Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

An inter-dependence of flood and drought: disentangling amphibian beta diversity in seasonal floodplains

Leonardo F. B. Moreira A D , Tainá F. Dorado-Rodrigues A , Vanda L. Ferreira B and Christine Strüssmann A C
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Instituto de Biociências, Universidade Federal de Mato Grosso–UFMT, Avenida Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, Brazil.

B Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul–UFMS, Avenida Costa e Silva, s/n, Caixa Postal 549, Campo Grande, Brazil.

C Faculdade de Medicina Veterinária, Universidade Federal de Mato Grosso, UFMT, Avenida Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, Brazil.

D Corresponding author. Email: leonardobm@gmail.com

Marine and Freshwater Research 68(11) 2115-2122 https://doi.org/10.1071/MF16391
Submitted: 29 November 2016  Accepted: 14 March 2017   Published: 6 June 2017

Abstract

Species composition in floodplains is often affected by different structuring factors. Although floods play a key ecological role, habitat selection in the dry periods may blur patterns of biodiversity distribution. Here, we employed a partitioning framework to investigate the contribution of turnover and nestedness to β-diversity patterns in non-arboreal amphibians from southern Pantanal ecoregion. We investigated whether components of β-diversity change by spatial and environmental factors. We sampled grasslands and dense arboreal savannas distributed in 12 sampling sites across rainy and dry seasons, and analysed species dissimilarities using quantitative data. In the savannas, both turnover and nestedness contributed similarly to β diversity. However, we found that β diversity is driven essentially by turnover, in the grasslands. In the rainy season, balanced variation in abundance was more related to altitude and factors that induce spatial patterns, whereas dissimilarities were not related to any explanatory variable during dry season. In the Pantanal ecoregion, amphibian assemblages are influenced by a variety of seasonal constraints on terrestrial movements and biotic interactions. Our findings highlighted the role of guild-specific patterns and indicated that mass effects are important mechanisms creating amphibian community structure in the Pantanal.

Additional keywords: abundance matrix, null model, Pantanal, turnover, wetlands.


References

Almeida-Neto, M., and Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software 26, 173–178.
A straightforward computational approach for measuring nestedness using quantitative matrices.CrossRef |

Almeida-Neto, M., Frensel, D. M. B., and Ulrich, W. (2012). Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010). Global Ecology and Biogeography 21, 772–777.
Rethinking the relationship between nestedness and beta diversity: a comment on Baselga (2010).CrossRef |

Barnett, H., and Richardson, J. (2002). Predation risk and competition effects on the life-history characteristics of larval Oregon spotted frog and larval red-legged frog. Oecologia 132, 436–444.
Predation risk and competition effects on the life-history characteristics of larval Oregon spotted frog and larval red-legged frog.CrossRef |

Baselga, A. (2013). Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4, 552–557.
Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients.CrossRef |

Baselga, A., Gómez-Rodríguez, C., and Lobo, J. M. (2012). Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS One 7, e32341.
Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity.CrossRef | 1:CAS:528:DC%2BC38XjsFyitbc%3D&md5=dbbf5c9927bb0ca3d876bcc83434a2c3CAS |

Booth, D. T. (2006). Effect of soil type on burrowing behavior and cocoon formation in the green-striped burrowing frog, Cyclorana alboguttata. Canadian Journal of Zoology 84, 832–838.
Effect of soil type on burrowing behavior and cocoon formation in the green-striped burrowing frog, Cyclorana alboguttata.CrossRef |

Borcard, D., and Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153, 51–68.
All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices.CrossRef |

Both, C., Melo, A. S., Cechin, S. Z., and Hartz, S. M. (2011). Tadpole co-occurrence in ponds: when do guilds and time matter? Acta Oecologica 37, 140–145.
Tadpole co-occurrence in ponds: when do guilds and time matter?CrossRef |

Bozelli, R. L., Thomaz, S. M., Padial, A. A., Lopes, P. M., and Bini, L. M. (2015). Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753, 233–241.
Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system.CrossRef | 1:CAS:528:DC%2BC2MXjtVygtbo%3D&md5=064365343232af839123c86f6bf48ffcCAS |

Cisneros, L. M., Fagan, M. E., and Willig, M. R. (2015). Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. Journal of Animal Ecology 84, 373–385.
Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats.CrossRef |

Cline, B. B., and Hunter, M. L. (2014). Different open-canopy vegetation types affect matrix permeability for a dispersing forest amphibian. Journal of Applied Ecology 51, 319–329.
Different open-canopy vegetation types affect matrix permeability for a dispersing forest amphibian.CrossRef |

Cosentino, B. J., Schooley, R. L., and Phillips, C. A. (2011). Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecology 26, 371–379.
Connectivity of agroecosystems: dispersal costs can vary among crops.CrossRef |

Costa-Pereira, R., Sugai, J. L. M. M., Duleba, S., Sugai, L. S. M., Terra, J. S., and Souza, F. L. (2015). Predation on Physalaemus centralis by the Chaco frog Leptodactylus chaquensis. Herpetology Notes 8, 345–346.

da Cunha Bitar, Y. O., Juen, L., Pinheiro, L. C., and Santos-Costa, M. C. (2015). Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon. Journal of Herpetology 49, 75–82.
Anuran beta diversity in a mosaic anthropogenic landscape in transitional Amazon.CrossRef |

da Silva, F. R., Almeida-Neto, M., and Arena, M. V. N. (2014). Amphibian beta diversity in the Brazilian Atlantic Forest: contrasting the roles of historical events and contemporary conditions at different spatial scales. PLoS One 9, e109642.
Amphibian beta diversity in the Brazilian Atlantic Forest: contrasting the roles of historical events and contemporary conditions at different spatial scales.CrossRef |

Datry, T., Bonada, N., and Heino, J. (2016). Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125, 149–159.
Towards understanding the organisation of metacommunities in highly dynamic ecological systems.CrossRef |

de Almeida, A. P., Rodrigues, D. J., Garey, M. V., and Menin, M. (2015). Tadpole richness in riparian areas is determined by niche-based and neutral processes. Hydrobiologia 745, 123–135.
Tadpole richness in riparian areas is determined by niche-based and neutral processes.CrossRef |

Delatorre, M., Cunha, N., Raizer, J., and Ferreira, V. L. (2015). Evidence of stochasticity driving anuran metacommunity structure in the Pantanal wetlands. Freshwater Biology 60, 2197–2207.
Evidence of stochasticity driving anuran metacommunity structure in the Pantanal wetlands.CrossRef |

Dobrovolski, R., Melo, A. S., Cassemiro, F. A. S., and Diniz-Filho, J. A. F. (2012). Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography 21, 191–197.
Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity.CrossRef |

Dorado-Rodrigues, T. F., Layme, V. M. G., Silva, F. H. B., Nunes da Cunha, C., and Strüssmann, C. (2015). Effects of shrub encroachment on the anuran community in periodically flooded grasslands of the largest Neotropical wetland. Austral Ecology 40, 547–557.
Effects of shrub encroachment on the anuran community in periodically flooded grasslands of the largest Neotropical wetland.CrossRef |

Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., and Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299.
Assemblage time series reveal biodiversity change but not systematic loss.CrossRef | 1:CAS:528:DC%2BC2cXmtV2lu70%3D&md5=f503f3838d9c7ae49d62e8aa0bd82182CAS |

Driscoll, D. A., and Lindenmayer, D. B. (2009). Empirical tests of metacommunity theory using an isolation gradient. Ecological Monographs 79, 485–501.
Empirical tests of metacommunity theory using an isolation gradient.CrossRef |

Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J., and Peres-Neto, P. R. (2014). Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37, 464–475.
Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities.CrossRef |

Ficetola, G. F., and De Bernardi, F. (2004). Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation. Biological Conservation 119, 219–230.
Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation.CrossRef |

Ficetola, G. F., Padoa-Schioppa, E., and De Bernardi, F. (2009). Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians. Conservation Biology 23, 114–123.
Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians.CrossRef |

Gautier, P., and Miaud, C. (2003). Faecal pellets used as an economic territorial marker in two terrestrial alpine salamanders. Ecoscience 10, 134–139.
Faecal pellets used as an economic territorial marker in two terrestrial alpine salamanders.CrossRef |

Gautier, P., Olgun, K., Uzum, N., and Miaud, C. (2006). Gregarious behaviour in a salamander: attraction to conspecific chemical cues in burrow choice. Behavioral Ecology and Sociobiology 59, 836–841.
Gregarious behaviour in a salamander: attraction to conspecific chemical cues in burrow choice.CrossRef |

Girard, P. (2011). Hydrology of surface and ground waters in the Pantanal floodplains. In ‘The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Wetland’. (Eds W. J. Junk, C. J. da Silva, C. Nunes da Cunha, and K. M. Wantzen.) pp. 103–126. (Pensoft Publishers: Moscow, Russia.)

Gotelli, N. J., and McCabe, D. J. (2002). Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096.
Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model.CrossRef |

Griffiths, R. A., Sewell, D., and McCrea, R. S. (2010). Dynamics of a declining amphibian metapopulation: survival, dispersal and the impact of climate. Biological Conservation 143, 485–491.
Dynamics of a declining amphibian metapopulation: survival, dispersal and the impact of climate.CrossRef |

Grover, M. C. (1998). Influence of cover and moisture on abundances of the terrestrial salamanders Plethodon cinereus and Plethodon glutinosus. Journal of Herpetology 32, 489–497.
Influence of cover and moisture on abundances of the terrestrial salamanders Plethodon cinereus and Plethodon glutinosus.CrossRef |

Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., and Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60, 845–869.
Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects.CrossRef |

Hill, J. K., Gray, M., Khen, C. V., Benedick, S., Tawatao, N., and Hamer, K. C. (2011). Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 3265–3276.
Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?CrossRef |

Hylander, K., Nilsson, C., Jonsson, B. G., and Göthner, T. (2005). Differences in habitat quality explain nestedness in a land snail meta-community. Oikos 108, 351–361.
Differences in habitat quality explain nestedness in a land snail meta-community.CrossRef |

Junk, W. J., da Cunha, C. N., Wantzen, K. M., Petermann, P., Strüssmann, C., Marques, M. I., and Adis, J. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquatic Sciences 68, 278–309.
Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil.CrossRef |

Landeiro, V. L., Waldez, F., and Menin, M. (2014). Spatial and environmental patterns of Amazonian anurans: differences between assemblages with aquatic and terrestrial reproduction, and implications for conservation management. Natureza & Conservação 12, 42–46.
Spatial and environmental patterns of Amazonian anurans: differences between assemblages with aquatic and terrestrial reproduction, and implications for conservation management.CrossRef |

Legendre, P. (2014). Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324–1334.
Interpreting the replacement and richness difference components of beta diversity.CrossRef |

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., and Gonzalez, A. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613.
The metacommunity concept: a framework for multi-scale community ecology.CrossRef |

Leprieur, F., Tedesco, P. A., Hugueny, B., Beauchard, O., Dürr, H. H., Brosse, S., and Oberdorff, T. (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters 14, 325–334.
Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes.CrossRef |

Marsh, D. M., Thakur, K. A., Bulka, K. C., and Clarke, L. B. (2004). Dispersal and colonization through open fields by a terrestrial, woodland salamander. Ecology 85, 3396–3405.
Dispersal and colonization through open fields by a terrestrial, woodland salamander.CrossRef |

Martins, C. A., Roque, F. O., Santos, B. A., Ferreira, V. L., Strüssmann, C., and Tomas, W. M. (2015). What shapes the phylogenetic structure of anuran communities in a seasonal environment? The influence of determinism at regional scale to stochasticity or antagonistic forces at local scale. PLoS One 10, e0130075.
What shapes the phylogenetic structure of anuran communities in a seasonal environment? The influence of determinism at regional scale to stochasticity or antagonistic forces at local scale.CrossRef |

McGinness, H. M., Arthur, A. D., Ward, K. A., and Ward, P. A. (2014). Floodplain amphibian abundance: responses to flooding and habitat type in Barmah Forest, Murray River Australian Wildlife Research 41, 149–162.
Floodplain amphibian abundance: responses to flooding and habitat type in Barmah Forest, Murray RiverCrossRef |

Melo, M., Fava, F., Pinto, H. B., and Nomura, F. (2014). Are assemblages of aquatic-breeding anurans (Amphibia) niches structured or neutral? Biotropica 46, 608–614.
Are assemblages of aquatic-breeding anurans (Amphibia) niches structured or neutral?CrossRef |

Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E., and Fisher, R. N. (2011). Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. Journal of Herpetology 45, 319–328.
Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California.CrossRef |

Moreira, L. F. B., and Maltchik, L. (2015). Our time will come: is anuran community structure related to crop age? Austral Ecology 40, 827–835.
Our time will come: is anuran community structure related to crop age?CrossRef |

Moreira, L. F. B., Machado, I. F., Garcia, T. V., and Maltchik, L. (2010). Factors influencing anuran distribution in coastal dune wetlands in southern Brazil. Journal of Natural History 44, 1493–1507.
Factors influencing anuran distribution in coastal dune wetlands in southern Brazil.CrossRef |

Nomura, F., Rossa-Feres, D. C., and Langeani, F. (2009). Burrowing behavior of Dermatonotus muelleri (Anura, Microhylidae) with reference to the origin of the burrowing behavior of Anura. Journal of Ethology 27, 195–201.
Burrowing behavior of Dermatonotus muelleri (Anura, Microhylidae) with reference to the origin of the burrowing behavior of Anura.CrossRef |

Ocock, J. F., Kingsford, R. T., Penman, T. D., and Rowley, J. J. L. (2014). Frogs during the flood: differential behaviours of two amphibian species in a dryland floodplain wetland. Austral Ecology 39, 929–940.
Frogs during the flood: differential behaviours of two amphibian species in a dryland floodplain wetland.CrossRef |

Penha, J. M. F., da Silva, C. J., and Bianchini-Júnior, I. (1999). Productivity of the aquatic macrophyte Pontederia lanceolata Nvtt. (Pontederiaceae) on floodplains of the Pantanal Mato-grossense, Brazil. Wetlands Ecology and Management 7, 155–163.
Productivity of the aquatic macrophyte Pontederia lanceolata Nvtt. (Pontederiaceae) on floodplains of the Pantanal Mato-grossense, Brazil.CrossRef |

Pittman, S. E., Osbourn, M. S., and Semlitsch, R. D. (2014). Movement ecology of amphibians: a missing component for understanding population declines. Biological Conservation 169, 44–53.
Movement ecology of amphibians: a missing component for understanding population declines.CrossRef |

Prado, C. P. A., Uetanabaro, M., and Haddad, C. F. B. (2005). Breeding activity patterns, reproductive modes, and habitat use by anurans (Amphibia) in a seasonal environment in the Pantanal, Brazil. Amphibia-Reptilia 26, 211–221.
Breeding activity patterns, reproductive modes, and habitat use by anurans (Amphibia) in a seasonal environment in the Pantanal, Brazil.CrossRef |

Predick, K. I., and Turner, M. G. (2007). Landscape configuration and flood frequency influence invasive shrubs in floodplain forests of the Wisconsin River (USA). Journal of Ecology 96, 91–102.
Landscape configuration and flood frequency influence invasive shrubs in floodplain forests of the Wisconsin River (USA).CrossRef |

Richter-Boix, A., Llorente, G. A., and Montori, A. (2007). Structure and dynamics of an amphibian metacommunity in two regions. Journal of Animal Ecology 76, 607–618.
Structure and dynamics of an amphibian metacommunity in two regions.CrossRef |

Rodela, L., Santos, S., Pellegrin, L. A., Ravaglia, A., Mazin, V., and Neto, J. P. Q. (2008). Mapeamento de unidades de paisagem em nível de fazenda, Pantanal da Nhecolândia. (Corumbá.) Available at http://agris.fao.org/agris-search/search.do?recordID=BR20081810961 [Verified 30 April 2016].

Salis, S. M., Assis, M. A., Mara, S., Crispim, A., and Casagrande, J. C. (2006). Distribuição e abundância de espécies arbóreas em cerradões no Pantanal, Estado do Mato Grosso do Sul, Brasil. Revista Brasileira de Botanica. Brazilian Journal of Botany 29, 339–352.
Distribuição e abundância de espécies arbóreas em cerradões no Pantanal, Estado do Mato Grosso do Sul, Brasil.CrossRef |

Seebacher, F., and Alford, R. A. (2002). Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of Herpetology 36, 69–75.
Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus).CrossRef |

Semlitsch, R. D. (2008). Differentiating migration and dispersal processes for pond-breeding amphibians. The Journal of Wildlife Management 72, 260–267.
Differentiating migration and dispersal processes for pond-breeding amphibians.CrossRef |

Simioni, F., Azarias Campos, V., Dorado-Rodrigues, T. F., Penha, J., and Strüssmann, C. (2014). Crab burrows and termite thermal chimneys as refuges for anurans in a neotropical wetland. Salamandra (Frankfurt) 50, 133–138.

Spasojevic, M. J., Copeland, S., and Suding, K. N. (2014). Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure. Ecography 37, 939–949.
Using functional diversity patterns to explore metacommunity dynamics: a framework for understanding local and regional influences on community structure.CrossRef |

Strüssmann, C., Prado, C. P. A., Ferreira, V. L., and Ribeiro, R. A. K. (2011). Diversity, ecology, management and conversation of amphibians and reptiles of the Brazilian Pantanal: a review. In ‘The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Wetland’. (Eds W. J. Junk, C. J. da Silva, C. Nunes da Cunha, and K. M. Wantzen.) pp. 497–522. (Pensoft Publishers: Moscow, Russia.)

Thomaz, S. M., Bini, L. M., and Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579, 1–13.
Floods increase similarity among aquatic habitats in river–floodplain systems.CrossRef |

Tockner, K., Klaus, I., Baumgartner, C., and Ward, J. V. (2006). Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy). Hydrobiologia 565, 121–133.
Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy).CrossRef |

Tonial, M. L. S., Silva, H. L. R., Tonial, I. J., Costa, M. C., Silva Júnior, N. J., and Diniz-Filho, J. A. F. (2012). Geographical patterns and partition of turnover and richness components of beta-diversity in faunas from Tocantins river valley. Brazilian Journal of Biology 72, 497–504.
Geographical patterns and partition of turnover and richness components of beta-diversity in faunas from Tocantins river valley.CrossRef | 1:STN:280:DC%2BC38bot1aguw%3D%3D&md5=459a77bd83a09b748cb50ffdf9204f07CAS |

Tozetti, A. M., and Toledo, L. F. (2005). Short-term movement and retreat sites of Leptodactylus labyrinthicus (Anura : Leptodactylidae) during the breeding season : a spool-and-line tracking study. Journal of Herpetology 39, 640–644.
Short-term movement and retreat sites of Leptodactylus labyrinthicus (Anura : Leptodactylidae) during the breeding season : a spool-and-line tracking study.CrossRef |

Ulrich, W., and Gotelli, N. J. (2010). Null model analysis of species associations using abundance data. Ecology 91, 3384–3397.
Null model analysis of species associations using abundance data.CrossRef |

Vences, M., Galán, P., Palanca, A., Vieites, D. R., Nieto, S., and Rey, J. (2000). Summer microhabitat use and diel activity cycles in a high altitude Pyrenean population of Rana temporaria. The Herpetological Journal 10, 49–56.

Watling, J. I., and Braga, L. (2015). Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape. Landscape Ecology 30, 1449–1459.
Desiccation resistance explains amphibian distributions in a fragmented tropical forest landscape.CrossRef |

Watling, J. I., Gerow, K., and Donnelly, M. A. (2009). Nested species subsets of amphibians and reptiles on Neotropical forest islands. Animal Conservation 12, 467–476.
Nested species subsets of amphibians and reptiles on Neotropical forest islands.CrossRef |

Wells, K. D. (2007). ‘The Ecology and Behavior of Amphibians.’ (The University of Chicago Press: Chicago, IL, USA.)

Werner, E. E., Yurewicz, K. L., Skelly, D. K., and Relyea, R. A. (2007). Turnover in an amphibian metacommunity: the role of local and regional factors. Oikos 116, 1713–1725.
Turnover in an amphibian metacommunity: the role of local and regional factors.CrossRef |

Wethered, R., and Lawes, M. J. (2005). Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix. Biological Conservation 123, 125–137.
Nestedness of bird assemblages in fragmented Afromontane forest: the effect of plantation forestry in the matrix.CrossRef |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (178 KB) Export Citation

View Altmetrics