Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates

Liliana Zalizniak^A, Ben J. Kefford^{A,B} and Dayanthi Nugegoda^A

^ABiotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora 3083, VIC, Australia

^BCorresponding author. Email: ben.kefford@rmit.edu.au

Abstract. Salts of marine origin, predominantly consisting of Na⁺ and Cl⁻ ions, are dominant in most Australian inland saline waters. The proportions of other ions, Ca^{2+} , Mg^{2+} , SO_4^{2-} , HCO_3^- and CO_3^{2-} , in the water may influence salinity tolerance of freshwater organisms and thus the effect of increasing salinity may vary with difference in ionic proportions. We exposed freshwater invertebrates to different concentrations of four ionic compositions and compared them with commercial sea salt (Ocean Nature). They were: synthetic Ocean Nature (ONS) and three saline water types (ONS but without: SO_4^{2-} , HCO_3^- and CO_3^{2-} (S1); Ca^{2+} , HCO_3^- and CO_3^{2-} (S2); and Ca^{2+} and Mg^{2+} (S3)), which are considered to be the predominant saline water types in south-eastern Australia and the Western Australian wheatbelt. The 96-h LC_{50} values for the five media were determined for six invertebrate species and sub-lethal responses were observed for two species. There were no differences between responses of invertebrates to various ionic compositions in acute toxicity tests. However, in prolonged sub-lethal tests, animals reacted differently to the various ionic compositions. The greatest effect was observed in water types lacking Ca, for which plausible physiological mechanisms exist. Variation in ionic proportions should be taken into account when considering sub-lethal effects of salinity on freshwater invertebrates.

Date	Site	Species collected	Air	Water	Electrical	pН	DO	
			temperature	temperature (°C)	conductivity		(% saturation)	
			$(^{\circ}C)$		$(\mu S \text{ cm}^{-1})$			
21/09/04	King Parrot	Notalina fulva	10	9.3	42	7.36	117	
	Creek	Micronecta robusta						
		Centroptilum sp.						
11/10/04	Campaspe River	Physa acuta	17.2	16.2	626	6.5	95	
19/10/04	Campaspe River	Physa acuta	16.2	15.3	625	7.03	95	

Table 1. Water quality data from collection sites

Table 2. Composition $(mg L^{-1})$ of stock solutions of different types

Compounds with a concentration $< 5 \text{ mg L}^{-1}$ were concentrated 1000 times and combined to prepare a stock solution (1 mL was added per 1 L of the final solution)

Compound	ONS	S 1	S2	S 3
CaCO ₃	55.5	-	-	-
NaCl	23290.6	23412.4	23290.6	26757.3
KCl	653.8	653.8	653.8	653.8
MgSO ₄ *7H ₂ O	5957.7	-	5957.7	-
FeSO ₄ *7H ₂ O	1.1443	-	1.1443	1.1443
MnCl ₂ *4H ₂ O	4.8885	4.8885	4.8885	4.8885
LiCl	1.0494	1.0494	1.0494	1.0494
SrCl ₂ *6H ₂ O	21.3	21.3	21.3	21.3
Na ₂ MoO ₄ *2H ₂ O	1.0423	1.0423	1.0423	1.0423
CuCl ₂ *2H ₂ O	0.0097	0.0097	0.0097	0.0097
$ZnCl_2$	0.0875	0.0875	0.0875	0.0875
CoCl ₂ *6H ₂ O	0.1411	0.1411	0.1411	0.1411
SeO ₂	0.1236	0.1236	0.1236	0.1236
NH ₄ VO ₃	0.0690	0.0690 0.0690		0.0690
CaCl ₂ *2H ₂ O	1200.7	1282.2	-	-
Na ₂ SiO ₃ *9H ₂ O	16.4	16.4	16.4	16.4
NaNO ₃	2.0521	2.0521	2.0521	2.0521
KH_2PO_4	1.4298	1.4298	1.4298	1.4298
H_3BO_3	12.3	12.3	12.3	12.3
MgCl ₂ *6H ₂ O	4367.5	9201.6	4367.5	-
KI	0.0916	0.0916	0.0916	0.0916
NiSO ₄ *6H ₂ O	0.296	-	0.296	0.296
NaHCO ₃	174.9	-	-	221.6
RbCl	0.1556	0.1556	0.1556	0.1556
NaBr	24.5	24.5	24.5	24.5
FeCl ₃ *6H ₂ O	-	1.1132		
NiCl ₂ *6H ₂ O	-	0.2673		
Na_2SO_4				3435.7
TDS	30083.82	29402.36	29573.5	31121.02

S1: SO_4^{2-} , CO_3^{2-} , HCO_3^{-} excluded

S2: Ca^{2+} , CO_3^{2-} , HCO_3^{-} excluded

S3: Ca²⁺, Mg²⁺ excluded

TDS: total dissolved solids

Table 3. Analysis of major ions content of the stock solutions for different

treatment types and diluent waters (mg $L^{-1})$

Water type	Ca	Mg	K	Na	Cl	SO_4	CO ₃	HCO ₃	EC
WLW	6.8	2.1	1	8.9	15	9.6	<5	23	0.126
M4	69	13	3.1	30	110	49	<5	64	0.628
ON	110	340	120	2880	4800	790	<5	<5	17.09
ONS	92	350	120	2870	4700	730	<5	69	16.26
S 1	84	160	110	2700	4600	0.5	<5	14	15.24
S2	0.11	350	120	2730	4500	720	<5	14	15.59
S3	0.11	0.019	100	2720	4200	0.3	<5	50	13.81

Electrical conductivity (EC) is in mS cm⁻¹