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Deviance information criterion (DIC) calculation and selection of the negative binomial 
distribution 

Giant cuttlefish counts were overdispersed (i.e. Poisson variance exceeded the mean) with an excess 

of zeros, so we tested the ability of four distributions (Poisson, zero-inflated Poisson, negative 

binomial and zero-inflated negative binomial) to account for these data (Martin et al. 2005). To ensure 

that the DIC was calculated appropriately for these hierarchical models, we explicitly specified a 

partially marginalised likelihood function (Millar 2009; Smith et al. 2012) by means of the ‘zeros 

trick’ for non-standard likelihoods (Spiegelhalter et al. 2003). Preliminary fitting showed that 

negative binomial distributions provided the best model fit, based on DIC and posterior predictive 

checks that contrast the fit of replicated data generated from the posterior distribution to that of the 

observed data (Gelman et al. 1996). 
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Spatial random effects for abundance models 
To construct spatial abundance models in WinBUGS, we used the GeoBUGS add-on to fit spatial 

random effects (Si) that were jointly distributed as a Gaussian CAR (conditional autoregressive) 

spatial process, such that 

Si | S-i ~N
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where S-i is the vector of all spatial random effects excluding that for the ith site, ϕ controls the overall 

spatial correlation, Ni is the set of neighbours of the ith site, and  is the precision (i.e. inverse of the 

variance). The weight terms (wij) were calculated assuming that between-site correlations declined 

exponentially as a function of distance. On the basis of spatial correlograms, we defined the 

neighbourhoods Ni as all sites falling within 10 km of the ith site. Although CAR models are typically 

applied to continuous lattices of cells, they can also be used as a computationally efficient means of 

approximating continuous geostatistical processes (Carroll et al. 2010). 

 

 

 

Fig. S1. Spatial correlograms for the residuals of the selected spatial-abundance model (see Table 1 of main 

text). Points plot Moran’s I statistic for different distance lags and error bars represent ± the square root of its 

variance. The dotted line illustrates the Moran’s I statistic expected under the null hypothesis of no spatial 

autocorrelation. 
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  VAR(2) model for CPUEHZ1  VAR(2) model for CPUEHZ2 

 

Fig. S2. Sensitivity of vector autoregressive (VAR) models to assumptions regarding the proportional 

representation of Sepia apama in the commercial cuttlefish catch in Harvest Zone 2. Plots show parameter 

estimates (and 95% confidence intervals) for VAR(2) models assuming (a, b) no change in catch composition 

over time, (c, d) a linear decline from a 100 to 50% contribution from S. apama over the time scale of the 

analysis, and (e, f) a linear decline from a 100 to 10% contribution from S. apama. CPUEHZ1 and CPUEHZ2 refer 

to catch per unit effort in Harvest Zones 1 and 2 respectively. Note that the positive, significant relationship 

between CPUEHZ2 lagged by 2 years and CPUEHZ1 was not sensitive to assumptions regarding the species 

composition of CPUEHZ2. Panel a replicates Fig. 4b from the main text. 
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