzeiger 245, 13–17.
Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp.CrossRef | open url image1

Ueno, S., Imai, C., and Mitsutani, A. (1995). Fine growth rings found in statolith of a cubomedusa Carybdea rastonii. Journal of Plankton Research 17, 1381–1384.
Fine growth rings found in statolith of a cubomedusa Carybdea rastonii.CrossRef | open url image1

Wolanski, E., and Kingsford, M. J. (2014). Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae. Journal of the Royal Society, Interface 11, 20140209.
Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.CrossRef | 24966233PubMed | open url image1

Woodhead, J., Hellstrom, J., Hergt, J., Greig, A., and Maas, R. (2007). Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry. Journal of Geostandards and Geoanalytical Research 31, 331–343.
Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhs1Wlurs%3D&md5=211c4712c134225606e022fe3b176a96CAS | open url image1

Zacherl, D. C., Manriquez, P. H., Paradis, G., Day, R. W., Castilla, J. C., Warner, R. R., Lea, D. W., and Gaines, S. D. (2003). Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories. Marine Ecology Progress Series 248, 297–303.
Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories.CrossRef | 1:CAS:528:DC%2BD3sXjsFykur8%3D&md5=4df006f2d31e538f0e7cccca4a3501feCAS | open url image1



Rent Article (via Deepdyve) Export Citation

View Altmetrics