10.1071/MF22001

Marine and Freshwater Research

Supplementary Material

Influence of calcium on the toxicity of saline solutions to the mayfly, Austrophlebioides sp. AV11

Vinitha Nanjappa^{A,C,*}, Sue Vink^A, Jason Dunlop^{A,D}, Matt N. Krosch^{A,E}, and Reinier Mann^B

^ACentre for Water in the Mineral Industry, Sustainable Minerals Industry, The University of Queensland, Saint Lucia, Qld 4072, Australia.

^BDepartment of Environment and Science, Queensland Government, Dutton Park, Qld 4102, Australia.

^cPresent address: School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Qld 4000, Australia.

^DPresent address: Office of the Queensland Mine Rehabilitation Commissioner, Queensland Government, Brisbane, Qld 4001, Australia.

^EPresent address: Forensic Services, Queensland Police Service, Queensland Government, Brisbane, Qld 4000, Australia.

^{*}Correspondence to: Vinitha Nanjappa School of Civil and Environmental Engineering, Queensland University of Technology, Brisbane, Qld 4000, Australia Email: vinitha.nanjappa@connect.qut.edu.au

Influence of calcium on the toxicity of saline solution to a species of mayfly, Austrophlebioides sp. AV11

This document consists of calcium proportion and 96-h LC_{50} values of previous studies, Cusum chart for the reference toxicant, graphs for the comparison of AMW with solutions with increased calcium concentrations, tables for ionic compositions and details of data about Mount Barney.

Figure S1. Concentration of calcium as proportion of major ions (% meq) against 96-h LC_{50} as electrical conductivity (EC, mS cm⁻¹) from studies of Dunlop *et al.* (2011) and Prasad *et al.* (2014). AMW 1 and AMW 2 are two compositions of artificial mine waters, FC is Fitzroy composition representing the composition of Fitzroy River, FCLMg is Fitzroy composition with low magnesium.

Figure S2. Cusum chart for reference toxicant NaCl showing the 96-h LC_{50} (mg L⁻¹) values with 95% CI (s.d.) for all tests, cumulative mean of 96-h LC_{50} , the upper limit, lower limit of two standard deviations and coefficient of variance (CV) of 33% (Environment Canada 1990; US Enironmental Protection Agency 2002).

Figure S3. Comparison of percentage mortality between a) 96-h LC_{50} for Ca-Cl.SO₄(2) and AMW; b) dose–response curve for Ca-Cl.SO₄(2) and AMW; c) 96-h LC_{50} for Ca-Cl.SO₄(4) and AMW; d) dose–response curve for Ca-Cl.SO₄(4) and AMW; e) 96-h LC_{50} for Ca-Cl.SO₄(8) and AMW; f) dose–response curve for Ca-Cl.SO₄(8) and AMW; e) 96-h LC_{50} for Ca-Cl.SO₄(8) and AMW; f) dose–response curve for Ca-Cl.SO₄(8) and AMW; f) dose–response curve for Ca-Cl.SO₄(8) and AMW; e) 96-h LC_{50} for Ca-Cl.SO₄(8) and AMW; f) dose–response curve for Ca-Cl.SO₄(8) and for Ca-Cl.SO₄(8) and for Ca-

Figure S4. Comparison of percentage mortality between a) 96-h LC_{50} for Ca-Cl(2) and AMW, b) dose-response curve for Ca-Cl (2) and AMW; c) 96-h LC_{50} for Ca-Cl(4) and AMW, d) dose-response curve for Ca-Cl(4) and AMW; e) 96-h LC_{50} for Ca-SO₄(2) and AMW, f) dose-response curve for Ca-SO₄(2) and AMW; g) 96-h LC_{50} for Ca-SO₄(4) and AMW, h) dose-response curve for Ca-SO₄(4) and AMW; error bars represent 95% confidence intervals for standard deviations.

Tables showing the detail data for measured ionic composition of solutions (Table S1) and details of Mount Barney (Tables S2–S4).

Test ID	Collection date	$\frac{DO}{(mg L^{-1})}$	Temperature (°C)	EC (μS cm ⁻¹)	рН
MB1	25/03/13	8.67	21.4	105.4	8.11
MB2	15/04/13	8.7	21.1	92.73	7.84
MB3	20/05/2013	9.34	12.9	55.3	7.87
MB4	5/06/2013	9.89	14.2	60.0	8.16
MB5	24/06/2013	9.84	13.5	Not recorded	Not recorded
MB6	5/08/2013	10.64	12.9	73.7	7.37
MB7	4/09/2013	9.14	18.1	95.65	8.54
MB8	23/09/2013	8.67	20.6	100.1	7.97
MB9	8/10/2013	8.26	22.6	106.3	8.14

Table S1. Dissolved oxygen (DO), temperature, electrical conductivity (EC) and pH for Mount Barney

Table S2. Measured ionic composition of stock solutions

Solution ID	Measured EC $(mS cm^{-1})$	Ca	K	Mg	Na	SO ₄	Cl	
		$(mg L^{-1})$						
AMW	15.1	161	53	410	3360	3160	4590	490
Ca-Cl.SO ₄ (2)	14.7	300	56	470	3310	3640	4240	430
$Ca-Cl.SO_4(4)$	18.5	430	48	410	2760	3230	4190	270
Ca-Cl.SO ₄ (8)	12.5	880	51	450	1870	2160	4240	150
Ca-Cl(2)	13.8	110	48	420	2830	3000	3830	440
Ca-Cl(4)	15.5	590	56	470	3210	3270	5150	250
Ca-SO ₄ (2)	14.5	250	54	390	3260	3610	4240	340
Ca-SO ₄ (4)	14.9	390	54	400	3300	4250	4280	200

Test ID	Test start date	Ca	K	Mg	Na	Na SO ₄ Cl		HCO ₃	
		(mg L ⁻¹)							
MB1	26/03/2013	3.1	0.5	1.7	2.6	6.4	4.9	13.0	
MB2	15/04/2013	3.0	0.4	1.6	1.8	1.8	9.3	Not analysed	
MB3	21/05/2013	4.1	0.9	2.3	2.2	3.0	5.8	56.0	
MB4	6/06/2013	4.3	0.6	2.4	1.1	2.5	7.0	62.9	
MB5	25/06/2013	3.7	0.8	2.0	0.0	2.9	6.0	45.3	
MB7	5/09/2013	4.5	0.8	2.5	1.9	3.1	7.0	42.1	
MB8	24/09/2013	3.8	0.9	2.3	1.7	2.7	6.0	69.5	
MB9	8/10/2013	5.2	1.0	2.9	2.8	2.9	7.0	59.8	

Table S3. Concentration of major ions for Mount Barney creek during the collection of organisms for the experiments

Table S4. Descriptive statistics on stream water chemistry of Mount Barney creek

Description	Са	K	Mg	Na	SO ₄	Cl	HCO ₃	
	(mg L ⁻¹)							
Minimum	3.0	0.4	1.6	0.0	1.8	4.9	13.0	
Maximum	5.2	1.0	2.9	2.8	6.4	9.3	69.5	
Median	3.9	0.8	2.3	1.8	2.9	6.5	56.0	
Mean	4.0	0.7	2.2	1.8	3.2	6.6	49.8	
Standard Deviation	0.7	0.2	0.4	0.9	1.4	1.3	18.8	
Standard Error of Mean	0.3	0.1	0.2	0.3	0.5	0.5	7.1	
Number of samples	8	8	8	8	8	8	7	

References

Dunlop, J. E., Hobbs, D., Mann, R., Nanjappa, V., Smith, R., Vardy, S., & Vink, S. (2011). Development of ecosystem protection trigger values for sodium sulfate in seasonally flowing streams of the Fitzroy River Basin (C18033). ACARP.

Prasad, R., Vink, S., & Nanjappa, V. (2014) Impact of salinity and ionic composition on freshwater macroinvertebrates in the Fitzroy river catchment, Central QLD, Australia. *Australasian Bulletin of Ecotoxicology and Environmental Chemistry* **1**, 12-29.

Environment Canada (1990) Guidance document on control of toxicity test precision using reference toxicants. Available at https://publications.gc.ca/site/eng/9.579456/publication.html

US Environmental Protection Agency (1994) Method 200-7, Revision 4.4: determination of metals and trace metals in water and wastes by inductively coupled plasma-atomic emission spectrometry. (US EPA) Available at https://www.epa.gov/sites/production/files/2015-08/documents/ method_200-7_rev_4-4_1994.pdf