Supplementary material

Reproductive biology of *Macrobrachium amazonicum* (Heller, 1862) populations with distinct phenotypes in Neotropical reservoirs during the 'El Niño' event

Lucas R. P. Paschoal^{A,E}, Leo J. F. Oliveira^D, Guilherme C. Andrioli^B and Fernando J. Zara^{A,B,C}

^AUniversidade Estadual Paulista (UNESP), 13506-900, Rio Claro, São Paulo, Brazil.

^BUniversidade Estadual Paulista (UNESP), Centro de Aquicultura (CAUNESP), 14884-900, Jaboticabal, São Paulo, Brazil.

^CInvertebrate Morphology Laboratory (IML), Departamento de Biologia Aplicada,

CAUNESP and IEAMar, Universidade Estadual Paulista (UNESP), 14884-900, Jaboticabal, São Paulo, Brazil.

^DDeceased 21 February 2019. Formerly at UNESP, CAUNESP, 14884-900, Jaboticabal, São Paulo, Brazil.

^ECorresponding author. Email: lucasrezende20@gmail.com

Table S1. Average (\pm s.d.) values of limnological variables (N = 15 per station) from sampling sites inserted in reservoirs of Furnas (SJB and CRC) and Mascarenhas de Morais (CAS and SBG) hydroelectric power stations during October 2014 and December 2015

Chlorophyll-a, cadmium, chromium, copper, manganese, nickel and zinc are not represented owing to negligible concentrations. Al, aluminium; B, boron; Ca, calcium; CAS, Cássia; Cond., conductivity; CRC, Carmo do Rio Claro; Cu, copper; DO, dissolved oxygen; Fe, iron; K, potassium; Mg, magnesium; Mn, manganese; N, total nitrogen; Na, sodium; OM, organic matter; P, total phosphorus; (s), sediment; S, sulfur; SBG, São João Batista do Glória; SJB, São

Variable	SJB	CRC	CAS	SBG
Alkalinity (mg L ⁻¹)	13.63 (±7.67)	55.27 (±28.30)	31.07 (±13.52)	22.88 (±7.44)
Hardness (mg L ⁻¹)	6.06 (±6.97)	36.73 (±12.61)	24.71 (±6.74)	18.38 (±9.52)
pH (w)	6.21 (±0.72)	6.43 (±0.58)	6.68 (±0.53)	6.68 (±0.77)
$DO (mg L^{-1})$	10.12 (±2.54)	7.51 (±2.80)	10.29 (±2.74)	9.95 (±2.75)
Cond. (mS L^{-1})	21.01 (±4.06)	82.94 (±13.69)	73.44 (±17.59)	50.55 (±8.42)
$OM(w)(mg L^{-1})$	5.50 (±1.51)	6.89 (±2.00)	6.36 (±2.67)	4.63 (±2.32)
Temperature (°C)	25.20 (±2.83)	23.20 (±2.91)	24.64 (±2.24)	24.77 (±2.09)
N (w) (mg L^{-1})	2.05 (±1.50)	1.75 (±1.88)	2.21 (±2.26)	1.86 (±1.34)
$P(w)(\mu g L^{-1})$	32.46 (±14.45)	43.13 (±24.32)	130.06 (±175.28)	27.75 (±20.10)
Depth (cm)	170.67 (±26.04)	118.33 (±28.20)	97.86 (±22.93)	73.85 (±31.30)
Ca (w) (mg L^{-1})	1.13 (±0.57)	9.80 (±3.10)	4.69 (±1.05)	2.84 (±0.82)
Mg (w) (mg L^{-1})	0.48 (±0.20)	1.57 (±0.34)	1.92 (±0.48)	1.14 (±0.33)
Fe (w) (mg L^{-1})	1.21 (±0.60)	1.44 (±0.70)	1.64 (±1.78)	0.29 (±0.27)
K (w) (mg L ⁻¹)	2.18 (±0.38)	2.92 (±1.33)	3.03 (±0.66)	2.10 (±0.25)
Na (w) (mg L^{-1})	2.06 (±1.28)	4.20 (±1.41)	5.56 (±2.14)	4.13 (±1.54)
Tcol (NMP)	871.00 (±734.67)	521.54 (±645.70)	659.67 (±737.15)	723.64 (±734.86)
OM (s) (g kg ⁻¹)	29.67 (±12.64)	64.20 (±58.45)	26.79 (±8.54)	9.23 (±9.02)
pH (s)	4.55 (±0.21)	5.11 (±0.21)	5.89 (±0.50)	5.83 (±0.50)
P (s) (mg kg ⁻¹)	17.47 (±14.59)	42.87 (±19.79)	20.64 (±11.39)	13.23 (±6.39)
K (s) (mg kg ⁻¹)	72.99 (±12.60)	58.65 (±19.77)	51.11 (±14.10)	21.66 (±11.69)
Ca (s) (g kg ⁻¹)	0.25 (±0.13)	0.94 (±0.55)	0.93 (±0.22)	0.37 (±0.23)
Mg (s) (mg kg ⁻¹)	38.09 (±12.04)	91.58 (±75.34)	107.67 (±43.66)	50.49 (±34.33)
Al (s) (mg kg ^{-1})	52.17 (±21.01)	17.39 (±11.51)	10.92 (±7.21)	10.38 (±4.99)
S (s) (mg kg ⁻¹)	4.53 (±4.69)	10.00 (±7.01)	7.71 (±4.48)	5.77 (±3.11)
B (s) (mg kg ⁻¹)	0.34 (±0.19)	0.50 (±0.50)	0.30 (±0.23)	0.25 (±0.13)
Cu (s) (mg kg ⁻¹)	4.83 (±1.47)	2.27 (±1.10)	2.63 (±1.19)	0.91 (±0.73)
Fe (s) (g kg^{-1})	28.11 (±91.02)	58.31 (±146.88)	6.58 (±23.44)	24.55 (±69.03)
Mn (s) (mg kg ⁻¹)	7.49 (±3.32)	29.09 (±12.36)	60.01 (±17.69)	37.80 (±25.57)
Zn (s) (mg kg ⁻¹)	2.04 (±1.79)	2.31 (±1.50)	1.70 (±0.88)	1.18 (±0.50)
Clay (g kg ⁻¹)	398.33 (±49.72)	369.47 (±69.12)	197.36 (±162.57)	78.62 (±63.89)
Silt (g kg ⁻¹)	287.60 (±52.28)	375.53 (±220.46)	111.00 (±98.81)	112.62 (±184.50)
Fine sand (g kg ⁻¹)	134.40 (±26.45)	91.33 (±63.06)	156.14 (±66.39)	262.69 (±250.42)
Coarse sand (g kg ⁻¹)	180.07 (±47.77)	164.20 (±120.91)	517.64 (±263.82)	546.15 (±341.92)

José da Barra; Tcol, total coliforms; (w), water; Zn, zinc

Table S2.Values obtained from canonical correspondence analysis (CCA) andcoefficient of determination (r^2) for limnological variables (descriptors) of the samplingsites in reservoirs of Marechal Mascarenhas de Morais and Furnas hydroeletric powerstations (Minas Gerais state, south-eastern Brazil), and significance of correlationsobtained using the ENVFIT function (999 permutations)

Variables and values in bold (significant at 0.05) were used to generate Fig. 8 in the main paper.Al, aluminium; B, boron; Ca, calcium; Cond., conductivity; Cu, copper; DO, dissolved oxygen;Fe, iron; K, potassium; Mg, magnesium; Mn, manganese; N, total nitrogen; Na, sodium; OM, organic matter; P, total phosphorus; (s), sediment; S, sulfur; Tcol, total coliforms; (w), water;

Limnological variable	Axis 1	Axis 2	r^2	(Pr)
Alkalinity	-0.54	-0.84	0.52	0.09
Hardness	-0.38	-0.92	0.42	0.09
pH (w)	0.96	0.29	1.00	0.01
DO	0.62	0.79	0.59	0.09
Cond.	-0.27	-0.96	0.37	0.10
O.M. (w)	-0.75	-0.66	0.75	0.08
Temperature (w)	0.54	0.84	0.52	0.09
N (w)	-0.07	1.00	0.29	0.10
P (w)	-0.73	-0.68	0.72	0.08
Depth	-0.97	-0.24	0.98	0.02
Ca (w)	-0.56	-0.83	0.53	0.09
Mg (w)	-0.01	-1.00	0.30	0.10
Fe (w)	-0.84	-0.54	0.89	0.04
K (w)	-0.67	-0.74	0.65	0.08
Na (w)	0.89	-0.46	0.40	0.10
Tcol	0.35	0.93	0.41	0.09
O.M. (s)	-0.75	-0.66	0.75	0.08
pH (s)	0.95	0.31	1.00	0.01
P (s)	-0.69	-0.73	0.66	0.08
K (s)	-0.92	-0.39	0.99	0.02
Ca (s)	-0.57	-0.82	0.54	0.09
Mg (s)	-0.53	-0.85	0.52	0.09
Al (s)	-1.00	0.10	0.68	0.06
S (s)	-0.54	-0.84	0.52	0.09
B (s)	-0.75	-0.66	0.74	0.08
Cu (s)	-0.99	-0.13	0.91	0.04
Fe (s)	-0.68	-0.74	0.65	0.08
Mn (s)	1.00	0.07	0.84	0.04
Zn (s)	-0.84	-0.55	0.88	0.04
Clay	-0.89	-0.46	0.95	0.03
Silt	-0.82	-0.58	0.85	0.04
Fine sand	0.83	0.55	0.87	0.04
Coarse sand	0.87	0.50	0.93	0.04
Rainfall	0.77	-0.64	0.99	0.03
Water column	0.77	-0.64	0.99	0.03
Explained variation	64.10%	29.09%		

Zn, zinc

Fig. S1. (*a*) Larvae of *Macrobrachium amazonicum* from a hololimnetic population of a small-size phenotype at stage of Zoea I. Note the presence of many lipid droplets (white arrow) in the cephalotorax. (*b*) Zoea I (left) and II (right) in hololimnetic populations of a small-size phenotype.