Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Discriminating populations of medusae (Chironex fleckeri, Cubozoa) using statolith microchemistry

Christopher J. Mooney A and Michael J. Kingsford A B
+ Author Affiliations
- Author Affiliations

A Marine Biology and Aquaculture, College of Science and Engineering and the ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia.

B Corresponding author. Email: michael.kingsford@jcu.edu.au

Marine and Freshwater Research 68(6) 1144-1152 https://doi.org/10.1071/MF16104
Submitted: 31 March 2016  Accepted: 19 August 2016   Published: 13 September 2016

Abstract

The structure of medusae populations is poorly known. Natural geochemical signatures based on elemental composition of calcified structures are a common tool for investigating population structure or connectivity in marine systems. Chironex fleckeri (Cubozoa) medusae have a hard calcified structure, the statolith. Laser ablation–inductively coupled plasma mass spectrometry was used to determine the elemental composition of statoliths at varying spatial scales. We investigated medusae population structure using both univariate (element : Ca ratios) and multivariate (multi-element : Ca signature) analyses. Significant differences in some elemental ratios were found among regions (separated by hundreds of kilometres) and among many sites (separated by kilometres) within regions. Canonical discriminant analyses of multi-element : Ca signatures successfully distinguished between both regions and sites within regions with correct classifications of 100% of samples to some locations. Statolith microchemistry can help discriminate populations of jellyfish, but a multiseason comparison demonstrated the need to calibrate spatial differences by season. Our evidence and recent ecological data suggest that populations of C. fleckeri medusae are highly localised at spatial scales of kilometres; potential causal factors are discussed.

Additional keywords: box jellyfish, laser ablation–inductively coupled plasma mass spectrometry, LA-ICP-MS, population substructure.


References

Arkhipkin, A. I., Campana, S. E., Fitzgerald, J., and Thorrold, S. R. (2004). Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Canadian Journal of Fisheries and Aquatic Sciences 61, 1212–1224.
Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi).CrossRef |

Bailey, P. M., Little, M., Jelinek, G. A., and Wilce, J. A. (2003). Jellyfish envenoming syndromes: unknown toxic mechanisms and unproven therapies. The Medical Journal of Australia 178, 34–37.
| 12492389PubMed |

Barbosa, S. S., Klanten, S. O., Puritz, J. B., Toonen, R. J., and Byrne, M. (2013). Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential. Biological Journal of the Linnaen Society 108, 821–833.
Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: influence of mating system and dispersal potential.CrossRef |

Begg, G. A., and Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research 43, 35–44.
An holistic approach to fish stock identification.CrossRef |

Bergek, S., and Björklund, M. (2009). Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.). Biological Journal of the Linnaen Society 96, 746–758.
Genetic and morphological divergence reveals local subdivision of perch (Perca fluviatilis L.).CrossRef |

Brown, T. (1973). ‘Chironex fleckeri: Distribution and Movements Around Magnetic Island, North Queensland.’ (James Cook University: Townsville, Qld, Australia.)

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.CrossRef | 1:CAS:528:DC%2BD3cXjtFKmtA%3D%3D&md5=1c1a0b19f44f50ec78fd6669fd952b22CAS |

Campana, S. E., Chouinard, G. A., Hanson, J. M., Frechet, A., and Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46, 343–357.
Otolith elemental fingerprints as biological tracers of fish stocks.CrossRef |

Carrette, T., Alderslade, P., and Seymour, J. (2002). Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40, 1547–1551.
Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp.CrossRef | 1:CAS:528:DC%2BD38XotlKhs7c%3D&md5=94bff083f062b0c494ea22523153e285CAS | 12419505PubMed |

Cohen, J. (1988) ‘Statistical Power Analysis for the Behavioural Sciences.’ (Lawrence Erlbaum: Hillsdale, NJ, USA.)

Collins, A. G. (2016). Cubozoa. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=135219 [Verified 8 March 2016].

Darling, J. A., Reitzel, A. M., and Finnerty, J. R. (2004). Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England. Molecular Ecology 13, 2969–2981.
Regional population structure of a widely introduced estuarine invertebrate: Nematostella vectensis Stephenson in New England.CrossRef | 1:CAS:528:DC%2BD2cXptFSku70%3D&md5=83f0a0a9bd60061560677094a89cff30CAS | 15367113PubMed |

Edmonds, J. S., Caputi, N., Moran, M. J., Fletcher, W. J., and Morita, M. (1995). Population discrimination by variation in concentrations of minor and trace elements in sagittae of two Western Australian teleosts. In ‘Recent Developments in Fish Otolith Research’. (Eds D. H. Secor, J. M. Dean, and S. E. Campana.) pp. 655–670. (University of South Carolina Press: Columbia, SC, USA.)

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology – an Annual Review 46, 297–330.
Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences.CrossRef |

Fenner, P. J. (2005). Dangerous Australian box jellyfish. South Pacific Underwater Medicine Society 35, 76–83.

Fowler, A. J., Gillanders, B. M., and Hall, K. C. (2005). Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure. Marine and Freshwater Research 56, 661–676.
Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure.CrossRef | 1:CAS:528:DC%2BD2MXmsVyqsLc%3D&md5=84aa45fecfee906752c4ab5debe27b1eCAS |

Garm, A., Bielecki, J., Petie, R., and Nilsson, D. E. (2012). Opposite patterns of diurnal activity in the box jellyfish Tripedalia cystophora and Copula sivickisi. The Biological Bulletin 222, 35–45.
| 1:STN:280:DC%2BC38vnsVSmsw%3D%3D&md5=19f8bb43fc59e92a5741132aa9d105bdCAS | 22426630PubMed |

Geffen, E., Anderson, M. J., and Wayne, R. K. (2004). Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology 13, 2481–2490.
Climate and habitat barriers to dispersal in the highly mobile grey wolf.CrossRef | 1:CAS:528:DC%2BD2cXmsl2qsrw%3D&md5=f0b754b1ca6349449bfd3ace935d51f3CAS | 15245420PubMed |

Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P., and Miller-Sims, V. (2007). Smelling home can prevent dispersal of reef fish larvae. Proceedings of the National Academy of Sciences of the United States of America 104, 858–863.
Smelling home can prevent dispersal of reef fish larvae.CrossRef | 1:CAS:528:DC%2BD2sXhtVegtrc%3D&md5=78f29aef00f5cf737b523547a8958669CAS | 17213323PubMed |

Gershwin, L., and Dabinett, K. (2009). Comparison of eight types of protective clothing against Irukandji jellyfish stings. Journal of Coastal Research 25, 117–130.
Comparison of eight types of protective clothing against Irukandji jellyfish stings.CrossRef |

Gillanders, B. M. (2002). Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Canadian Journal of Fisheries and Aquatic Sciences 59, 669–679.
Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations.CrossRef | 1:CAS:528:DC%2BD38XltlKrs74%3D&md5=f1a7d9ee4d7a896e5829c49e1fc405acCAS |

Gordon, M., and Seymour, J. (2009). Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry. Hydrobiologia 616, 87–97.
Quantifying movement of the tropical Australian cubozoan Chironex fleckeri using acoustic telemetry.CrossRef |

Gordon, M., and Seymour, J. (2012). Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contribution to understanding jellyfish ecology. PLoS One 7, e31277.
Growth, development and temporal variation in the onset of six Chironex fleckeri medusae seasons: a contribution to understanding jellyfish ecology.CrossRef | 1:CAS:528:DC%2BC38XjsFyltro%3D&md5=a989a487489426794bbfdbf1fd4ed6caCAS | 22384009PubMed |

Gordon, M., Hatcher, C., and Seymour, J. (2004). Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530–531, 339–345.
Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp.CrossRef |

Hamer, P. A., Kemp, J., Robertson, S., and Hindell, J. S. (2012). Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae. Fisheries Research 113, 21–34.
Multiple otolith techniques aid stock discrimination of a broadly distributed deepwater fishery species, blue grenadier, Macruronus novaezelandiae.CrossRef |

Hamner, W. M., Hamner, P. P., and Strand, S. W. (1994). Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Marine Biology 119, 347–356.
Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia.CrossRef |

Hamner, W. M., Jones, M. S., and Hamner, P. P. (1995). Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa). Marine and Freshwater Research 46, 985–990.
Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa).CrossRef |

Hartwick, R. F. (1991). Distributional ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri. Hydrobiologia 216–217, 181–188.
Distributional ecology and behaviour of the early life stages of the box-jellyfish Chironex fleckeri.CrossRef |

Jack, L., Wing, S. R., Hu, Y., and Roberts, M. (2011). Natural trace elemental markers for adult red rock lobsters Jasus edwardsii vary among replicate distinct water masses. Marine Ecology Progress Series 443, 141–151.
Natural trace elemental markers for adult red rock lobsters Jasus edwardsii vary among replicate distinct water masses.CrossRef | 1:CAS:528:DC%2BC38XislyhsbY%3D&md5=f232caf0ef827a1161c36c8194137856CAS |

Jacups, S. P. (2010). Warmer waters in the Northern Territory herald an earlier onset to the annual Chironex fleckeri stinger season. EcoHealth 7, 14–17.
Warmer waters in the Northern Territory herald an earlier onset to the annual Chironex fleckeri stinger season.CrossRef | 20376549PubMed |

Kawamura, M., Ueno, S., Iwanaga, S., Oshiro, N., and Kubota, S. (2003). The relationship between fine rings in the statolith and growth of the cubomedusa Chiropsalmus quadrigatus (Cnidaria: Cubozoa) from Okinawa Island, Japan. Plankton Biology and Ecology 50, 37–42.

Kingsford, M. J. (1998) Reef fishes. In ‘Studying Temperate Marine Environments: a Handbook for Ecologists’. (Eds M. J. Kingsford and C. N. Battershill.) pp. 132–166. (Canterbury University Press: Christchurch.)

Kingsford, M. J., and Mooney, C. J. (2014). The ecology of box jellyfishes (Cubozoa). In ‘Jellyfish Blooms’. (Eds K. Pitt and C. Lucas.) pp. 267–302. (Springer.)10.1007/978-94-007-7015-7_12

Kingsford, M. J., Seymour, J. E., and O’Callaghan, M. D. (2012). Abundance patterns of cubozoans on and near the Great Barrier Reef. Hydrobiologia 690, 257–268.
Abundance patterns of cubozoans on and near the Great Barrier Reef.CrossRef |

Lowther, A. D., Harcourt, R. G., Goldsworthy, S. D., and Stow, A. (2012). Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity. Animal Behaviour 83, 691–701.
Population structure of adult female Australian sea lions is driven by fine-scale foraging site fidelity.CrossRef |

Matsumoto, G. I. (1995). Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke. Marine and Freshwater Behaviour and Physiology 26, 139–148.
Observations on the anatomy and behaviour of the cubozoan Carybdea rastonii Haacke.CrossRef |

Miller, S. H., Morgan, S. G., Wilson White, J., and Green, P. G. (2013). Interannual variability in an atlas of trace element signatures for determining population connectivity. Marine Ecology Progress Series 474, 179–190.
Interannual variability in an atlas of trace element signatures for determining population connectivity.CrossRef |

Mooney, C. J., and Kingsford, M. J. (2012). Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry. Hydrobiologia 690, 269–277.
Sources and movements of Chironex fleckeri medusae using statolith elemental chemistry.CrossRef | 1:CAS:528:DC%2BC38XotValtro%3D&md5=316ec29e0f3cbfe57260c92d254a35efCAS |

Mooney, C. J., and Kingsford, M. J. (2016a). The influence of salinity on box jellyfish (Chironex fleckeri, Cubozoa) statolith elemental chemistry. Marine Biology 163, 103.
The influence of salinity on box jellyfish (Chironex fleckeri, Cubozoa) statolith elemental chemistry.CrossRef |

Mooney, C. J., and Kingsford, M. J. (2016b). Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes. PLoS One 11, e0155719.
Statolith morphometrics can discriminate among taxa of cubozoan jellyfishes.CrossRef | 27192408PubMed |

Mooney, C. J., and Kingsford, M. J. (). Statolith morphometrics as a tool to distinguish among populations of three cubozoan species. Hydrobiologia , .
Statolith morphometrics as a tool to distinguish among populations of three cubozoan species.CrossRef |

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–2518.
Iolite: freeware for the visualisation and processing of mass spectrometric data.CrossRef | 1:CAS:528:DC%2BC3MXhsVKhs7rM&md5=08cee72054fa398cc91ede5cc1b36a3dCAS |

Sinclair, M. (1988). ‘Marine Populations: an Essay on Population Regulation and Speciation.’ (University of Washington Press: Seattle, WA, USA.)

Sötje, I., Neues, F., Epple, M., Ludwig, W., Rack, A., Gordon, M., Boese, R., and Tiemann, H. (2011). Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach. Marine Biology 158, 1149–1161.
Comparison of statolith structures of Chironex fleckeri (Cnidaria, Cubozoa) and Periphylla periphylla (Cnidaria, Scyphozoa): a phylogenetic approach.CrossRef |

Thébault, J., Chauvaud, L., L’Helguen, S., Clavier, J., Barats, A., Jacquet, S., Pécheyran, C., and Amouroux, D. (2009). Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography 54, 1002–1014.
Barium and molybdenum records in bivalve shells: geochemical proxies for phytoplankton dynamics in coastal environments?CrossRef |

Thorrold, S. R., Jones, G. P., Hellberg, M. E., Burton, R. S., Swearer, S. E., Neigel, J. E., Morgan, S. G., and Warner, R. R. (2002). Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bulletin of Marine Science 70, 291–308.

Tibballs, J. (2006). Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon 48, 830–859.
Australian venomous jellyfish, envenomation syndromes, toxins and therapy.CrossRef | 1:CAS:528:DC%2BD28Xht1WnsLfP&md5=8fc7b60487be547fcb2ceb4634b13524CAS | 16928389PubMed |

Tiemann, H., Sötje, I., Becker, A., Jarms, G., and Epple, M. (2006). Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp. Zoologischer Anzeiger 245, 13–17.
Calcium sulfate hemihydrate (bassanite) statoliths in the cubozoan Carybdea sp.CrossRef |

Ueno, S., Imai, C., and Mitsutani, A. (1995). Fine growth rings found in statolith of a cubomedusa Carybdea rastonii. Journal of Plankton Research 17, 1381–1384.
Fine growth rings found in statolith of a cubomedusa Carybdea rastonii.CrossRef |

Wolanski, E., and Kingsford, M. J. (2014). Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae. Journal of the Royal Society, Interface 11, 20140209.
Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.CrossRef | 24966233PubMed |

Woodhead, J., Hellstrom, J., Hergt, J., Greig, A., and Maas, R. (2007). Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry. Journal of Geostandards and Geoanalytical Research 31, 331–343.
Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhs1Wlurs%3D&md5=211c4712c134225606e022fe3b176a96CAS |

Zacherl, D. C., Manriquez, P. H., Paradis, G., Day, R. W., Castilla, J. C., Warner, R. R., Lea, D. W., and Gaines, S. D. (2003). Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories. Marine Ecology Progress Series 248, 297–303.
Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories.CrossRef | 1:CAS:528:DC%2BD3sXjsFykur8%3D&md5=4df006f2d31e538f0e7cccca4a3501feCAS |



Rent Article (via Deepdyve) Export Citation Cited By (2)

View Altmetrics