Supplementary Material

Genetic assessment of the rare freshwater shrimp *Caridina logemanni* endemic to Hong Kong and its hybridisation with a widespread congener

GLai Him Chow^A, Ling Ming Tsang^A, Ka Hou Chu^A and Ka Yan Ma^{A,B,*}

^ASimon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, PR China.

^BSchool of Ecology, Sun Yat-sen University, Shenzhen, PR China.

*Correspondence to: Email: majx26@mail.sysu.edu.cn

Locus	Primer	Primer sequence (5' to 3')	Source	PCR condition	PCR profile
СОІ	COI-CC-for Cys F dgH2198	F: ATTCGAGCAGAATTAGGGCA F: CTAGAATTGCAGTCTAGCGTC R: TAAACTTCAGGGTGACCAAARAAYCA	Tsang <i>et al.</i> (2017) Ma <i>et al.</i> (2021) Folmer <i>et al.</i> (1994)	1st round $1 \times PCR$ reaction buffer, 0.5 mM of MgCl_2 , $0.4 \mu M$ of each primer, $400 \mu M$ of dNTPs, 1.5 U of Taq polymerase (TaKaRa), $0.4 \mu L$ of template DNA, MilliO H ₂ O to 25 μL	Initial denaturation: 95°C; 3 min 33 cycles of denaturation: 95°C; 30s annealing: 50°C; 40s extension: 72°C; 1 min Final extension: 72°C; 3 min
NaK intron	F (1st round) nr (1st round) int254F (2nd round int674R (2nd round int655R (2nd round	F: GCCTTCTTCTCCACCAACGCCGTTGAAGG R: ATAGGGTGATCTCCAGTRACCAT)F: AACCCCCATTGCCAAGGAAA)R: CAGCAGACCCTCAGGCAC)R: CACRTTTGCAACRATAATRCCA	Modified from Michez <i>et al.</i> (2009) Tsang <i>et al.</i> (2008) Present study Present study Present study	2nd round Same as 1 st round, except template DNA replaced by 0.25 µL of 5 × diluted PCR products in 25 µL mixture	1st round Initial denaturation: 95°C; 3 min 33 cycles of denaturation: 95°C; 30 s annealing: 56–0.3°C/cycle (20 cycles)+50°C (10 cycles); 40 s extension: 72°C; 2 min Final extension: 72°C; 5 min 2nd round Same as <i>COI</i>

Table S1. Primers and PCR protocols used in the amplification of mitochondrial *COI* and *NaK* intron markers.

References

- Folmer, O., Black, M. B., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* **3**, 294–299.
- Ma, K. Y., Chow, L. H., Tsang, L. M., De Grave, S., and Chu, K. H. (2021). Contrasting population structures of freshwater atyid shrimps in Hong Kong and their conservation implications. *Marine and Freshwater Research* 72(11), 1667–1678 doi:10.1071/MF21069.
- Michez, D., Patiny, S., and Danforth, B. N. (2009). Phylogeny of the bee family Melittidae (Hymenoptera: Anthophila) based on combined molecular and morphological data. *Systematic Entomology* **34**, 574–597. doi:10.1111/j.1365-3113.2009.00479.x
- Tsang, L. M., Ma, K. Y., Ahyong, S. T., Chan, T.-Y., and Chu, K. H. (2008). Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. *Molecular Phylogenetics and Evolution* **48**, 359–368. doi:10.1016/j.ympev.2008.04.009
- Tsang, L. M., Tsoi, K. H., Chan, S. K. F., Chan, T. K. T., and Chu, K. H. (2017). Strong genetic differentiation among populations of the freshwater shrimp *Caridina cantonensis* in Hong Kong: implications for conservation of freshwater fauna in urban areas. *Marine and Freshwater Research* 68, 187–194. doi:10.1071/MF15377

Multiplex	Locus	Fluorescentdye	Primer sequences (5' to 3')	PCR condition	PCR profile
А	017	ROX	F: AGGTAGCTGAGCGATGACC R: CTGCCTTTCGCTGTTCAGT	$2 \times$ Type-it multiplex PCR master mix, 0.2 μ M of each ROX-labeled and	Initial denaturation: 95°C; 5 min 30 cycles of
	N15	FAM	F: ACGCATGATGGAAAGGCAA R: TCACAAAGTCACGACTAAGAT	FAM-labeled primer, 0.4 μ M of each HEX-labeled primer,	denaturation: 95°C; 30s annealing: 54°C; 90s
В	N9	ROX	F: TGTGTTGGCAGATTTCGTCT R: GGCATGCTTAAACACATCCT	$200 \mu\text{M} \text{ of dNTPs},$ 0.9 $\mu\text{L} \text{ of template DNA},$	extension: 72°C; 30 s Finalextension: 60°C; 30 min
	C8	FAM	F: GGCACAGTAAACAATGCGCT R: TAACAGCCGGTTGAGAGGC	MilliQ H ₂ O to 6.25 μ L	
	C20	HEX	F: AGAGGCGATGGTTGGCATA R: GGTGCTCGACCGGTAACTA		
С	N11	ROX	F: TTCAGTCAGCCAAACGACC R: TGTTGCTAAGTGTGCCTATTCT		

Table S2. Primers and PCR protocol used in the amplification of microsatellites.

Table S3. Sampling localities, abbreviations and genetic diversity indices for mitochondrial COI data of C. logemanni and C. cantonensis.

Samplinglocalities	Abb.	п	Na	h	π	Tajima's D	Fu's Fs	Latitude (N)	Longitude (E)
C. logemanni									
Overall		39	7	0.7045 ± 0.0501	0.04630 ± 0.02331	3.63977	17.12533		
North-eastern New Territories (1)	NHS	19	5	0.5906 ± 0.1185	0.02461 ± 0.01318	0.11724	7.61287		
North-eastern New Territories (2)	NWC	20	4	0.2842 ± 0.1284	0.01687 ± 0.00928	-1.43289	7.37209		
C. cantonensis									
Overall		145	18	0.8674 ± 0.0119	0.00733 ± 0.00418	-1.03204	-2.33678		
Fung Wong Wat	NFW	28	4	0.3254 ± 0.1102	0.00157 ± 0.00135	-1.21638	-0.43122	22°29.123′	114°18.333′
Ha Miu Tin	NHMT	30	5	0.3080 ± 0.1075	0.00098 ± 0.00099	-1.42765	-2.81424*	22°30.000′	114°16.000′
Luk Keng	NLG	26	3	0.4954 ± 0.0766	$0.00113 \!\pm\! 0.00109$	-0.01682	0.04503	22°31.207′	114°13.684′
Nam Chung Lo Uk	NLU	10	4	0.7333 ± 0.1005	0.01444 ± 0.00843	2.02912	3.95049	22°31.087′	114°12.442′
Wu Kau Tang	NWKT	32	4	0.6754 ± 0.0474	0.00210 ± 0.00163	0.67883	0.37458	22°30.331'	114°14.540′
Wilson Trail Section 9	NWN	19	4	0.5088 ± 0.1171	0.00478 ± 0.00309	0.90916	1.99245	22°29.350′	114°13.470′

Abb., abbreviation; *n*, sample size; *Na*, number of haplotype; *h* (mean \pm s.d.), haplotype diversity; π (mean \pm s.d.), nucleotide diversity. *, *P* < 0.05. Data of *C. cantonensis* includes that from Wong *et al.* (2019).

Samplinglocalities	Abb.	n	Na	h	π	Tajima's <i>D</i>	Fu's Fs	H_O	H_E
C. logemanni									
Overall		66	3	0.5408 ± 0.0368	$0.01178 \!\pm\! 0.00666$	1.56564	10.18031		
North-eastern New Territories (1)	NHS	26	2	0.2708 ± 0.0990	0.00587 ± 0.00385	0.09840	5.60494	0.308	0.271
North-eastern New Territories (2)	NWC	40	3	0.2718 ± 0.0869	0.00541 ± 0.00357	-1.09582	3.83878	0.200	0.272
C. cantonensis									
Overall		324	13	0.7889 ± 0.0137	0.01700 ± 0.00907	0.82159	5.77908		
Fung Wong Wat	NFW	72	2	0.0548 ± 0.0366	0.00102 ± 0.00115	-1.54647*	1.26871	0.056	0.055
Ha Miu Tin	NHMT	52	1	0.0000 ± 0.0000	0.00000 ± 0.00000	/	/	/	/
Luk Keng	NLG	48	3	0.2899 ± 0.0762	0.00407 ± 0.00287	-0.07242	2.95566	0.250	0.290
Nam Chung Lo Uk	NLU	48	4	0.5115 ± 0.0700	0.01453 ± 0.00804	0.70720	8.67185	0.375	0.511
Wu Kau Tang	NWKT	56	5	0.6052 ± 0.0604	$0.01122 \!\pm\! 0.00641$	0.82673	5.41387	0.607	0.605
Wilson Trail Section 9	NWN	48	3	0.5665 ± 0.0582	$0.01131 \!\pm\! 0.00647$	2.55256	8.72826	0.458	0.467

Table S4. Sampling localities, abbreviations and genetic diversity indices for nuclear NaK intron data of C. logemanni and C. cantonensis.

Abb., abbreviation; *n*, sample size; *Na*, number of allele; *h* (mean \pm s.d.), genotype diversity; π (mean \pm s.d.), nucleotide diversity; *H*₀, observed heterozygosity; *H*_E, expected heterozygosity. Asterisks in *H*o and *H*e were obtained from the Hardy–Weinberg equilibrium test. *, *P* < 0.05; **, *P* < 0.01.

Samplinglocalities	Abb.					Lo	cus		
			Mean	C8	C20	N9	N11	N15	017
Total		Na		11	4	14	11	8	21
Northeastern New Territories (1)	NWC	п	14.333	11	15	7	18	17	18
		Na	5.833	8	1	9	5	3	9
		Ae	3.822	5.261	1.000	7.538	2.906	1.908	4.320
		H_O	0.606	0.545	0.000	1.000	0.778	0.647	0.667
		H_E	0.596	0.810	0.000	0.867	0.656	0.476	0.769
		$P_{ m HW}$		0.044	/	0.783	0.752	0.158	0.890
		F	-0.048	0.327	/	-0.153	-0.186	-0.360	0.133
Northeastern New Territories (2)	NHS	п	14.833	11	15	17	16	16	14
		Na	9.167	8	4	10	9	6	18
		Ae	5.261	4.246	1.724	4.817	4.452	2.327	14.000
		H_O	0.605	0.909	0.267	0.588	0.625	0.313	0.929
		H_E	0.709	0.764	0.420	0.792	0.775	0.570	0.929
		$P_{ m HW}$		0.964	0.500	0.000*	0.000*	0.004*	0.647
		F	0.180	-0.189	0.365	0.258	0.194	0.452	0.000
Grand mean		Na	7.500						
		Ae	4.542						
		H_O	0.606						
		H_E	0.652						
		F	0.076						

 Table S5. Sampling localities, abbreviations and genetic diversity indices at six microsatellite loci for C. logemanni.

 Sampling localities

Abb., abbreviation; *n*, sample size; *Na*, number of allele; *Ne*, number of effective alleles; *H*₀, observed heterozygosity; *H*_E, expected heterozygosity; *P*_{HW}, probability of deviation from HWE; *F*, fixation index. *, loci which deviate from HWE after sequential Bonferroni correction ($\alpha = 0.05$).

Samplinglocalities	Abb.					Lo	cus		
			Mean	C8	C20	N9	N11	N15	O17
Total		Na		18	19	19	19	20	38
Fung Wong Wat	NFW	п	29.500	29	29	30	30	30	29
		Na	10.833	12	5	9	10	5	24
		Ae	7.122	8.806	1.972	6.498	6.360	1.933	17.163
		H_O	0.779	0.828	0.690	0.933	0.900	0.600	0.724
		H_E	0.749	0.886	0.493	0.846	0.843	0.483	0.942
		$P_{ m HW}$		0.626	0.626	0.984	0.913	0.855	0.145
		F	-0.086	0.066	-0.399	-0.103	-0.068	-0.243	0.231
Ha Miu Tin	NHMT	n	27.333	28	28	28	27	25	28
		Na	7.667	10	5	10	6	5	10
		Ae	3.677	5.426	1.960	6.730	4.378	1.453	2.113
		H_O	0.642	0.893	0.679	0.786	0.704	0.360	0.429
		H_E	0.628	0.816	0.490	0.851	0.772	0.312	0.527
		$P_{ m HW}$		0.870	0.689	0.851	0.343	1.000	0.000*
		F	-0.047	-0.095	-0.385	0.077	0.088	-0.154	0.186
Luk Keng	NLG	n	19.000	21	16	21	21	14	21
		Na	8.667	10	11	10	10	6	5
		Ae	5.374	6.891	4.785	6.891	5.880	3.843	3.955
		H_O	0.793	0.857	0.875	0.952	0.857	0.929	0.286
		H_E	0.803	0.855	0.791	0.855	0.830	0.740	0.747
		$P_{ m HW}$		0.446	0.888	0.078	0.000*	0.669	0.000*
		F	0.018	-0.003	-0.106	-0.114	-0.033	-0.255	0.618
Nam Chung Lo Uk	NLU	п	21.500	23	14	23	23	22	24
		Na	8.000	10	6	12	12	4	4
		Ae	4.909	6.187	2.925	8.015	8.602	1.328	2.395
		H_O	0.661	0.696	0.714	0.870	1.000	0.273	0.417
		H_E	0.681	0.838	0.658	0.875	0.884	0.247	0.582
		$P_{ m HW}$		0.893	0.941	0.276	0.863	0.997	0.061

Table S6. Sampling localities, abbreviations and genetic diversity indices at six microsatellite loci for *C. cantonensis*.

Samplinglocalities	Abb.					Lo	cus		
			Mean	C8	C20	N9	N11	N15	O17
Total		Na		18	19	19	19	20	38
		F	0.023	0.170	-0.085	0.006	-0.132	-0.105	0.285
Wu Kau Tang	NWKT	n	22.167	23	21	21	23	22	23
		Na	6.500	10	3	6	5	6	9
		Ae	3.512	6.335	1.340	3.600	1.938	2.077	5.781
		Ho	0.498	0.652	0.286	0.238	0.435	0.682	0.696
		H_E	0.608	0.842	0.254	0.722	0.484	0.519	0.827
		$P_{\rm HW}$		0.265	0.900	0.000*	0.087	0.934	0.000*
		F	0.119	0.226	-0.125	0.670	0.102	-0.315	0.159
Wilson Trail Section 9	NWN	n	20.833	23	24	15	24	22	17
		Na	8.667	14	4	6	11	6	11
		Ae	4.821	9.043	1.889	4.091	4.780	2.402	6.721
		Ho	0.606	0.826	0.458	0.267	0.750	0.864	0.471
		H_E	0.724	0.889	0.470	0.756	0.791	0.584	0.851
		$P_{\rm HW}$		0.255	0.096	0.000*	0.791	0.627	0.000*
		F	0.127	0.071	0.026	0.647	0.052	-0.480	0.447
Grand mean		Na	8.389						
		Ae	4.902						
		Ho	0.663						
		H_E	0.699						
		F	0.026						

Abb., abbreviation; *n*, sample size; *Na*, number of allele; *Ne*, number of effective alleles; *H*₀, observed heterozygosity; *H*_E, expected heterozygosity; *P*_{HW}, probability of deviation from HWE; *F*, fixation index. C8, C20, N9, N11 and N15 data are from Ma *et al*. (in review). *, loci which deviate from HWE after sequential Bonferroni correction ($\alpha = 0.05$).

		popul	acions by	MICKO-C	ILCKLK	•						
		Locus										
Population	C8	C20	N9	N11	N15	O17						
C. logemanni												
NWC	+											
NHS			+		+							
C. cantonensis												
NFW						+						
NHMT												
NLG						+						
NLU												
NWKT			+			+						
NWN	+		+									

 Table S7. Detection of null alleles for microsatellite markers in each C. logemanni and C. cantonensis populations by MICRO-CHECKER.

+, possible presence of null alleles.

Table S8. AMOVA results of *C. logemanni* and *C. cantonensis* based on (a) *COI*, (b) *NaK* intron, and (c) microsatellite data.

Source of variation	Variance	Percentage of
	components	variation
(a)		
C. logemanni		
Among populations	9.8854	70.81*
Within populations	4.07496	29.19
C. cantonensis		
Among populations	1.28502	67.15*
Within population	0.62861	32.85
(b)		
C. logemanni		
Among populations	2.06063	69.53*
Within populations	0.903	30.47
C. cantonensis		
Among populations	2.02105	65.51*
Within populations	1.0641	34.49
(c)		
C. logemanni		
Among populations	0.24074	13.06*
Within populations	1.60205	86.94
C. cantonensis		
Among populations	0.26318	13.52*
Within populations	1.68313	86.48

*, P < 0.001.

	Wilco	xon test
Population	SMM	TPM
C. logemanni		
NWC	0.57813	0.42188
NHS	0.99219	0.99219
C. cantonensis		
NFW	0.57813	0.57813
NHMT	0.97656	0.94531
NLG	0.57813	0.34375
NLU	0.94531	0.57813
NWKT	0.99219	0.92188
NWN	0.98438	0.96094

 Table S9. Results of one-tail Wilcoxon heterozygosity excess test (P-values) and mode-shift indicator test of

 C. logemanni and C. cantonensis populations.

SMM, stepwise mutation model; TPM, two-phase model. *, population-mutational model pair with significant heterozygosity excess.

Figure S1. Heatmaps of (a) pairwise Φ_{ST} values based on *COI* and (b) *NaK* intron data, and (c) pairwise F_{ST} values based on microsatellite data, among *C. logemanni* (NWC, NHS) and *C. cantonensis* populations (NFW, NHMT, NLG, NLU, NWKT). Inter- and intra-specific comparisons are indicated above and below diagonal respectively. All values are significant after sequential Bonferroni corrections.

Figure S2. Bayesian phylogenetic tree of *C. logemanni* and *C. cantonensis* based on *COI* haplotypes. Branch support values are indicated as 'posterior probability/bootstrap value'. Colours represent the species habouring the haplotype: blue, *C. cantonensis*; red, *C. logemanni*; black, outgroup *C. trifasciata*. Blue bars at nodes represent the 95% HPD of the divergence time estimates.