Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Is the Kuroshio Current a strong barrier for the dispersal of the gizzard shad (Konosirus punctatus) in the East China Sea?

Na Song A , Tianxiang Gao B , Yiping Ying A , Takashi Yanagimoto C and Zhiqiang Han B D
+ Author Affiliations
- Author Affiliations

A Fisheries College, Ocean University of China, Qingdao, China.

B Fishery College, Zhejiang Ocean University, Zhoushan, China.

C National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan.

D Corresponding author. Email: d6339124@163.com

Marine and Freshwater Research 68(5) 810-820 https://doi.org/10.1071/MF16114
Submitted: 22 October 2015  Accepted: 11 April 2016   Published: 12 July 2016

Abstract

The gizzard shad (Konosirus punctatus) is a common pelagic fish in the East China Sea. To evaluate the influence of Kuroshio Current in shaping the genetic structure of marine species, 10 populations of K. punctatus from Chinese and Japanese coastal waters were collected for analysis based on the mitochondrial DNA marker. All the Japanese populations exhibited higher nucleotide diversity than did Chinese populations. Two distinct clades were identified by the neighbour-joining tree based on haplotypes of Cyt b and the control region. Both AMOVA and pairwise Fst strongly supported the significant genetic divergence between Chinese and Japanese clades, which suggested strictly limited gene exchange. The mismatch distribution of Chinese clade and Japanese Clade B appeared to be unimodal, and Tajima’s D and Fu’s Fs statistics were significantly negative, and, therefore, the hypothesis of selective neutrality was rejected. The results indicated that the Kuroshio Current may not be the strong barrier for the dispersal of K. punctatus in the East China Sea. The climate of Pleistocene periods had played an important role in phylogeographical patterns of K. punctatus and the dispersal strategy of coastal species may be the major current physical barrier for the gene flow among populations from Chinese and Japanese coastal waters.

Additional keywords: genetic diversity, historical demography, phylogeographic patterns.


References

Avise, J. C. (2000). ‘Phylogeography: the History and Formation of Species.’ (Harvard University Press: Cambridge, MA.)

Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics.CrossRef |

Chen, D. (1991). ‘Fishery Ecology of the Yellow Sea and Bohai Sea.’ (Marine Press: Beijing.) [In Chinese].

Chen, Y. L. L., Chen, H. Y., Jan, S., and Tuo, S. H. (2009). Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Marine Ecology Progress Series 385, 111–126.
Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons.CrossRef | 1:CAS:528:DC%2BD1MXpsFegsLo%3D&md5=020bddce0e9197e5e7d85f5f38a20664CAS |

Dieckmann, U., O’Hara, B., and Weisser, W. (1999). The evolutionary ecology of dispersal. Trends in Ecology & Evolution 14, 88–90.
The evolutionary ecology of dispersal.CrossRef |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.CrossRef | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=adcc5f4b57090af1f2a7796227d17e12CAS | 22367748PubMed |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.CrossRef | 21565059PubMed |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=44a4f73c960326c02b778ba1e92a993dCAS | 1644282PubMed |

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 1:STN:280:DyaK2svns1egtQ%3D%3D&md5=a890b625dc5d990e91c11fe1c782ac6bCAS | 9335623PubMed |

Gao, T. X., and Watanabe, S. (1998). Genetic variation among local populations of the Japanese mitten crab Eriocheir japonica De Haan. Fisheries Science 64, 198–205.
| 1:CAS:528:DyaK1cXivFCmtbk%3D&md5=301b006c7fb9028e36c94f6453115795CAS |

Grant, W. S., and Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The Journal of Heredity 89, 415–426.
Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation.CrossRef |

Gwak, W., Lee, Y., and Nakayama, K. (2015). Population structure and sequence divergence in the mitochondrial DNA control region of gizzard shad Konosirus punctatus in Korea and Japan. Ichthyological Research 62, 379–385.
Population structure and sequence divergence in the mitochondrial DNA control region of gizzard shad Konosirus punctatus in Korea and Japan.CrossRef |

Hama, T., Shin, K. H., and Handa, N. (1997). Spatial variability in the primary productivity in the East China Sea and its adjacent waters. Journal of Oceanography 53, 41–51.
Spatial variability in the primary productivity in the East China Sea and its adjacent waters.CrossRef |

Hamilton, S. L., James, R., and Warner, R. R. (2008). Postsettlement survival linked to larval life in a marine fish. Proceedings of the National Academy of Sciences of the United States of America 105, 1561–1566.
Postsettlement survival linked to larval life in a marine fish.CrossRef | 1:CAS:528:DC%2BD1cXhvFCitLk%3D&md5=d845da8a444ff2cf827b1070a3bd9b38CAS | 18230727PubMed |

Han, Z., Gao, T., Yanagimoto, T., and Sakurai, Y. (2008). Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in north-western Pacific. Fisheries Science 74, 770–780.
Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in north-western Pacific.CrossRef | 1:CAS:528:DC%2BD1cXhtVyku7vM&md5=145296ba48758696646c9b7ebe0d34e1CAS |

Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature 405, 907–913.
The genetic legacy of the Quaternary ice ages.CrossRef | 1:CAS:528:DC%2BD3cXks1Wmu78%3D&md5=2b9970cbe4ef596247b7feaca33b7864CAS |

Kasai, A., Komatsu, K., Sassa, C., and Konishi, Y. (2008). Transport and survival processes of eggs and larvae of jack mackerel Trachurus japonicus in the East China Sea. Fisheries Science 74, 8–18.
Transport and survival processes of eggs and larvae of jack mackerel Trachurus japonicus in the East China Sea.CrossRef | 1:CAS:528:DC%2BD1cXivVahu70%3D&md5=26549c998c09fc2b439c6a3a372349c8CAS |

Kitamura, A., Takano, O., Takata, H., and Omote, H. (2001). Late Pliocene–early Pleistocene paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 81–98.
Late Pliocene–early Pleistocene paleoceanographic evolution of the Japan Sea.CrossRef |

Kong, L., Kawasaki, M., Kuroda, K., Konno, H., and Fujita, K. (2004). Spawning characteristics of the konoshiro gizzard shad in Tokyo and Sagami Bays, central Japan. Fisheries Science 70, 116–122.
Spawning characteristics of the konoshiro gizzard shad in Tokyo and Sagami Bays, central Japan.CrossRef | 1:CAS:528:DC%2BD2cXhvFOlu74%3D&md5=142c0d87826a82f0182f7f44efd24bf0CAS |

Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22, 768–770.
LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters.CrossRef | 1:CAS:528:DC%2BD28Xit1Ont7k%3D&md5=5ce5ee318c4d68fa044cb5a8d1d38b54CAS | 16410317PubMed |

Lambeck, K., Esat, T. M., and Potter, E. K. (2002). Links between climate and sea levels for the past three million years. Nature 419, 199–206.
Links between climate and sea levels for the past three million years.CrossRef | 1:CAS:528:DC%2BD38XmvV2qtrc%3D&md5=99827980c770b82897f2a13e8ef8212bCAS | 12226674PubMed |

Lee, W. J., Conroy, J., Howell, W. H., and Kocher, T. D. (1995). Structure and evolution of teleost mitochondrial control regions. Journal of Molecular Evolution 41, 54–66.
Structure and evolution of teleost mitochondrial control regions.CrossRef | 1:CAS:528:DyaK2MXmt1yktrw%3D&md5=e1a61566b72dd3903c83e4442c474a8fCAS | 7608989PubMed |

Li, W. H. (1997). ‘Molecular Evolution.’ (Sinauer Associates Inc. Publishers: Sunderland, MA, USA.)

Li, N. S., Zhao, S. L., and Wasiliev, B. (2000). ‘Geology of Marginal Sea in the Northwest Pacific.’ (Heilongjiang Education Press: Harbin, China.) [In Chinese].

Li, N., Chen, X., Sun, D. R., Song, N., Lin, Q., and Gao, T. X. (2015). Phylogeography and population structure of the red stingray, Dasyatis akajei inferred by mitochondrial control region. Mitochondrial DNA 26, 505–513.
Phylogeography and population structure of the red stingray, Dasyatis akajei inferred by mitochondrial control region.CrossRef | 24409898PubMed |

Liu, J. X., Gao, T. X., Zhuang, Z. M., Jin, X. S., Yokogawa, K., and Zhang, Y. P. (2006). Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution 40, 712–723.
Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis).CrossRef | 1:CAS:528:DC%2BD28XotFWktLc%3D&md5=4638ac86b87cea7ac4d24c11a491744dCAS | 16777438PubMed |

Liu, J. X., Gao, T. X., Wu, S. F., and Zhang, Y. P. (2007). Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845). Molecular Ecology 16, 275–288.
Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel, 1845).CrossRef | 1:CAS:528:DC%2BD2sXks1yru7w%3D&md5=b679751617cdea4473a90c5495cc3fc4CAS | 17217344PubMed |

McManus, J. W. (1985). Marine speciation, tectonics and sea level changes in Southeast Asia. In ‘Proceedings of the Fifth International Coral Reef Congress’, 27 May–1 June 1985, Tahiti. (Eds C. Gabrie and B. Salvat.) Vol. 4: Symposia and Seminars, pp. 133–138. (Antenne Museum: French Polynesia.)

Miller, T. W., Van der Lingen, C. D., Brodeur, R., Omori, K., Hamaoka, H., and Isobe, T. (2011). Understanding what drives food web structure in marine pelagic ecosystems. In ‘Interdisciplinary Studies on Environmental Chemistry: Marine Environmental Modeling and Analysis’. (Eds K. Omori, X. Guo, N. Yoshie, N. Fujii, I. C. Handoh, A. Isobe and S. Tanabe.) pp. 125–131. (Terra Scientific Publishing Company: Tokyo, Japan.)

Myoung, H., and Kim, J. (2014). Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences. Genes & Genomics 36, 591–598.
Genetic diversity and population structure of the gizzard shad, Konosirus punctatus (Clupeidae, Pisces), in Korean waters based on mitochondrial DNA control region sequences.CrossRef |

Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25, 547–572.
Genetic divergence, reproductive isolation, and marine speciation.CrossRef |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.CrossRef | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=d5dd384dec5ae8568e7c912f7fb9a312CAS | 9918953PubMed |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.CrossRef |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.CrossRef |

Rocha, L. A., Bass, A. L., Robertson, D. R., and Bowen, W. (2002). Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae). Molecular Ecology 11, 243–251.
Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae).CrossRef | 1:CAS:528:DC%2BD38XhvF2qsbk%3D&md5=668c0d2d6e3f6a5289224228a4393d07CAS | 11856425PubMed |

Rogers, A. R., and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552–569.
| 1:STN:280:DyaK383mtFeitA%3D%3D&md5=c7146ecd06839346e0f12350ed14e3b9CAS | 1316531PubMed |

Song, N., Zhang, X. M., Sun, X. F., Yanagimoto, T., and Gao, T. X. (2010). Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific. Journal of Fish Biology 77, 388–402.
Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus in the north-west Pacific.CrossRef | 1:STN:280:DC%2BC3cnoslynsg%3D%3D&md5=2dc1eab6301375533ad211acc0a6c1d0CAS | 20646163PubMed |

Song, N., Ma, G., Zhang, X., Gao, T., and Sun, D. (2014). Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis. Environmental Biology of Fishes 97, 69–77.
Genetic structure and historical demography of Collichthys lucidus inferred from mtDNA sequence analysis.CrossRef |

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=7a22257071f5a361e4623d3f4031cf24CAS | 2513255PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.CrossRef | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=914d847cf771db39fd24019cd6b28bffCAS | 21546353PubMed |

Wang, M., Zhang, X., Yang, T., Han, Z., Yanagimoto, T., and Gao, T. (2009). Genetic diversity in the mtDNA control region and population structure in the Sardinella zunasi Bleeker. African Journal of Biotechnology 7, 4384–4392.

Ward, R., Woodmark, M., and Skibinski, D. (1994). A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. Journal of Fish Biology 44, 213–232.
A comparison of genetic diversity levels in marine, freshwater and anadromous fishes.CrossRef |

Whitehead, P. J. P. (1985). FAO species catalogue. Vol. 7. Clupeoid fishes of the world (suborder Clupeoidei). Part 1: Chirocentridae, Clupeidae and Pristigasteridae. FAO Fisheries Synopsis 125, 305–379.

Xiao, W. H., Zhang, Y. P., and Liu, H. Z. (2001). Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Molecular Phylogenetics and Evolution 18, 163–173.
Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia.CrossRef | 1:CAS:528:DC%2BD3MXptlertg%3D%3D&md5=76791cc29084a4af1d9d5c46899f4c44CAS |

Xie, S., and Watanabe, Y. (2007). Transport-determined early growth and development of jack mackerel Trachurus japonicus juveniles immigrating into Sagami Bay, Japan. Marine and Freshwater Research 58, 1048–1055.
Transport-determined early growth and development of jack mackerel Trachurus japonicus juveniles immigrating into Sagami Bay, Japan.CrossRef |

Xu, X., and Oda, M. (1999). Surface-water evolution of the eastern East China Sea during the last 36 000 years. Marine Geology 156, 285–304.
Surface-water evolution of the eastern East China Sea during the last 36 000 years.CrossRef | 1:CAS:528:DyaK1MXnsFCgsQ%3D%3D&md5=e2a11fb1be173217e859c4b2df614695CAS |

Yamada, U., Tokimura, M., Horikawa, H., and Nakabo, T. (2007). ‘Fishes and Fisheries of the East China Sea and Yellow Sea.’ (Tokai University Press: Hatano, Japan.) [In Japanese].

Ying, Y., Gao, T., and Lin, L. (2011a). Complex genetic structures of Sardinella zunasi in the Northwest Pacific detected by AFLP markers. Biochemical Systematics and Ecology 39, 339–345.
Complex genetic structures of Sardinella zunasi in the Northwest Pacific detected by AFLP markers.CrossRef | 1:CAS:528:DC%2BC3MXhtlKjs7vF&md5=52c51a5904502bdde4c963cd45ceab72CAS |

Ying, Y., Gao, T., and Miao, Z. (2011b). Genetic differentiation of Japanese sardinella (Sardinella zunasi) populations in the Northwest Pacific revealed by ISSR analysis. Journal of Ocean University of China 10, 417–424.
Genetic differentiation of Japanese sardinella (Sardinella zunasi) populations in the Northwest Pacific revealed by ISSR analysis.CrossRef |

Yokogawa, K. (1997). Morphological and genetic differences between Japanese and Chinese red ark shell Scapharca broughtonii. Fisheries Science 63, 332–337.
| 1:CAS:528:DyaK2sXjvFaitrY%3D&md5=7d5fffacc0aaa5b490609888976ecdb0CAS |

Zhang, S. Y. (2001). ‘Fauna Sinica-Ostichthyes: Acipenseriformes Elopiformes Clupeiformes Gonorhynchiformes.’ (Science Press: Beijing, China.) [In Chinese].



Rent Article (via Deepdyve) Export Citation

View Altmetrics