Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Can bioturbation be responsible for thicker freshwater lenses than expected in littoral environments?

E. Carol A C , S. Richiano B and C. Tanjal A
+ Author Affiliations
- Author Affiliations

A Centro de Investigaciones Geológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, Diagonal 113, number 275, 1900, La Plata, Buenos Aires, Argentina, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.

B Instituto Patagónico de Geología y Paleontología (IPGP), Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Almirante Brown 2915, Puerto Madryn U912ACD, Chubut, Argentina.

C Corresponding author. Email: eleocarol@fcnym.unlp.edu.ar

Marine and Freshwater Research - https://doi.org/10.1071/MF17253
Submitted: 31 May 2017  Accepted: 17 October 2017   Published online: 16 January 2018

Abstract

A study of hydrological and lithological characteristics that allow the development of freshwater lenses in littoral ridges underneath clay sediments of the coastal plain was undertaken, considering as a case of study the freshwater lenses located in the coastal sector of Samborombón Bay (Argentina). Geological characteristics were studied at a regional scale, as well as detailed sedimentological and ichnological aspects. Thickness of the lens and the freshwater–saline water interface were determined by salinity measurements in exploration wells located at different depths. Results obtained suggest that the infiltration of rainwater into the littoral ridges causes the formation of freshwater lenses that deepen below the clayey layers of the coastal-plain deposits. The key to answering this question are the crustacean burrows, which regionally occur in the fine sediments of the coastal plain. The burrows create an interconnected system of galleries and tunnels filled with sandy-silt material that favours seepage. Because the alternation of coastal-plain deposits and littoral ridges is a frequent situation throughout the world, the data provided by the present work do not represent just a simple case study; on the contrary, they show that biological structures promote bigger freshwater lenses in coastland environments, thus increasing water reserves.

Additional keywords: crustacean burrows, rainwater lenses, secondary permeability, water resources.


References

Anthony, E. J. (1995). Beach-ridge development and sediment supply: examples from West Africa. Marine Geology 129, 175–186.
Beach-ridge development and sediment supply: examples from West Africa.CrossRef |

Badon-Ghyben, W. (1888). Nota in verband met de voorgenomen putboring nabij Amsterdam. Tijjdschrift van het Koninklyjk Instituut van Ingenieurs, The Hague 1888, 8–22.

Bondesan, M., Favero, V., and Viñals, M. J. (1995). New evidence on the evolution of the Po-delta coastal plain during the Holocene. Quaternary International 29–30, 105–110.
New evidence on the evolution of the Po-delta coastal plain during the Holocene.CrossRef |

Botto, F., and Iribarne, O. (1999). Effect of the burrowing crab Chasmagnathus granulate (Dana) on the benthic community of a SW Atlantic coastal lagoon. Journal of Experimental Marine Biology and Ecology 241, 263–284.
Effect of the burrowing crab Chasmagnathus granulate (Dana) on the benthic community of a SW Atlantic coastal lagoon.CrossRef |

Carol, E., Kruse, E., and Mas Pla, J. (2009). Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. Journal of Hydrology 365, 335–345.
Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina.CrossRef | 1:CAS:528:DC%2BD1MXhsFWltrg%3D&md5=0e6955106b78ef3c8584b5cbe19e3184CAS |

Carol, E., Kruse, E., and Pousa, J. (2011). Influence of the geologic and geomorphologic characteristics and of crab burrows on the interrelation between surface water and groundwater in an estuarine coastal wetland. Journal of Hydrology 403, 234–241.
Influence of the geologic and geomorphologic characteristics and of crab burrows on the interrelation between surface water and groundwater in an estuarine coastal wetland.CrossRef |

Carol, E., Mas Pla, J., and Kruse, E. (2013). Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina. Applied Geochemistry 34, 152–163.
Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay, Argentina.CrossRef | 1:CAS:528:DC%2BC3sXltVyntLc%3D&md5=7a73ff9ceb8d4afa640e90e739790913CAS |

Carol, E., García, L., and Borzi, G. (2015). Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina. Journal of South American Earth Sciences 60, 21–30.
Hydrogeochemistry and sustainability of freshwater lenses in the Samborombón Bay wetland, Argentina.CrossRef | 1:CAS:528:DC%2BC2MXkvFCrtL0%3D&md5=c6a26bc3517c0831f3f8c29c980ac7b8CAS |

Collins, W., and Easley, D. (1999). Fresh-water lens formation in an unconfined barrier-island aquifer. Journal of the American Water Resources Association 35, 1–22.
Fresh-water lens formation in an unconfined barrier-island aquifer.CrossRef |

Cronin, T. M., Szabo, B. J., Ager, T. A., Hazel, J. E., and Owens, J. P. (1981). Quaternary climates and sea levels of the US Atlantic Coastal Plain. Science 211, 233–240.
Quaternary climates and sea levels of the US Atlantic Coastal Plain.CrossRef | 1:STN:280:DC%2BC3cvit12msg%3D%3D&md5=4c1e6dc0817b9302093ff10c8fc5b86eCAS |

Cunningham, K. J., and Sukop, M. C. (2011). Multiple technologies applied to characterization of porosity and permeability of the Biscayne aquifer, Florida. Open-file report 2011–1037. US Geological Survey, Fort Lauderdale, FL, USA.

Cunningham, K. J., Sukop, M. C., and Curran, H. A. (2012). Carbonate aquifers. In ‘Developments in Sedimentology. Vol. 64’. (Eds D. Knaust and R. Bromley.) pp. 869–896. (Elsevier B.V.: Amsterdam, Netherlands.)10.1016/B978-0-444-53813-0.00028-9

Da Lio, C., Carol, E., Kruse, E., Teatini, P., and Tosi, L. (2015). Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: an assessment of vulnerability. The Science of the Total Environment 533, 356–369.
Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: an assessment of vulnerability.CrossRef | 1:CAS:528:DC%2BC2MXhtFOlt7bE&md5=b020aa32c0433394fafccb50d8778d5cCAS |

de Louw, P. G. B., van der Velde, Y., and van der Zee, S. E. (2011). Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: a probabilistic end-member mixing approach. Hydrology and Earth System Sciences 15, 2101–2117.
Quantifying water and salt fluxes in a lowland polder catchment dominated by boil seepage: a probabilistic end-member mixing approach.CrossRef | 1:CAS:528:DC%2BC3MXhtlansLzJ&md5=c731ad26961596cddfc66926e8562375CAS |

Dyer, K. R., and Huntley, D. A. (1999). The origin, classification and modelling of sand banks and ridges. Continental Shelf Research 19, 1285–1330.
The origin, classification and modelling of sand banks and ridges.CrossRef |

Engelen, G. B., and Jones, G. P. (1986). ‘Developments in the Analysis of Groundwater Flow Systems.’ (International Association of Hydrological Sciences: Wallingford, UK.)

Falkland, A., and Custodio, E. (1991). ‘Hydrology and Water Resources of Small Islands: a Practical Guide. Studies and Reports on Hydrology (49).’ (UNESCO: Paris, France.)

Fetter, C. W. (1972). Position of the saline water interface beneath oceanic islands. Water Resources Research 8, 1307–1315.
Position of the saline water interface beneath oceanic islands.CrossRef |

Freeze, R. A., and Witherspoon, P. A. (1967). Theoretical analysis of groundwater flow 2. The effect of water-table configurations and subsurface permeability variation. Water Resources Research 3, 623–634.
Theoretical analysis of groundwater flow 2. The effect of water-table configurations and subsurface permeability variation.CrossRef |

Gardner, L. R. (2007). Role of stratigraphy in governing pore water seepage from saltmarsh sediments. Water Resources Research 43, W07502.
Role of stratigraphy in governing pore water seepage from saltmarsh sediments.CrossRef |

Gingras, M., Baniak, G., Gordon, J., Hovikoski, J., Konhauser, K., La Croix, A., Lemiski, R., Mendoza, C., Pemberton, S. G., Polo, C., and Zonneveld, J. (2012). Porosity and permeability in bioturbated sediments. In ‘Developments in Sedimentology. Vol. 64’. (Eds D. Knaust and R. Bromley.) pp. 837–868. (Elsevier B.V.: Amsterdam, Netherlands.)10.1016/B978-0-444-53813-0.00027-7

Glover, R. E. (1959). The pattern of fresh-water flow in a coastal aquifer. Journal of Geophysical Research 64, 457–459.
The pattern of fresh-water flow in a coastal aquifer.CrossRef |

Gzam, M., El Mejdoub, N., and Jedoui, Y. (2016). Late quaternary sea level changes of Gabes coastal plain and shelf: identification of the MIS 5c and MIS 5a onshore highstands, southern Mediterranean. Journal of Earth System Science 125, 13–28.
Late quaternary sea level changes of Gabes coastal plain and shelf: identification of the MIS 5c and MIS 5a onshore highstands, southern Mediterranean.CrossRef |

Harris, W. H. (1967). Stratification of fresh and salt water on barrier islands as a result of differences in sediment permeability. Water Resources Research 3, 89–97.
Stratification of fresh and salt water on barrier islands as a result of differences in sediment permeability.CrossRef | 1:CAS:528:DyaF2sXktVGjtbk%3D&md5=ed141ef56fdd16de15a3156ee13765c1CAS |

Harvey, J. W., and Nuttle, W. K. (1995). Fluxes of water and solute in a coastal wetland sediment: 2. Effect of macropores on solute exchange with surface water. Journal of Hydrology 164, 109–125.
Fluxes of water and solute in a coastal wetland sediment: 2. Effect of macropores on solute exchange with surface water.CrossRef | 1:CAS:528:DyaK2MXjslyjsrY%3D&md5=6e11e67e6d5068b58a056e6f0f4e7b63CAS |

Henry, H. R. (1959). Salt water intrusion into freshwater aquifers. Journal of Geophysical Research 64, 1911–1919.
Salt water intrusion into freshwater aquifers.CrossRef |

Henry, H. R. (1964). Interfaces between salt water and fresh water in coastal aquifers. In ‘Sea Water in Coastal Aquifers’. (Eds H. H. Cooper Jr, F. A. Kohout, H. R. Henry, and R. E. Glover.) US Geological Survey, Water-supply Paper 1613-C, C35-C70. US Government Printing Office, Washington, DC, USA.

Herzberg, A. (1901). Die Wasserversorgungeiniger Nordseebaden. Z Gasbeleucht Wasserversorg 44, 815–844.

Hubbert, M. K. (1940). The theory of ground-water motion. The Journal of Geology 48, 785–944.
The theory of ground-water motion.CrossRef |

Hughes, C. E., Binning, P., and Willgoose, G. R. (1998). Characterization of the hydrology of an estuarine wetland. Journal of Hydrology 211, 34–49.
Characterization of the hydrology of an estuarine wetland.CrossRef |

Katrak, G., Dittmann, S., and Seuront, L. (2008). Spatial variation in burrow morphology of the mud shore crab Helograpsus haswellianus (Brachyura, Grapsidae) in South Australian saltmarshes. Marine and Freshwater Research 59, 902–911.
Spatial variation in burrow morphology of the mud shore crab Helograpsus haswellianus (Brachyura, Grapsidae) in South Australian saltmarshes.CrossRef |

Ketabchi, H., and Ataie-Ashtiani, B. (2015). Review: coastal groundwater optimization advances, challenges, and practical solutions. Hydrogeology Journal 23, 1129–1154.
Review: coastal groundwater optimization advances, challenges, and practical solutions.CrossRef |

Ketabchi, H., Mahmoodzadeh, D., and Ataie-Ashtiani, B. (2016). Groundwater travel time computation for two-layer islands. Hydrogeology Journal 24, 1045–1055.
Groundwater travel time computation for two-layer islands.CrossRef |

Kresic, N. (2006). ‘Hydrogeology and Groundwater Modeling.’ (CRC Press: Boca Raton, FL, USA.)

Maas, K. (2007). Influence of climate change and sea level rise on a Ghyben Herzberg lens. Journal of Hydrology 347, 223–228.
Influence of climate change and sea level rise on a Ghyben Herzberg lens.CrossRef |

Martin, L., and Suguio, K. (1992). Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 119–140.
Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the central Brazilian coast.CrossRef |

Moore, C. R., Brooks, M. J., Mallinson, D. J., Parham, P. R., Ivester, A. H., and Feathers, J. K. (2016). The Quaternary evolution of Herndon Bay, a Carolina Bay on the coastal plain of North Carolina (USA): implications for paleoclimate and oriented lake genesis. Southeastern Geology 51, 145–171.

Nuttle, W. K. (1988). The extent of lateral water movement in the sediments of a New England salt marsh. Water Resources Research 24, 2077–2085.
The extent of lateral water movement in the sediments of a New England salt marsh.CrossRef |

Otvos, E. (2000). Beach ridges: definitions and significance. Geomorphology 32, 83–108.
Beach ridges: definitions and significance.CrossRef |

Pemberton, S. G., and Gingras, M. K. (2005). Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin 89, 1493–1517.
Classification and characterizations of biogenically enhanced permeability.CrossRef |

Porter, W. B., and Bennington, C. E. (2008). ‘Groundwater Research and Issues.’ (Nova Publishers: New York, NY, USA.)

Post, V. E. A., and Abarca, E. (2010). Saltwater and freshwater interactions in coastal aquifers. Hydrogeology Journal 18, 1–4.
Saltwater and freshwater interactions in coastal aquifers.CrossRef |

Pousa, J., Tosi, L., Kruse, E., Guaraglia, D., Bonardi, M., Mazzoldi, A., Rizzetto, F., and Schnack, E. (2007). Coastal processes and environmental hazards: the Buenos Aires (Argentina) and Venetian (Italy) littorals. Environmental Geology 51, 1307–1316.
Coastal processes and environmental hazards: the Buenos Aires (Argentina) and Venetian (Italy) littorals.CrossRef | 1:CAS:528:DC%2BD2sXhsFKgurg%3D&md5=b37f4a2493751e88d97d330da6fba2ecCAS |

Richiano, S., Varela, A. D., Elia, L., Bilmes, A., and Aguirre, M. (2012). Evolución paleoambiental de cordones litorales holocenos durante una caída del nivel del mar en la Bahía Samborombón, Buenos Aires, Argentina. Latin American Journal of Sedimentology and Basin Analysis 19, 105–124.

Rizzetto, F., Tosi, L., Carbognin, L., Bonardi, M., Teatini, P. (2003). Geomorphic setting and related hydrogeological implications of the coastal plain south of the Venice Lagoon, Italy. In ‘Hydrology of the Mediterranean and Semiarid Regions, Proceedings of an International Symposium’, 1–4 April 2003, Montpellier, France. (Eds E. Servat, W. Najem, C. Leduc, A. Shakeel.). IAHS Publications, vol. 278, pp. 463–470. (International Association of Hydrological Sciences.) Available at http://hydrologie.org/redbooks/a278/iahs_278_463.pdf [Verified 11 January 2018]

Santucci, L., Carol, E., and Kruse, E. (2016). Identification of palaeo–seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina). The Science of the Total Environment 566–567, 1640–1648.
Identification of palaeo–seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina).CrossRef |

Teatini, P., Tosi, L., Viezzoli, A., Baradello, L., Zecchin, M., and Silvestri, S. (2011). Understanding the hydrogeology of the Venice Lagoon subsurface with airborne electromagnetics Journal of Hydrology 411, 342–354.
Understanding the hydrogeology of the Venice Lagoon subsurface with airborne electromagneticsCrossRef |

Tomazelli, L. J., Dillenburg, S. R., and Villwock, J. A. (2000). Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociencias 30, 474–476.

Tosi, L., Kruse, E., Braga, F., Carol, E., Carretero, S., Pousa, J., Rizzetto, F., and Teatini, P. (2013). Hydro-morphologic setting of the Samborombon Bay (Argentina) at the end of the 21st century. Natural Hazards and Earth System Sciences 13, 523–534.
Hydro-morphologic setting of the Samborombon Bay (Argentina) at the end of the 21st century.CrossRef |

Tóth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, 4795–4812.
A theoretical analysis of groundwater flow in small drainage basins.CrossRef |

Vacher, H. L. (1988). Dupuit–Ghyben–Herzberg analysis of strip island lenses. Geological Society of America Bulletin 100, 580–591.
Dupuit–Ghyben–Herzberg analysis of strip island lenses.CrossRef |

Wallis, T. N., Vacher, H. L., and Stewart, M. T. (1991). Hydrogeology of freshwater lens beneath a Holocene strandplain, Great Exuma, Bahamas. Journal of Hydrology 125, 93–109.
Hydrogeology of freshwater lens beneath a Holocene strandplain, Great Exuma, Bahamas.CrossRef |

Wasserman, R. J., and Mostert, B. P. (2014). Intertidal crab burrows as a low-tide refuge habitat for a specific gobiid: preliminary evidence for commensalism. Marine and Freshwater Research 65, 333–336.
Intertidal crab burrows as a low-tide refuge habitat for a specific gobiid: preliminary evidence for commensalism.CrossRef |

Xin, P., Jin, G., Li, L., and Barry, D. A. (2009). Effects of crab burrows on pore water flows in salt marshes. Advances in Water Resources 32, 439–449.
Effects of crab burrows on pore water flows in salt marshes.CrossRef |



Export Citation

View Altmetrics