Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates

Liliana Zalizniak ${ }^{\text {A }}$, Ben J. Kefford ${ }^{\text {A,B }}$ and Dayanthi Nugegoda ${ }^{\text {A }}$
${ }^{\text {A Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, }}$ PO Box 71, Bundoora 3083, VIC, Australia
${ }^{\text {B }}$ Corresponding author. Email: ben.kefford@rmit.edu.au

Abstract

Salts of marine origin, predominantly consisting of Na^{+}and Cl^{-}ions, are dominant in most Australian inland saline waters. The proportions of other ions, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$, in the water may influence salinity tolerance of freshwater organisms and thus the effect of increasing salinity may vary with difference in ionic proportions. We exposed freshwater invertebrates to different concentrations of four ionic compositions and compared them with commercial sea salt (Ocean Nature). They were: synthetic Ocean Nature (ONS) and three saline water types (ONS but without: $\mathrm{SO}_{4}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}(\mathrm{S} 1) ; \mathrm{Ca}^{2+}, \mathrm{HCO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}(\mathrm{S} 2)$; and Ca^{2+} and Mg^{2+} (S3)), which are considered to be the predominant saline water types in south-eastern Australia and the Western Australian wheatbelt. The $96-\mathrm{h}_{\mathrm{LC}}^{50}$ values for the five media were determined for six invertebrate species and sub-lethal responses were observed for two species. There were no differences between responses of invertebrates to various ionic compositions in acute toxicity tests. However, in prolonged sub-lethal tests, animals reacted differently to the various ionic compositions. The greatest effect was observed in water types lacking Ca , for which plausible physiological mechanisms exist. Variation in ionic proportions should be taken into account when considering sub-lethal effects of salinity on freshwater invertebrates.

Table 1. Water quality data from collection sites

Date	Site	Species collected	\qquad	Water temperature $\left({ }^{\circ} \mathrm{C}\right)$	Electrical conductivity $\left(\mu \mathrm{Scm}^{-1}\right)$	pH	$\begin{gathered} \text { DO } \\ \text { (\% saturation) } \end{gathered}$
21/09/04	King Parrot Creek	Notalina fulva Micronecta robusta Centroptilum sp.	10	9.3	42	7.36	117
11/10/04	Campaspe River	Physa acuta	17.2	16.2	626	6.5	95
19/10/04	Campaspe River	Physa acuta	16.2	15.3	625	7.03	95

Table 2. Composition ($\mathrm{mg} \mathrm{L}^{-1}$) of stock solutions of different types
Compounds with a concentration $<5 \mathrm{mg} \mathrm{L}^{-1}$ were concentrated 1000 times and combined to prepare a stock solution (1 mL was added per 1 L of the final solution)

Compound	ONS	S1	S2	S3
CaCO_{3}	55.5	-	-	-
NaCl	23290.6	23412.4	23290.6	26757.3
KCl	653.8	653.8	653.8	653.8
$\mathrm{MgSO}_{4} * 7 \mathrm{H}_{2} \mathrm{O}$	5957.7	-	5957.7	-
$\mathrm{FeSO}_{4} * 7 \mathrm{H}_{2} \mathrm{O}$	1.1443	-	1.1443	1.1443
$\mathrm{MnCl}_{2} * 4 \mathrm{H}_{2} \mathrm{O}$	4.8885	4.8885	4.8885	4.8885
LiCl	1.0494	1.0494	1.0494	1.0494
$\mathrm{SrCl}_{2} * 6 \mathrm{H}_{2} \mathrm{O}$	21.3	21.3	21.3	21.3
$\mathrm{Na}_{2} \mathrm{MoO}_{4} * 2 \mathrm{H}_{2} \mathrm{O}$	1.0423	1.0423	1.0423	1.0423
$\mathrm{CuCl}_{2} * 2 \mathrm{H}_{2} \mathrm{O}$	0.0097	0.0097	0.0097	0.0097
ZnCl_{2}	0.0875	0.0875	0.0875	0.0875
$\mathrm{CoCl}_{2} * 6 \mathrm{H}_{2} \mathrm{O}$	0.1411	0.1411	0.1411	0.1411
SeO_{2}	0.1236	0.1236	0.1236	0.1236
$\mathrm{NH}_{4} \mathrm{VO}_{3}$	0.0690	0.0690	0.0690	0.0690
$\mathrm{CaCl}_{2} * 2 \mathrm{H}_{2} \mathrm{O}$	1200.7	1282.2	-	-
$\mathrm{Na}_{2} \mathrm{SiO}_{3} * 9 \mathrm{H}_{2} \mathrm{O}$	16.4	16.4	16.4	16.4
NaNO_{3}	2.0521	2.0521	2.0521	2.0521
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	1.4298	1.4298	1.4298	1.4298
$\mathrm{H}_{3} \mathrm{BO}_{3}$	12.3	12.3	12.3	12.3
$\mathrm{MgCl}_{2} * 6 \mathrm{H}_{2} \mathrm{O}$	4367.5	9201.6	4367.5	-
KI	0.0916	0.0916	0.0916	0.0916
$\mathrm{NiSO}_{4}{ }^{*} 6 \mathrm{H}_{2} \mathrm{O}$	0.296	-	0.296	0.296
NaHCO_{3}	174.9	-	-	221.6
RbCl	0.1556	0.1556	0.1556	0.1556
NaBr	24.5	24.5	24.5	24.5
$\mathrm{FeCl}_{3} * 6 \mathrm{H}_{2} \mathrm{O}$	-	1.1132		
$\mathrm{NiCl}_{2} * 6 \mathrm{H}_{2} \mathrm{O}$	-	0.2673		
$\mathrm{Na}_{2} \mathrm{SO}_{4}$				3435.7
TDS	30083.82	29402.36	29573.5	31121.02

$\mathrm{S} 1: \mathrm{SO}_{4}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$excluded
S2: $\mathrm{Ca}^{2+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}{ }^{-}$excluded
S3: $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ excluded
TDS: total dissolved solids

Table 3. Analysis of major ions content of the stock solutions for different treatment types and diluent waters ($\mathrm{mg} \mathrm{L}^{-1}$)

Electrical conductivity (EC) is in $\mathrm{mS} \mathrm{cm}^{-1}$

Water type	Ca	Mg	K	Na	Cl	SO_{4}	CO_{3}	HCO_{3}	EC
WLW	6.8	2.1	1	8.9	15	9.6	<5	23	0.126
M4	69	13	3.1	30	110	49	<5	64	0.628
ON	110	340	120	2880	4800	790	<5	<5	17.09
ONS	92	350	120	2870	4700	730	<5	69	16.26
S1	84	160	110	2700	4600	0.5	<5	14	15.24
S2	0.11	350	120	2730	4500	720	<5	14	15.59
S3	0.11	0.019	100	2720	4200	0.3	<5	50	13.81

