Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Reef fish at a remote tropical island (Principe Island, Gulf of Guinea): disentangling taxonomic, functional and phylogenetic diversity patterns with depth

F. Tuya A C , A. Herrero-Barrencua A , N. E. Bosch A , A. D. Abreu B and R. Haroun A
+ Author Affiliations
- Author Affiliations

A Grupo en Biodiversidad y Conservación, Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Marine Scientific and Technological Park, Carretera de Taliarte s/n, E-35214 Telde, Spain.

B Príncipe Island UNESCO Biosphere Reserve, Cidade de Santo António do Príncipe, Democratic Republic of São Tomé e Príncipe.

C Corresponding author. Email: fernando.tuya@ulpgc.es

Marine and Freshwater Research - https://doi.org/10.1071/MF17233
Submitted: 2 August 2017  Accepted: 12 September 2017   Published online: 5 December 2017

Abstract

The ecology of reef fish varies with depth, although patterns in diversity remain largely undescribed, in particular the complementarity of their taxonomic, functional and phylogenetic facets. In the present study we investigated patterns of taxonomic, functional and phylogenetic diversity of fish on 21 reefs, at depths ranging from 3 to 31 m, at Príncipe Island (Gulf of Guinea). Taxonomic and functional diversity decreased monotonically with depth; the pattern was less accentuated for phylogenetic diversity. Functional diversity was saturated at high levels of taxonomic diversity, reflecting redundancy in species traits, particularly at the shallower reefs. Functional diversity increased linearly with phylogenetic diversity; thus, increasing niche availability seems to translate into a larger diversity of phylogenies. Dissimilarities in the structure and composition of fish assemblages among reefs were correlated with differences in depth, including a progressive turnover in species. Depth affected the functional traits of nearshore reef fish. Trophic breadth decreased with depth; carnivores and planktivores increased with depth, whereas herbivores decreased with depth. Small-sized fusiform fish dominated on the shallowest reefs. In summary, the present study demonstrated decays in biodiversity, from different perspectives, of reef fish with depth, which are connected with shifts in fish traits.

Additional keywords: Atlantic Ocean, biodiversity, fourth-corner problem, tropical reefs, west equatorial Africa.


References

Abreu, A. D., Asensio, M. T., Cervera, J. L., Cosme, M., Fuentes, I., García-Mendoza, A., Gómez, P., Haroun, R., Herrero Barréncua, A., Matilde, E., Niccolini, M., Otero-Ferrer, F., Tuya, F., and Viera-Rodríguez, M. A. (2017). Scientific Expedition Biol-Príncipe 2016. Instituto Universitario en Acuicultura Sostenible y Ecosistemas Marinos (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.

Afonso, P., Porteiro, F. M., Santos, R. S., Barreiros, J. P., Worms, J., and Wirtz, P. (1999). Coastal marine fishes of São Tomé Island (Gulf of Guinea). Arquipélago – Life and Marine Sciences 17A, 65–92.

Asher, J., Williams, I. D., and Harvey, E. S. (2017). Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the main Hawaiian Islands. Frontiers in Marine Science 4, 98.
Mesophotic depth gradients impact reef fish assemblage composition and functional group partitioning in the main Hawaiian Islands.CrossRef |

Bean, K., Jones, G. P., and Caley, M. J. (2002). Relationships among distribution, abundance and microhabitat specialisation in a guild of coral reef triggerfish (Family Balistidae). Marine Ecology Progress Series 233, 263–272.
Relationships among distribution, abundance and microhabitat specialisation in a guild of coral reef triggerfish (Family Balistidae).CrossRef |

Bellwood, D. R., Wainwright, P. C., Fulton, C. J., and Hoey, A. S. (2002). Assembly rules and functional groups at global biogeographic scales. Functional Ecology 16, 557–562.
Assembly rules and functional groups at global biogeographic scales.CrossRef |

Bosch, N. E., Gonçalves, J. M. S., Erzini, K., and Tuya, F. (2017). ‘How’ and ‘what’ matters: sampling method affects biodiversity estimates of reef fishes. Ecology and Evolution 7, 4891–4906.
‘How’ and ‘what’ matters: sampling method affects biodiversity estimates of reef fishes.CrossRef |

Botta-Dukát, Z. (2005). Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16, 533–540.
Rao’s quadratic entropy as a measure of functional diversity based on multiple traits.CrossRef |

Brokovich, E., Einbinder, S., Shashar, N., Kiflawi, M., and Kark, S. (2008). Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m. Marine Ecology Progress Series 371, 253–262.
Descending to the twilight-zone: changes in coral reef fish assemblages along a depth gradient down to 65 m.CrossRef |

Brown, A. M., Warton, D. I., Andrew, N. R., Binns, M., Cassis, G., and Gibb, H. (2014). The fourth-corner solution – using predictive models to understand how species traits interact with the environment. Methods in Ecology and Evolution 5, 344–352.
The fourth-corner solution – using predictive models to understand how species traits interact with the environment.CrossRef |

Cadotte, M. W. (2011). The new diversity: management gains through insights into the functional diversity of communities. Journal of Applied Ecology 48, 1067–1069.
The new diversity: management gains through insights into the functional diversity of communities.CrossRef |

Cadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., and Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters 13, 96–105.
Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history.CrossRef |

Clarke, K. R., and Warwick, R. M. (2001). ‘Changes in Marine Communities: an Approach to Statistical Analysis and Interpretation.’ (PRIMER-E: Plymouth, UK.)

Fraschetti, S., Terlizzi, A., and Benedetti-Cecchi, L. (2005). Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Marine Ecology Progress Series 296, 13–29.
Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation.CrossRef |

Friedlander, A. M., and Parrish, J. D. (1998). Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology 224, 1–30.
Habitat characteristics affecting fish assemblages on a Hawaiian coral reef.CrossRef |

Fulton, C. J., and Bellwood, D. R. (2005). Wave-induced water motion and the functional implications for coral reef fish assemblages. Limnology and Oceanography 50, 255–264.
Wave-induced water motion and the functional implications for coral reef fish assemblages.CrossRef |

Fulton, C. J., Bellwood, D. R., and Wainwright, P. C. (2005). Wave energy and swimming performance shape coral reef fish assemblages. Proceedings of the Royal Society of London – B. Biological Sciences 272, 827–832.
Wave energy and swimming performance shape coral reef fish assemblages.CrossRef | 1:STN:280:DC%2BD2M3kvF2itA%3D%3D&md5=775af7711e4c99bc53743d1786e97124CAS |

García-Sais, J. R. (2010). Reef habitats and associated sessile–benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico. Coral Reefs 29, 277–288.
Reef habitats and associated sessile–benthic and fish assemblages across a euphotic–mesophotic depth gradient in Isla Desecheo, Puerto Rico.CrossRef |

Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220–227.
Global patterns in biodiversity.CrossRef | 1:CAS:528:DC%2BD3cXjsFyjs7o%3D&md5=05b21b8faa9cbe0580691c725f231ffeCAS |

Guillemot, N., Kulbicki, M., Chabanet, P., and Vigliola, L. (2011). Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS One 6, e26735.
Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage.CrossRef | 1:CAS:528:DC%2BC3MXhsVKisb7P&md5=b364d1b45e843c9f7baa6db00584aaaeCAS |

Harvey, P. H., and Pagel, M. (1991). ‘The Comparative Method in Evolutionary Biology.’ (Oxford University Press: Oxford, UK.)

Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93, 145–159.
Homage to Santa Rosalia or why are there so many kinds of animals?CrossRef |

Jankowski, M. W., Graham, N. A. J., and Jones, G. P. (2015). Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth–refuge hypothesis. Marine Ecology Progress Series 540, 203–215.
Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth–refuge hypothesis.CrossRef |

Lepš, J., De Bello, F., Lavorel, S., and Berman, S. (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78, 481–501.

Macarthur, R., and Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101, 377–385.
The limiting similarity, convergence, and divergence of coexisting species.CrossRef |

McPeek, M. A. (2007). The macroevolutionary consequences of ecological differences among species. Paleontology 50, 111–129.
The macroevolutionary consequences of ecological differences among species.CrossRef |

Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., and Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do alpha, beta and gamma components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography 20, 893–903.
Beyond taxonomic diversity patterns: how do alpha, beta and gamma components of bird functional and phylogenetic diversity respond to environmental gradients across France?CrossRef |

Micheli, F., and Halpern, B. S. (2005). Low functional redundancy in coastal marine assemblages. Ecology Letters 8, 391–400.
Low functional redundancy in coastal marine assemblages.CrossRef |

Mouillot, D., Villéger, S., Parravicini, V., Kulbicki, M., Arias-González, J. E., Bender, M., Chabanet, P., Floeter, S. R., Friedlander, A., Vigliola, L., and Bellwood, D. R. (2014). Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proceedings of the National Academy of Sciences of the United States of America 111, 13757–13762.
Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.CrossRef | 1:CAS:528:DC%2BC2cXhsFCisbbE&md5=4f83ed2d5812f7ab4663670291f6cef7CAS |

Pereira, P. H. C., Munday, P. L., and Jones, G. P. (2015). Competitive mechanisms change with ontogeny in coral dwelling gobies. Ecology 96, 3090–3101.
Competitive mechanisms change with ontogeny in coral dwelling gobies.CrossRef |

Perronne, R., Mauchamp, L., Mouly, A., and Gillet, F. (2014). Contrasted taxonomic, phylogenetic and functional diversity patterns in semi-natural permanent grasslands along an altitudinal gradient. Plant Ecology and Evolution 147, 165–175.
Contrasted taxonomic, phylogenetic and functional diversity patterns in semi-natural permanent grasslands along an altitudinal gradient.CrossRef |

Petchey, O. L., and Gaston, K. J. (2002). Functional diversity (FD), species richness and community composition. Ecology Letters 5, 402–411.
Functional diversity (FD), species richness and community composition.CrossRef |

Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M., Wells, F., Vynne, C., and Werner, T. B. (2002). Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284.
Marine biodiversity hotspots and conservation priorities for tropical reefs.CrossRef | 1:CAS:528:DC%2BD38XhsVGhsr8%3D&md5=19bcea50cb27c74d19991a2799754766CAS |

Serna-Rodríguez, K. M., Zapata, F. A., and Mejía-Ladino, L. M. (2016). Diversity and distribution of fishes along the depth gradient of a coral reef wall at San Andrés Island, Colombian Caribbean. Investigaciones Marinas y Costeras 45, 15–39.

Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., Stuart-Smith, J. F., Hill, N. A., Kininmonth, S. J., Airoldi, L., Becerro, M. A., Campbell, S. J., Dawson, T. P., Navarrete, S. A., Soler, G. A., Strain, E. M., Willis, T. J., and Edgar, G. J. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542.
Integrating abundance and functional traits reveals new global hotspots of fish diversity.CrossRef | 1:CAS:528:DC%2BC3sXhsFWmtrjL&md5=c379a389dbc170b714042b5bfd4b0738CAS |

Swenson, N. G., Enquist, B. J., Thompson, J., and Zimmerman, J. K. (2007). The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology 88, 1770–1780.
The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities.CrossRef |

Tanaka, T., and Sato, T. (2015). Taxonomic, phylogenetic and functional diversities of ferns and lycophytes along an elevational gradient depend on taxonomic scales. Plant Ecology 216, 1597–1609.
Taxonomic, phylogenetic and functional diversities of ferns and lycophytes along an elevational gradient depend on taxonomic scales.CrossRef |

Tuya, F., Boyra, A., Sánchez-Jerez, P., Haroun, R. J., and Barberá, C. (2004). Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series 278, 157–169.
Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago.CrossRef |

Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L., and Haroun, R. J. (2007). Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces. Estuarine, Coastal and Shelf Science 73, 481–488.
Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: role of flow-induced forces.CrossRef |

Tuya, F., Wernberg, T., and Thomsen, M. S. (2011). The relative influence of local to regional drivers of variation in reef fishes. Journal of Fish Biology 79, 217–234.
The relative influence of local to regional drivers of variation in reef fishes.CrossRef | 1:STN:280:DC%2BC3Mnlt1egsg%3D%3D&md5=27e543a6edaef3ef2636a5de917e1045CAS |

Villéger, S., Miranda, J. R., Hernández, D. F., and Mouillot, D. (2010). Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20, 1512–1522.
Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation.CrossRef |

Wang, Y., Neuman, U., Wright, S., and Warton, D. I. (2012). mvabund: an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution 3, 471–474.
mvabund: an R package for model-based analysis of multivariate abundance data.CrossRef |

Wirtz, P., Ferreira, C. E. L., Floeter, S. R., Fricke, R., Gasparini, J. L., Iwamoto, T., Rocha, L., Sampaio, C. L. S., and Schliewen, U. K. (2007). Coastal fishes of São Tomé and Príncipe islands, Gulf of Guinea (Eastern Atlantic Ocean) – an update. Zootaxa 1523, 1–48.

Xu, J., Chen, Y., Zhang, L., Chai, Y., Wang, M., Guo, Y., Li, T., and Yue, M. (2017). Using phylogeny and functional traits for assessing community assembly along environmental gradients: a deterministic process driven by elevation. Ecology and Evolution 7, 5056–5069.
Using phylogeny and functional traits for assessing community assembly along environmental gradients: a deterministic process driven by elevation.CrossRef |



Supplementary MaterialSupplementary Material (21 KB) Export Citation

View Altmetrics