Supplementary material

Feeding habits of range-shifting herbivores: tropical surgeonfishes in a temperate environment

Alexander J. Basford^{A,F}, David A. Feary^{B,E}, Gary Truong^A, Peter D. Steinberg^{A,C,D}, Ezequiel M. Marzinelli^{A,C,D} and Adriana Vergés^{A,C,D}

^ACentre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

^BSchool of the Environment, University of Technology, 123 Broadway, Sydney, NSW 2007, Australia.

^CEvolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

^DSydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia.

^EPresent address: School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

^FCorresponding author. Email: abasford1@gmail.com

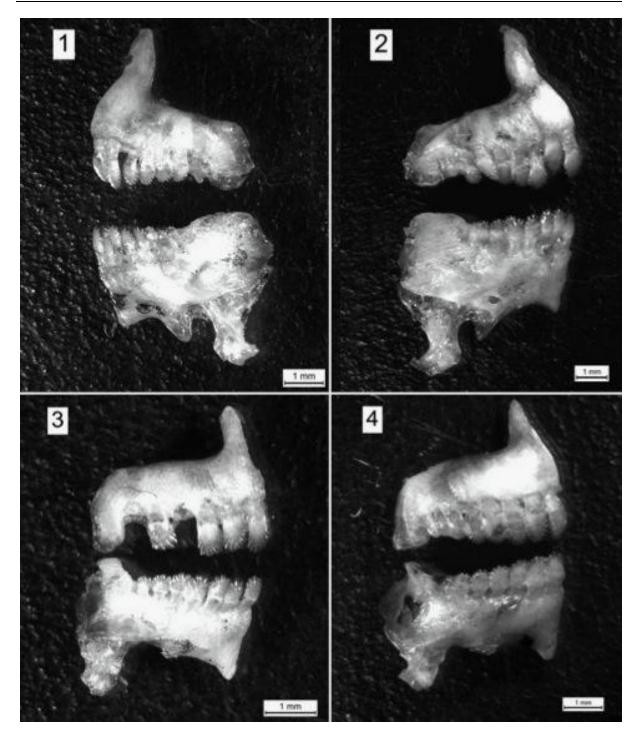
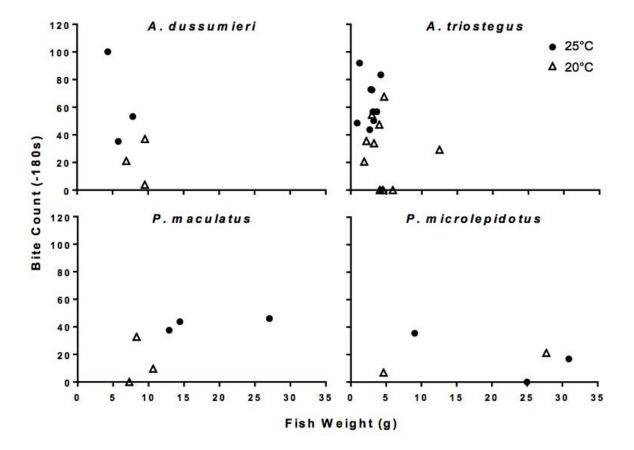



Fig. S1. Stereoscopic microscope images of the morphology of the jaw apparatus of (1) *Prionurus maculatus*,
(2) *Prionurus microlepidotus*, (3) *Acanthurus triostegus* and (4) *Acanthurus dussumieri*. Scale bar: 1 mm.

Fig. S2. Aquaria trial bite rates across individual sizes (g) of tropical (*A. dussumieri*, *A. triostegus*) and warm-temperate (*P. maculatus*, *P. microlepidotus*) surgeonfishes in tropical (25° C) and temperate (20° C) water temperatures.

able S1.	Number of fi	elu sul veys	periorme	u at cach	Syuncy sh	le moni re	-Diualy 10 Ju
	Site	February	March	April	May	July	Total
	Clovelly	1	2	2	1		6
	Gordon's Bay	1					1
	La Perouse		1	1		1	3
	Little Bay	1	3	2			6
	Long Bay	1					1
	Shelly Beach		3	1	1	2	7
	Total	4	9	6	2	3	24

Table S1	Number of field surveys	nerformed at eac	rh Sydney site fr	om February to July 2013
Tanc or.		DUITOI muu at cau	II DYUNUY SIU IIY	

Table S2. Analysis of field bite rates of tropical and warm-temperate surgeonfishes

Origin was fixed with two levels (Tropical, Warm-Temperate), Species was randomly nested in
Origin, with two levels, Schooling was fixed with three levels (single-species, mixed, solitary) (n = 2–
14). Temperature was fitted as a covariate. *P*-values were calculated using 9999 permutations under a reduced model. Pairwise tests for Schooling: Single species > Mixed Species = Solitary

Source	d.f.	m.s.	Pseudo-F	Р
Temperature	1	347	0.55	0.45
Origin	1	231	0.32	0.59
Schooling	2	3303	30.69	< 0.01
Species(Origin)	2	724	1.15	0.33
Temperature × Origin	1	19	0.03	0.86
Temperature × Schooling	2	512	0.87	0.42
Origin × Schooling	2	97	1.73	0.35
Temperature × Species(Origin)	2	1394	2.21	0.12
Species(Origin) × Schooling	3	45	0.07	0.97
Temperature × Origin × Schooling	2	382	0.61	0.49
Temperature × Species(Origin) × Schooling	2	678	1.08	0.31
Residual	55	631		

Table S3. Analyses of total algal biomass consumption, bite rates and consumption of brown algal biomass by tropical and warm-temperate surgeonfishes in aquarium trials

Data were log-transformed to improve test assumptions. Temperature was fixed with two levels (25 and 20°C), Origin was fixed with two levels (Tropical, Warm-Temperate) and Species was randomly nested in Origin, with two levels (n = 2-10). *P*-values were calculated using 9999 permutations under a reduced model. Non-significant terms with P > 0.25 were pooled to increase the power of the main effects of interest (temperature and origin; as per Underwood 1997). For brown algal consumption, pairwise tests for Temperature × Species(Origin): within level *Acanthurus dussumieri*; 25°C > 20°C

Aquarium trial	Source	d.f.	m.s.	Pseudo-F	Р
Total algal	Temperature	1	4.68E-03	1.10	0.32
consumption	Origin	1	5.06E-02	12.77	< 0.01
	Species(Origin)	2	1.05E-02	Pooled	
	Temperature × Origin	1	1.36E-02	2.75	0.11
	Temperature × Species(Origin)	2	5.56E-04	Pooled	
	Residual	29	6.78E-03		
Aquaria bite rates	Temperature	1	4460.1	8.82	< 0.01
	Origin	1	2843.4	6.77	0.02
	Species(Origin)	2	214.3	Pooled	
	Temperature × Origin	1	652.82	1.00	0.32
	Temperature × Species(Origin)	2	310.66	Pooled	
	Residual	29	524.98		
Brown algal	Temperature	1	1.42	0.70	0.50
consumption	Origin	1	0.48	0.94	0.66
	Species(Origin)	2	0.51	0.95	0.41
	Temperature × Origin	1	0.34	0.17	0.72
	Temperature × Species(Origin)	2	2.07	3.87	0.04
	Residual	18	0.53		

	and 20° C) (<i>n</i> = 5–13)								
	Factor	Residual	Coefficient	s.e. of coefficient	Р				
		d.f.							
Species	A. dussumieri	4	-11.39	5.57	0.11				
	A. triostegus	18	-3.67	2.67	0.19				
	P. maculatus	4	1.77	0.98	0.15				
	P. microlepidotus	3	-0.18	0.66	0.80				
Origin × Temperature	Tropical v. 25°C	11	-3.04	4.27	0.49				
	Tropical v. 20°C	11	-1.17	2.03	0.58				
	Warm-Temperate <i>v</i> . 25°C	4	-0.94	0.89	0.36				
	Warm-Temperate <i>v</i> . 20°C	3	0.50	0.76	0.56				

Table S4. Linear regression analyses of bite rates v. fish weight (g) for (a) each Species (n = 5-20) and (b) for each combination of Origin (Tropical, Warm-Temperate) × Temperature (25 and 20°C) (n = 5-13)

Table S5. Analyses of relative gut index, opening jaw-lever ratio and closing jaw-lever ratio of
tropical and warm-temperate surgeonfishes

Origin was fixed with two levels (Tropical, Warm-Temperate) and Species was randomly nested in Origin, with two levels (n = 3-5). *P*-values were calculated using 9999 permutations under a reduced model. Monte Carlo (_{MC}) *P*-value was used where there were <99 unique permutations

Morphological analysis	Source	d.f.	m.s.	Pseudo-F	Р
Relative gut indices	Origin	1	1.98	2.65	_{MC} 0.25
	Species(Origin)	2	0.75	6.97	< 0.01
	Residual	16	0.11		
Opening lever ratio	Origin	1	6.11E-04	0.61	_{MC} 0.52
	Species(Origin)	2	1.01E-03	4.59	< 0.05
	Residual	16	2.21E-04		
Closing lever ratio	Origin	1	1.41E-03	0.08	_{MC} 0.80
	Species(Origin)	2	1.81E-02	3.77	0.06
	Residual	16	4.79E-03		

Reference

Underwood, A. J. (1997). 'Experiments in Ecology: their Logical Design and Interpretation using Analysis of Variance.' (Cambridge University Press: Cambridge, UK.)