Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Accurate systematic frameworks are vital to advance ecological and evolutionary studies, with an example from Australian freshwater fish (Hypseleotris)

Timothy J. Page A B H , David Sternberg A , Mark Adams C D , Stephen R. Balcombe A , Benjamin D. Cook A E , Michael P. Hammer C F , Jane M. Hughes A , Ryan J. Woods A B and Peter J. Unmack G
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia.

B Water Planning Ecology, Department of Science, Information Technology and Innovation, 41 Boggo Road, Dutton Park, Qld 4102, Australia.

C Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

D School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

E FRC Environmental, PO Box 2363, Wellington Point, Qld 4160, Australia.

F Museum & Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT 0801, Australia.

G Institute for Applied Ecology, Building 3, University of Canberra, ACT 2601, Australia.

H Corresponding author. Email: penguintim@hotmail.com

Marine and Freshwater Research 68(7) 1199-1207 https://doi.org/10.1071/MF16294
Submitted: 26 August 2016  Accepted: 17 October 2016   Published: 9 December 2016

Abstract

The practice of modern evolutionary and ecological research is interdisciplinary, with the process of evolution underpinning the diversity on display. However, the inference of evolutionary patterns can be difficult owing to their historical nature. When the biological units and evolutionary relationships involved are unclear, interpreting any ecological and biological data can be problematic. Herein we explore resulting issues when evolutionary theories rely on an unclear or incomplete biological framework, using some Australian freshwater fish (carp gudgeons: Hypseleotris, Eleotridae) as an example. Specifically, recent theories regarding the role of developmental plasticity on ontogeny and speciation have focused on this group. However, carp gudgeons have complex, and as yet incompletely understood, species boundaries and reproductive biology. Even basic data for the recognised taxa, relating to their phylogenetic relationships, life histories and species distributions, are unclear, have often been misinterpreted and are still in the process of being assembled. Combined, these factors make carp gudgeons a relatively poor group on which to apply more advanced evolutionary theories at the moment, such as the role of developmental plasticity in diversification.

Additional keywords: carp gudgeons, developmental plasticity, Eleotridae, life history, phylogenetics, species distributions, taxonomy.


References

Allen, G.R., Midgley, S.H., and Allen, M. (2002). ‘Field Guide to the Freshwater Fishes of Australia.’ (Western Australian Museum: Perth, WA, Australia.)

Arthington, A. H., Balcombe, S. R., Wilson, G. A., Thoms, M. C., and Marshall, J. C. (2005). Spatial and temporal variation in fish assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone river, Cooper Creek, Australia. Marine and Freshwater Research 56, 25–35.
Spatial and temporal variation in fish assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone river, Cooper Creek, Australia.CrossRef | open url image1

Ashelby, C. W., Page, T. J., De Grave, S., Hughes, J. M., and Johnson, M. L. (2012). Regional scale speciation drives multiple invasions of freshwater in Palaemoninae (Decapoda). Zoologica Scripta 41, 293–306.
Regional scale speciation drives multiple invasions of freshwater in Palaemoninae (Decapoda).CrossRef | open url image1

Balon, E. K. (2004). Alternative ontogenies and evolution: a farewell to gradualism. In ‘Environment, Development and Evolution. Toward a Synthesis’. (Eds B. K. Hall, R. Pearson and G. B. Müller.) pp. 37–66. (MIT Press: Cambridge, MA, USA.)

Bertozzi, T., Adams, M., and Walker, K. F. (2000). Species boundaries in carp gudgeons (Eleotrididae: Hypseleotris) from the River Murray, South Australia: evidence for multiple species and extensive hybridization. Marine and Freshwater Research 51, 805–815.
Species boundaries in carp gudgeons (Eleotrididae: Hypseleotris) from the River Murray, South Australia: evidence for multiple species and extensive hybridization.CrossRef | open url image1

Cook, B. D., Baker, A. M., Page, T. J., Grant, S. C., Fawcett, J. H., Hurtwood, D. A., and Hughes, J. M. (2006). Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Molecular Ecology 15, 1083–1093.
Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification.CrossRef | 1:CAS:528:DC%2BD28XjslWms74%3D&md5=22ad1ebad2d138e19070546466040cb1CAS | open url image1

Cook, B. D., Bunn, S. E., and Hughes, J. M. (2007). Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biological Conservation 138, 60–72.
Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis).CrossRef | open url image1

Cresko, W. A., McGuigan, K. L., Phillips, P. C., and Postlethwait, J. H. (2007). Studies of threespine stickleback developmental evolution: progress and promise. Genetica 129, 105–126.
Studies of threespine stickleback developmental evolution: progress and promise.CrossRef | open url image1

Crisp, M. D., and Cook, L. G. (2005). Do early branching lineages signify ancestral traits? Trends in Ecology & Evolution 20, 122–128.
Do early branching lineages signify ancestral traits?CrossRef | open url image1

Davies, P. E., Harris, J. H., Hillman, T. J., and Walker, K. F. (2010). The sustainable rivers audit: assessing river ecosystem health in the Murray–Darling Basin, Australia. Marine and Freshwater Research 61, 764–777.
The sustainable rivers audit: assessing river ecosystem health in the Murray–Darling Basin, Australia.CrossRef | 1:CAS:528:DC%2BC3cXptFGrs7Y%3D&md5=c88cb2efb657b3a36eb605b52a041147CAS | open url image1

Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35, 125–129.
Nothing in biology makes sense except in the light of evolution.CrossRef | open url image1

Hammer, M. P., Adams, M., and Foster, R. (2012). Update to the catalogue of South Australian freshwater fishes (Petromyzontida & Actinopterygii). Zootaxa 3593, 59–74. open url image1

Hammer, M. P., Adams, M., and Hughes, J. M. (2013) Evolutionary processes and biodiversity. In ‘Ecology of Australian Freshwater Fishes’. (Eds P. Humphreys and K. F. Walker.) pp. 49–79. (CSIRO Publishing: Melbourne, Vic., Australia.)

Hardy, C. M., Krull, E. S., Hartley, D. M., and Oliver, R. L. (2010). Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Molecular Ecology 19, 197–212.
Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.CrossRef | 1:CAS:528:DC%2BC3cXitVSrsb4%3D&md5=2ec636e6ef77ad3e39c0fa37742d60ecCAS | open url image1

Hardy, C. M., Adams, M., Jerry, D. R., Court, L. N., Morgan, M. J., and Hartley, D. M. (2011). DNA barcoding to support conservation: species identification, genetic structure and biogeography of fishes in the Murray–Darling River Basin, Australia. Marine and Freshwater Research 62, 887–901.
DNA barcoding to support conservation: species identification, genetic structure and biogeography of fishes in the Murray–Darling River Basin, Australia.CrossRef | 1:CAS:528:DC%2BC3MXhtVOgu7jF&md5=ce3c03b726ffb532d67dcc3b3b2f41b2CAS | open url image1

Kellermann, V., Loeschcke, V., Hoffmann, A. A., Kristensen, T. N., Flojgaard, C., David, J. R., Svenning, J.-C., and Overgaard, J. (2012). Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389.
Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species.CrossRef | open url image1

Kennard, M. J., Olden, J. D., Arthington, A. H., Pusey, B. J., and Poff, N. L. (2007). Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia. Canadian Journal of Fisheries and Aquatic Sciences 64, 1346–1359.
Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia.CrossRef | open url image1

Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L., and Marsh, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology 55, 171–193.
Classification of natural flow regimes in Australia to support environmental flow management.CrossRef | open url image1

Krell, F. T., and Cranston, P. S. (2004). Which side of the tree is more basal? Systematic Entomology 29, 279–281.
Which side of the tree is more basal?CrossRef | open url image1

Larson, H. K., Foster, R., Humphreys, W. F., and Stevens, M. I. (2013). A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa 3616, 135–150.
A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley.CrossRef | open url image1

Lehtonen, J., Schmidt, D. J., Heubel, K., and Kokko, H. (2013). Evolutionary and ecological implications of sexual parasitism. Trends in Ecology & Evolution 28, 297–306.
Evolutionary and ecological implications of sexual parasitism.CrossRef | open url image1

Lostrom, S., Evans, J. P., Grierson, P. F., Collin, S. P., Davies, P. M., and Kelley, J. L. (2015). Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia. Ecology and Evolution 5, 3272–3287.
Linking stream ecology with morphological variability in a native freshwater fish from semi-arid Australia.CrossRef | open url image1

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton, NJ, USA.)

Mayr, E. (2000). Darwin’s influence on modern thought. Scientific American 283, 78–83.
Darwin’s influence on modern thought.CrossRef | 1:STN:280:DC%2BD3czjvVahsw%3D%3D&md5=3902b1c51a92a522812ad8c03473cb3aCAS | open url image1

McCairns, R. J. S., Smith, S., Sasaki, M., Bernatchez, L., and Beheregaray, L. B. (2016). The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes. Evolutionary Applications 9, 531–545.
The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes.CrossRef | 1:CAS:528:DC%2BC28XlslWju70%3D&md5=4a38a96fea7fdd1c74c6295192cf5d66CAS | open url image1

McDowall, R. M., and Waters, J. M. (2004). Phylogenetic relationships in a small group of diminutive galaxiid fishes and the evolution of sexual dimorphism. Journal of the Royal Society of New Zealand 34, 23–57.
Phylogenetic relationships in a small group of diminutive galaxiid fishes and the evolution of sexual dimorphism.CrossRef | open url image1

Moczek, A. P. (2015). Developmental plasticity and evolution – quo vadis? Heredity 115, 302–305.
Developmental plasticity and evolution – quo vadis?CrossRef | 1:STN:280:DC%2BC283ivFCnsw%3D%3D&md5=832e627544d34002b42a0ab01695497dCAS | open url image1

Moyle, P. B., and Light, T. (1996). Fish invasions in California: do abiotic factors determine success? Ecology 77, 1666–1670.
Fish invasions in California: do abiotic factors determine success?CrossRef | open url image1

Noor, M. A. F. (1999). Reinforcement and other consequences of sympatry. Heredity 83, 503–508.
Reinforcement and other consequences of sympatry.CrossRef | open url image1

Page, T. J., and Hughes, J. M. (2014). Contrasting insights provided by single and multi-species data in a regional comparative phylogeographic study. Biological Journal of the Linnean Society. Linnean Society of London 111, 554–569.
Contrasting insights provided by single and multi-species data in a regional comparative phylogeographic study.CrossRef | open url image1

Page, T. J., Baker, A. M., Cook, B. D., and Hughes, J. M. (2005). Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the Genus Paratya (Atyidae). Journal of Biogeography 32, 581–593.
Historical transoceanic dispersal of a freshwater shrimp: the colonization of the South Pacific by the Genus Paratya (Atyidae).CrossRef | open url image1

Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., and Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution 25, 459–467.
Phenotypic plasticity’s impacts on diversification and speciation.CrossRef | open url image1

Pusey, B., Kennard, M., and Arthington, A. (2004). ‘Freshwater Fishes of North-Eastern Australia.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Rolls, R. J., and Sternberg, D. (2015). Can species traits predict the susceptibility of riverine fish to water resource development? An Australian case study. Environmental Management 55, 1315–1326.
Can species traits predict the susceptibility of riverine fish to water resource development? An Australian case study.CrossRef | open url image1

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.CrossRef | open url image1

Rose, P. M., Kennard, M. J., Moffatt, D. B., Sheldon, F., and Butler, G. L. (2016). Testing three species distribution modelling strategies to define fish assemblage reference conditions for stream bioassessment and related applications. PLoS One 11, e0146728.
Testing three species distribution modelling strategies to define fish assemblage reference conditions for stream bioassessment and related applications.CrossRef | open url image1

Schmidt, D. J. (2015). The complete mitogenome of an Australian carp gudgeon, hybridogenetic biotype HAHB (Hypseleotris: Eleotridae). Mitochondrial DNA , .
The complete mitogenome of an Australian carp gudgeon, hybridogenetic biotype HAHB (Hypseleotris: Eleotridae).CrossRef | open url image1

Schmidt, D. J., Bond, N. R., Adams, M., and Hughes, J. M. (2011). Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae). Molecular Ecology 20, 3367–3380.
Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae).CrossRef | open url image1

Schmidt, D. J., Huey, J. A., Bond, N. R., and Hughes, J. M. (2013). Population structure of sexually reproducing carp gudgeons: does a metapopulation offer refuge from sexual parasitism? Marine and Freshwater Research 64, 223–232.
Population structure of sexually reproducing carp gudgeons: does a metapopulation offer refuge from sexual parasitism?CrossRef | open url image1

Sternberg, D., and Kennard, M. J. (2013). Environmental, spatial and phylogenetic determinants of fish life-history traits and functional composition of Australian Rivers. Freshwater Biology 58, 1767–1778.
Environmental, spatial and phylogenetic determinants of fish life-history traits and functional composition of Australian Rivers.CrossRef | open url image1

Sternberg, D., and Kennard, M. J. (2014). Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish. Ecography 37, 54–64.
Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish.CrossRef | open url image1

Sternberg, D., Kennard, M. J., and Balcombe, S. R. (2014). Biogeographic determinants of Australian freshwater fish life-history indices assessed within a spatio-phylogenetic framework. Global Ecology and Biogeography 23, 1387–1397.
Biogeographic determinants of Australian freshwater fish life-history indices assessed within a spatio-phylogenetic framework.CrossRef | open url image1

Stewart-Koster, B., Boone, E. L., Kennard, M. J., Sheldon, F., Bunn, S. E., and Olden, J. D. (2013). Incorporating ecological principles into statistical models for the prediction of species’ distribution and abundance. Ecography 36, 342–353.
Incorporating ecological principles into statistical models for the prediction of species’ distribution and abundance.CrossRef | open url image1

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.CrossRef | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=ae5e984ff6f8cb0e4cca6c3287746a06CAS | open url image1

Thacker, C. E., and Hardman, M. A. (2005). Molecular phylogeny of basal gobiold fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution 37, 858–871.
Molecular phylogeny of basal gobiold fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei).CrossRef | 1:CAS:528:DC%2BD2MXht1SrtbnN&md5=341ecee655a6e02b46c5693837d06e86CAS | open url image1

Thacker, C. E., and Unmack, P. J. (2005). Phylogeny and biogeography of the eleotrid genus Hypseleotris (Teleostei: Gobioidei: Eleotridae), with a redescription of H. cyprinoides. Records of the Australian Museum 57, 1–13.
Phylogeny and biogeography of the eleotrid genus Hypseleotris (Teleostei: Gobioidei: Eleotridae), with a redescription of H. cyprinoides.CrossRef | open url image1

Thacker, C. E., Unmack, P. J., Matsui, L., and Rifenbark, N. (2007). Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. Journal of Biogeography 34, 1518–1533.
Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species.CrossRef | open url image1

Unmack, P. J. (2000). The genus Hypseleotris in southeastern Australia: its identification and breeding biology. Fishes of Sahul 14, 645–657. open url image1

Unmack, P. J. (2013). Biogeography. In ‘Ecology of Australian Freshwater Fishes’. (Eds P. Humphreys and K. F. Walker.) pp. 25–48. (CSIRO Publishing: Melbourne, Vic., Australia.)

Verhoeven, K. J. F., Vonholdt, B. M., and Sork, V. L. (2016). Epigenetics in ecology and evolution: what we know and what we need to know. Molecular Ecology 25, 1631–1638.
Epigenetics in ecology and evolution: what we know and what we need to know.CrossRef | open url image1

Vilizzi, L., and Kováč, V. (2014). Alternative ontogenies and developmental plasticity: implications for ecological and evolutionary studies on species complexes. Fish and Fisheries 15, 523–531.
Alternative ontogenies and developmental plasticity: implications for ecological and evolutionary studies on species complexes.CrossRef | open url image1

Villamarín, F., Magnusson, W. E., Jardine, T. D., Valdez, D., Woods, R., and Bunn, S. E. (2016). Temporal uncoupling between energy acquisition and allocation to reproduction in a herbivorous–detritivorous Fish. PLoS One 11, e0150082.
Temporal uncoupling between energy acquisition and allocation to reproduction in a herbivorous–detritivorous Fish.CrossRef | open url image1

Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature 150, 563–565.
Canalization of development and the inheritance of acquired characters.CrossRef | open url image1

Wang, Z., Gerstien, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics 10, 57–63.
RNA-Seq: a revolutionary tool for transcriptomics.CrossRef | 1:CAS:528:DC%2BD1cXhsFWis7bL&md5=652a664443832a4a08f790f65b2ff588CAS | open url image1

Woods, R. J., Macdonald, J. I., Crook, D. A., Schmidt, D. J., and Hughes, J. M. (2010). Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry. Canadian Journal of Fisheries and Aquatic Sciences 67, 1098–1115.
Contemporary and historical patterns of connectivity among populations of an inland river fish species inferred from genetics and otolith chemistry.CrossRef | 1:CAS:528:DC%2BC3cXnsleit7w%3D&md5=0dc9633b886925f4bbc2df77ee339066CAS | open url image1

Yamasaki, Y. Y., Nishida, M., Suzuki, T., Mukai, T., and Watanabe, K. (2015). Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 90, 20–33.
Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences.CrossRef | 1:CAS:528:DC%2BC2MXnvFWhsLY%3D&md5=eeb6b11458538638448698e6455f93b2CAS | open url image1



Rent Article (via Deepdyve) Export Citation