Supplementary material

Variability in egg and jelly-coat size and their contribution to target size for spermatozoa: a review for the Echinodermata

Dione Deaker^{A,D}, Shawna A. Foo^B and Maria Byrne^{A,C}

^ASchool of Medical Sciences, Anderson Stuart Building (F13), The University of Sydney, Sydney, NSW 2006, Australia.

^BDepartment of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA.

^CSchool of Life and Environmental Sciences, The University of Sydney,

Sydney, NSW 2006, Australia.

^DCorresponding author. Email: <u>dione.deaker@sydney.edu.au</u>

Table S1.Two-way PERMANOVA of jelly coat (JC) hydration data for three sea urchin species measured as the percentage change across time (5, 10, 15, 30 min) compared to time zero (n = ~10 eggs per female per time point) for eight females

The post hoc pairwise comparisons for main effects and interactions were used to determine the time points when the JC was at maximum hydration. This

was used to calculate the sample size of eggs available for analysis of the JC (n). Significant results (P < 0.05) indicated in bold

Source	d.f.	SS	MS	Pseudo-F	P(perm)	Post he	<i>bc</i> test	JC at ma	ximum hyd	ration
								Female	Time (mi	n) <i>n</i>
H. erythrogramma						Female		1	0^{A}	50
Female	7	2180.80	311.54	3.56	0.0014	1 = 2 = 7 = 8 > 2 = 6 = 7 = 8 > 3 = 4 = 5 =	= 6 = 7 > 3 = 4 = 5	2	0^{A}	50
Time	4	211.43	52.86	0.60	0.6614			3	0^{A}	50
$Female \times Time$	28	3464.40	123.73	1.41	0.0847			4	0^{A}	49
Residuals	358	31359	87.594					5	0^{A}	50
								6	0^{A}	50
								7	0^{A}	50
								8	0^{A}	49
H. tuberculata						Time (Female)	Female (Time)			
Female	7	5.83E+5	83287	191.49	< 0.001	0(1 = 2 = 3 = 4 = 5 = 6 = 7 = 8)	1(0 = 5 = 10 = 15 = 30)	1	0^{A}	50
Time	4	1.09E+5	27347	62.88	< 0.001	5(6 > 7 = 8 > 1 = 2 > 1 = 3 = 4 = 5)	2(0 < 5 < 10 = 15 = 30)	2	10	30
$Female \times Time$	28	1.63E+5	5829.2	13.40	< 0.001	10(6 > 7 = 8 > 2 > 1 = 3 = 5 > 3 = 4 = 5)	3(0 = 5 = 10 = 15 = 30)	3	0^{A}	50
Residuals	360	1.57E+5	434.93			15(6 > 7 = 8 > 2 > 1 = 5 > 3 = 4 = 5)	4(0 > 5 = 10 = 15 > 10 = 15 > 15 = 30)	4	0^{A}	10
						30(6 = 7 = 8 > 2 > 1 = 5 > 3 = 5 > 4 = 5)	5(0 = 5 = 10 = 15 = 30)	5	0^{A}	50
							6(0 < 5 = 10 = 15 = 30)	6	5	40
							7(0 < 5 = 10 = 15 < 10 = 15 = 30)	7	10	30
							8(0 < 5 = 10 = 15 < 10 = 15 = 30)	8	10	30
C. rodgersii						Time (Female)	Female (Time)			
Female	7	4.32E+6	6.17E+05	178.21	< 0.001	0(1 = 2 = 3 = 4 = 5 = 6 = 7 = 8)	1(0 < 5 = 10 < 15 = 30)	1	15	20
Time	4	4.31E+6	1.08E+06	310.80	< 0.001	5(8 > 1 = 5 = 6 > 4 = 6 > 2 = 3 = 4 > 7)	2(0 < 5 = 10 < 10 = 15 = 30)	2	10	30
Female \times Time	28	1.52E+6	54192	15.65	< 0.001	10(8 > 1 = 5 > 2 = 4 = 6 > 3 = 4 > 7)	3(0 < 5 = 10 = 15 < 30)	3	30 ^B	10
Residuals	360	1.25E+6	3463.7			15(1 = 8 > 5 > 2 = 6 > 2 = 4 > 3 = 4 > 7)	4(0 < 5 = 10 = 15 = 30)	4	5	40
						30(1 = 5 = 8 > 6 > 2 = 3 = 4 > 7)	5(0 < 5 < 10 = 15 < 30)	5	30 ^B	10
							6(0 < 5 = 10 = 15 < 15 = 30)	6	15	20
							7(0 < 5 < 10 = 15 = 30)	7	10	30
							8(0 < 5 = 10 = 15 = 30)	8	5	40

^AJelly coats fully hydrated before 5 min.

^BJelly coats may still be hydrating.

Table S2. Egg and jelly-coat (JC) sizes calculated from available data for 17 echinoids, 4 asteroids and 1 holothuroid

To represent the 3-D target of the egg for sperm, surface area of the egg with and without the jelly coat was calculated. The relative size index (RSI) was calculated as the ratio between jelly-coat surface area to egg surface area to represent the increase in target area given by the jelly coat. Standard error (s.e.) was determined where available or could be calculated. (P), Planktotrophic larvae; (L), Lecithotrophic larvae. Foo (2015) and Deaker (2016) are available on

request

Species	Egg diameter	JC	Target size	Target size	RSI	Source
	$(\mu m \pm s.e.)$	thickness	without JC	with JC		
		$(\mu m \pm s.e.)$	$(\mu m^2 \pm s.e.)$	$(\mu m^2 \pm s.e.)$		
ECHINOIDS						
Arbacia punctulata (P)	69.00	28.50	14957.12	49875.92	3.33	Bolton et al. 2000
	74.00	30.00	17203.36	56410.44	3.28	Harvey 1956
	78.00	24.50	19113.45	50670.75	2.65	Inamdar et al. 2007
Centrostephanus rodgersii (P)	111 (2.21)	29.00	38707.56	89727.03	2.32	Foo 2015
	111.61 (0.25)	40.82	39170.48	119216.64	3.06 (0.06)	This study
		(0.90)	(174.85)	(2139.20)		
Dendraster excentricus (P)	125.00	40.00	49087.39	132025.43	2.69	Timko 1979
	128.8 (1.7)	91.55	52117.26	305619.19	5.86	Podolsky 2002
	129.00	92.00	52279.24	307778.69	5.89	Strathmann 1987
Echinometra mathei (P)	70 (1.40)	27.00	15393.80	48305.13	3.14	Foo, 2015
Echinolampas crassa (P)	220.00	143.00	152053.08	804360.82	5.29	Cram 1971
Echinarachnius parma (P)	145.00	95.00	66051.99	352565.24	5.34	Harvey 1956
Heliocidaris crassispina (P)	82.34	35.77	21301.76	74394.86	3.49	Chan, unpubl.
Heliocidaris tuberculata (P)	91 (1.32)	33.00	26015.53	77437.12	2.98	Foo 2015
	93.18 (0.23)	28.17	27322.77	70799.38	2.60 (0.03)	This study
		(0.37)	(136.34)	(743.89)		
Lytechinus variegatus (P)	99.4 (0.01)	47.10	31040.07	117749.91	3.79	Farley and Levitan 2001
	143.00	77.50	64242.43	278985.99	4.34	Bolton et al. 2000
Pseudoboletia indiana (P)	86 (2.06)	27.00	23235.22	61575.22	2.65	Foo 2015
Paracentrotus lividus (P)	100.00	40.00	31415.93	101787.60	3.24	Vogel et al. 1982
Pseudochinus magellanicus (P)	122 (5)	49.00	46759.47	152053.08	3.25	Marzinelli et al. 2008
Strongylocentrotus droebachiensis (P)	160.00	50.00	80424.77	212371.66	2.64	Bolton et al. 2000
Strongylocentrotus franciscanus (P)	130.00	33.00	53092.92	120687.42	2.27	Lessios 1990
Strongylocentrotus purpuratus (P)	79.00	35.00	19606.68	69746.50	3.56	Strathmann 1987

Marine and Freshwater Research https://doi.org/10.1071/MF18134

Species	Egg diameter	JC	Target size	Target size	RSI	Source
	$(\mu m \pm s.e.)$	thickness	without JC	with JC		
		$(\mu m \pm s.e.)$	$(\mu m^2 \pm s.e.)$	$(\mu m^2 \pm s.e.)$		
	80.00	20.00	20106.19	45238.93	2.25	Lessios 1990
Tripneustes gratilla (P)	88.10 (0.13)	38.20	24398.13	85877.30	3.52 (0.04)	Deaker, unpubl.
		(0.50)	(70.43)	(1057.97)		-
Heliocidaris erythrogramma (L)	390 (8.03)	62.00	477836.24	829996.21	1.74	Foo 2015
• •	391.74 (0.82)	56.12	482957.37	799978.33	1.66 (0.01)	This study
		(0.60)	(2017.71)	(4061.32)		•
ASTEROIDS						
Patiriella regularis (P)	172 (3.11)	16.50	92940.88	132025.43	1.42	Foo 2015
C ()	143.5 (9.3)	8.70	64692.46	81332.10	1.26	Styan <i>et al</i> . 2005
	179.42 (1.09)	14.89	101429.49	137859.86	1.36 (0.01)	Deaker 2016
		(0.21)	(327.10)	(420.95)		
Acanthaster planci (P)	214.77 (0.96)	20.85	145134.51	207025.34	1.43 (0.01)	Deaker 2016
		(0.29)	(1294.35)	(2001.11)		
	224 (2.45)	20.00	157632.55	218956.44	1.39	Foo 2015
Meridiastra calcar (L)	425.7 (1.6)	24.30	569320.96	706734.22	1.24	Styan <i>et al</i> . 2005
× ,	444 (15.22)	37.00	619321.01	842964.71	1.36	Foo 2015
Hippasteria spinosa (L)	1200.00	200.00	4523893.42	8042477.19	1.78	Strathmann 1987
HOLOTHUROIDS						
Cucumaria miniata (L.)	520.00	35.00	849486 65	1093588 40	1 29	Strathmann 1987

Table S3. PERMANOVA of the relative size index (RSI) of the jelly-coat data with female nested within each sea urchin species

The RSI was calculated as the ratio between jelly-coat surface area to egg surface area to represent the increase in target area given by the jelly coat. *H. ery*, *H. erythrogramma*; *H. tub*, *H. tuberculata*; *C. rod*, *C. rodgersii*. Estimates of components of variation: species = 0.6175, Female (species) = 0.21883.

Source	d.f.	SS	MS	Pseudo-F	P(perm)	Post hoc
Species	2	307.51	153.75	23.39	<0.001	Species
Female (Species)	21	169	8.05	152.46	< 0.001	H. ery < H. tub = C. rod
Residuals	864	45.607	0.05			
						Species (female)
						<i>H. ery</i> (4 < 3 < 7 < 5 < 6 < 8 < 2 < 1)
						<i>H.</i> tub (5 < 7 = 8 < 1 = 3 < 2 < 4 < 6)
						C. rod $(7 < 1 = 4 = 6 < 2 = 6 < 3 = 5 = 8)$

Significant results are displayed in bold (P < 0.05)

Table S4. The correlation between egg diameter and jelly-coat thickness for each individual (within-spawn) and across the total population of females was calculated using Pearson's r for normally distributed data or Kendall's τ for non-normal data

Average values for each female was used in the correlation analysis of egg diameter and jelly-coat thickness across a species (among-female, n = 8). The number of eggs at the time points where the jelly coat had reached maximum hydration was used as the data for the correlation analysis (see Table S1).

Female	H. erythrog	ramma	H. tubercı	ılata	C. rodgersii	
	Coefficient	Р	Coefficient	Р	Coefficient	Р
All	$\tau = -0.429$	0.179	$\tau = 0.092$	0.020	$\tau = 0.00$	1.00
1	r = 0.209	0.146	$\tau = 0.032$	0.744	$\tau = -0.08$	0.63
2	r = 0.005	0.973	$\tau = -0.184$	0.153	$\tau = 0.07$	0.60
3	$\tau = -0.213$	0.029	$\tau = -0.005$	0.972	$\tau = -0.11$	0.73
4	$\tau = 0.007$	0.952	$\tau = 0.333$	0.216	$\tau = -0.26$	0.02
5	$\tau = -0.014$	0.887	$\tau = 0.117$	0.232	$\tau = -0.11$	0.73
6	$\tau = -0.149$	0.126	$\tau = 0.113$	0.313	$\tau = 0.02$	0.92
7	$\tau = -0.102$	0.296	r = 0.305	0.101	$\tau = -0.13$	0.32
8	$\tau = -0.143$	0.151	$\tau = 0.347$	0.007	$\tau = -0.07$	0.52

Significant results are displayed in bold (P < 0.05)

Table S5. The range and percentage difference in egg diameter and jelly-coat thickness reported in different studies of the same species

Sources are: 1, Harvey 1956; 2, Bolton et al. 2000; 3, Inamdar et al. 2007; 4, Foo 2015; 5, this study; 6, Strathmann 1987; 7, Timko 1979; 8, Podolsky 2002;

9, Farley and Levitan 2001; 10, Lessios 1990; 11, Styan et al. 2005. Foo (2015) is available on request

Species	Range egg diameter	Percentage	Range JC thickness	Percentage	Source
-	(μm)	difference	(μm)	difference	
Arbacia punctulata	69.00-78.00	12.24	24.50-30.00	20.18	1,2,3
Centrostephanus rodgersii	111.00-112.23	0.54	29.00-39.66	33.87	4,5
Dendraster excentricus	125.00-129.00	3.15	40.00-92.00	78.79	6,7,8
Heliocidaris tuberculata	91.00-93.54	2.36	28.71-33.00	15.78	4,5
Lytechinus variegatus	99.40-143.00	35.97	47.10-77.50	48.80	2,9
Strongylocentrotus purpuratus	79.00-80.00	1.26	20.00-35.00	54.55	6,10
Heliocidaris erythrogramma	390.00-391.74	0.45	56.12-62.00	9.95	4,5
Patiriella regularis	143.50-179.42	22.25	8.70-16.50	61.90	4,5,11
Acanthaster planci	214.77-224.00	4.21	20.00-20.85	4.16	4,5
Meridiastra calcar	425.70-444.00	4.21	24.30-37.00	41.44	4,5,11

Species	Type	Metric	CV (%)	CV (%)	Source in Marshall et al. (2008)
			within-spawn	among-females	
Crepidula adunca	D	Diameter	6.04	25.71	Collin (2000)
Parvulastra parvivipara	D	Diameter	5.92	7.16	M. Byrne (unpubl. data)
Echinaster modestus	D	Diameter	12.23	16.21	Turner and Lawrence (1979)
Alderia modesta	L	Volume	9.78	12.37	Krug (1998)
Lottia pelta	L	Diameter	8.6	2.4	Hadfield and Strathmann (1996)
Diadora aspersa	L	Diameter	12.9	4.9	Hadfield and Strathmann (1996)
Bugula neritina	L	Diameter	6.5	6.9	D. Marshall (unpubl. data)
Meridiastra occidens	L	Diameter	4.24	4.42	M. Byrne (unpubl. data)
Meridiastra calcar	L	Diameter	3.85	3.87	M. Byrne (unpubl. data)
Meridiastra gunnii	L	Diameter	4.14	5.07	M. Byrne (unpubl. data)
Echinaster modestus	L	Diameter	10.39	8.27	Turner and Lawrence (1979)
Uniophora granifera	L	Diameter	7.86	6.3	D. Marshall (unpubl. data)
Clypeaster rosaceus	L	Diameter	1.67	2.74	Emlet (1986)
Pyura stolonifera	L	Diameter	7.9	9.18	Marshall et al. (2000)
Pyura fissa	L	Diameter	4.89	5.21	Marshall and Keough (2003)
Styela plicata	L	Diameter	3.9	7.9	Marshall and Keough (2003)
Ciona intestinalis	L	Diameter	4.5	5.17	Marshall and Keough (2003)
Galeolaria caespitosa	Р	Diameter	11.56	1.99	Marshall and Keough (unpubl. data)
Dendraster exentricus	Р	Diameter	3.5	3.5	Podolsky (2002)
Alderia modesta	Р	Volume	13.7	11.75	Krug (1998)
Asterias forbesi	Р	Volume	22.91	16.31	Turner and Lawrence (1979)
Luidia clathrata	Р	Volume	15.53	8.52	Turner and Lawrence (1979)
Encope aberrans	Р	Volume	15.26	11.17	Turner and Lawrence (1979)
Lytechinus variegatus	Р	Volume	10.01	9.05	Turner and Lawrence (1979)
Strongylocentrotus droebachiensis	Р	Volume	9.04	4.96	Turner and Lawrence (1979)

Table S6. Data presented in Marshall *et al.* (2008) of the coefficient of variation (CV, %) in the egg size of marine invertebrates with planktotrophic (P), lecithotrophic (L) or direct developing (D) larvae measured as either egg volume or egg diameter

Fig. S1. The mean coefficient of variation (CV, $\% \pm$ s.e.) of the eggs of marine invertebrates with planktotrophic and lecithotrophic larvae in the data from Marshall *et al.* (2008) measured by either (A) diameter or (B) volume.

References

- Bolton, T. F., Thomas, F. I. M., and Leonard, C. N. (2000). Maternal energy investment in eggs and jelly coats surrounding eggs of the echinoid *Arbacia punctulata*. *The Biological Bulletin* **199**(1), 1–5. <u>doi:10.2307/1542700</u>
- Collin, R. (2000). Sex change, reproduction, and development of *Crepidula adunca* and *Crepidula lingulata* (Gastropoda : Calyptraeidae). *The Veliger* **43**(1), 24–33.
- Cram, D. L. (1971). Life history studies on South African echinoids (Echinodermata). 2. *Echinolampas* (*palaeolampas*) Crassa (bell) (Echinolampadidae). Transactions of the Royal Society of South Africa **39**, 339–352. <u>doi:10.1080/00359197109519122</u>
- Deaker, D. (2016) Echinoderm reproduction in current and future oceans: egg characteristics and the impact of ocean acidification on eggs and sperm. B.Sc.(Hons) Thesis, University of Sydney, Sydney, NSW, Australia.
- Emlet, R. B. (1986). Facultative planktotrophy in the tropical echinoid *Clypaster rosaceus* (Linnaeus) and a comparison with obligate plantotrophy in *Clypaster subdepressus* (Gray) (Clypasteroida: Echinoidea). *Journal of Experimental Marine Biology and Ecology* **95**(2), 183–202. doi:10.1016/0022-0981(86)90202-9
- Farley, G. S., and Levitan, D. R. (2001). The role of jelly coats in sperm-egg encounters, fertilization success, and selection on egg size in broadcast spawners. *American Naturalist* **157**(6), 626–636.
- Foo, S. A. (2015) Acclimatisation and adaptive capacity of sea urchins in a changing ocean: effects of ocean warming and acidification on early development and the potential to persist. Ph.D. Thesis, University of Sydney, NSW, Australia.
- Hadfield, M. G., and Strathmann, M. F. (1996). Variability, flexibility and plasticity in life histories of marine invertebrates. *Oceanologica Acta* **19**(3-4), 323–334.

- Harvey, E. B. (1956) 'The American *Arbacia* and Other Sea Urchins.' (Princeton University Press: Princeton, NJ, USA.)
- Inamdar, M. V., Kim, T., Chung, Y.-K., Was, A. M., Xiang, X., Wang, C.-W., Takayama, S., Lastoskie, C. M., Thomas, F. I. M., and Sastry, A. M. (2007). Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study. *The Journal of Experimental Biology* 210(21), 3805–3820. doi:10.1242/jeb.005439
- Krug, P. J. (1998). Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan *Alderia modesta*. *Marine Biology* **132**(3), 483–494. doi:10.1007/s002270050414
- Lessios, H. A. (1990). Adaptation and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama. *American Naturalist* **135**(1), 1–13. <u>doi:10.1086/285028</u>
- Marshall, D. J., and Keough, M. J. (2003). Sources of variation in larval quality for free-spawning marine invertebrates: egg size and the local sperm environment. *Invertebrate Reproduction & Development* 44(1), 63– 70. doi:10.1080/07924259.2003.9652554
- Marshall, D. J., Styan, C. A., and Keough, M. J. (2000). Intraspecific co-variation between egg and body size affects fertilisation kinetics of free-spawning marine invertebrates. *Marine Ecology Progress Series* 195, 305– 309. doi:10.3354/meps195305
- Marshall, D. J., Bonduriansky, R., and Bussiere, L. F. (2008). Offspring size variation within broods as a bethedging strategy in unpredictable environments. *Ecology* **89**(9), 2506–2517. doi:10.1890/07-0267.1
- Marzinelli, E. M., Penchaszadeh, P. E., and Bigatti, G. (2008). Egg strain in the sea urchin *Pseudechinus* magellanicus (Echinoidea: Temnopleuridae). *Revista de Biología Tropical* **56**, 335–339.
- Podolsky, R. D. (2002). Fertilization ecology of egg coats: physical versus chemical contributions to fertilization success of free-spawned eggs. *The Journal of Experimental Biology* **205**(11), 1657–1668.
- Strathmann, M. F. (1987) 'Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast.' (University of Washington Press: Seattle, WA, USA.)
- Styan, C. A., Byrne, M., and Franke, E. (2005). Evolution of egg size and fertilisation efficiency in sea stars: large eggs are not fertilised more readily than small eggs in the genus *Patiriella* (Echinodermata: Asteroidea). *Marine Biology* 147(1), 235–242. doi:10.1007/s00227-005-1554-4
- Timko, P. (1979) Larviphagy and oophagy in benthic invertebrates: a demonstration for *Dendraster excentricus*.
 In 'Reproductive Ecology of Marine Invertebrates'. (Ed. S. E. Stancyk.) pp. 91–98. (University of South Carolina Press: Columbia, SC, USA.)
- Turner, R. L., and Lawrence, J. M. (1979) Volume and composition of echinoderm eggs: implications for the use of egg size in life history models. In Reproductive ecology of marine invertebrates. (Ed. S. E. Stancyk) pp. 25-40. (University of South Carolina Press: Columbia, SC, USA.)
- Vogel, H., Czihak, G., Chang, P., and Wolf, W. (1982). Fertilization kinetics of sea-urchin eggs. *Mathematical Biosciences* 58(2), 189–216. doi:10.1016/0025-5564(82)90073-6