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Abstract. There are few quantitative predictions for the impacts of climate change on freshwater fish in Australia. We
developed species distributionmodels (SDMs) linking historical fish distributions for 43 species fromVictorian streams to
a suite of hydro-climatic and catchment predictors, and applied these models to explore predicted range shifts under future

climate-change scenarios. Here, we present summary results for the 43 species, together with amore detailed analysis for a
subset of species with distinct distributions in relation to temperature and hydrology. Range shifts increased from the lower
to upper climate-change scenarios, with most species predicted to undergo some degree of range shift. Changes in total
occupancy ranged from �38% to þ63% under the lower climate-change scenario to �47% to þ182% under the upper

climate-change scenario. We do, however, caution that range expansions are more putative than range contractions,
because the effects of barriers, limited dispersal and potential life-history factors are likely to exclude some areas from
being colonised. As well as potentially informing more mechanistic modelling approaches, quantitative predictions such

as these should be seen as representing hypotheses to be tested and discussed, and should be valuable for informing long-
term strategies to protect aquatic biota.

Additional keywords: bioclimatic model, conservation planning, environmental filters, hydrology, prediction,
validation.

Introduction

With anticipated changes in climate regime, including changes
in temperature, rainfall and runoff, there is an increasing
emphasis on understanding how species distribution patterns

may change, and how to incorporate this information into con-
servation and restoration planning (Thuiller 2007; Palmer et al.
2007). This has stimulated considerable debate about howbest to

predict potential distributional shifts, and, in particular, whether
correlative species distribution models (SDMs) are appropriate
for predicting range shifts, or whether more mechanistic

approaches are required (Heikkinen et al. 2006; Thuiller 2007;
Kearney and Porter 2009; Elith et al. 2010; Sinclair et al. 2010).

Whereasmuch of this debate pits correlative andmechanistic
approaches against one another, an alternative view sees

correlative models as a valuable means of establishing hypo-
theses and identifying important processes to consider when
developing mechanistic models for unstudied organisms

(Buckley et al. 2010). Befitting this view is the recent trend

towards statistical-modelling techniques based on information
theory (such as neural networks, regression trees and random
forests). These approaches rely less on an underlying model
structure than do traditional modelling tools and are well suited

to capturing non-linear relationships and interactions among
predictors, therefore lending themselves to generating novel
insights into species–environment relationships (Olden et al.

2008; Elith and Leathwick 2009). Despite the fact that evidence
for climate-change impacts on fish species distributions is still
rare (Booth et al. 2011), recent application of SDM approaches

suggests that future range shifts of freshwater biota may be
substantial (e.g. Buisson and Grenouillet 2010; Elith et al. 2010;
Lyons et al. 2010).

Climate and hydrologic regimes have long been recognised

as important environmental filters operating on aquatic
ecosystems. Numerous studies have demonstrated predictable
relationships between hydro-climatic conditions and the

distribution patterns of freshwater biota – especially fish and
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macroinvertebrates (e.g. Poff and Allan 1995; Leathwick et al.

2005; Growns and West 2008). In rivers, patterns of flow

variability are a major driver of ecosystem structure and func-
tion, and thus changes in flow can have a strong impact on
species occurrence patterns (e.g. Kennard et al. 2007; Bond

et al. 2010). Studies examining the effects of climate change on
patterns of stream flow (e.g. Poff et al. 1996; Gibson et al. 2005;
CSIRO 2008) suggest potential for substantial changes not just

in average runoff but also in the occurrence, frequency and
timing of ecologically relevant flows such as cease-to-flow
periods and overbank flows that inundate floodplain areas.
There is thus a need to try and capture these aspects of hydrology

in examining climate-change impacts in aquatic ecosystems and
to provide robust predictions of changes in species distribution.

Here, we examine potential range shifts of freshwater fish

species in Victoria in south-eastern Australia under a range of
climate scenarios, and explore species–environment relation-
ships to help elucidate important hydro-climatic drivers. We

developed SDMs linking contemporary species distributions to
average contemporary climatic, hydrologic and physiographic
characteristics, and combined the resultant models with scenar-
ios of drought and climate change to explore the likely long-term

impacts of different climate scenarios on species distributions.
We developed models for 43 freshwater species and explored
the impacts of three (low, median and high temperature)

scenarios for 2030.
As well as summarising the overall changes in distribution

patterns of the 43 species, we also present more detailed results

for three native species, namely river blackfish (Gadopsis
marmoratusRichardson, 1848), golden perch (Macquaria ambi-

gua Richardson, 1845) and flathead gudgeon (Philypnodon

grandiceps (Krefft, 1864)), and one introduced species, brown
trout (Salmo truttaLinnaeus, 1758), with the aim of highlighting
the types of response functions displayed to strong hydro-
climatic drivers for each species, and illustrating the geographic

range shifts that may occur. These species occupy a range of
habitats from cool-water perennial streams through to intermit-
tent lowland streams and large floodplain rivers, and are thus

illustrative of the types of responses displayed by other species.
There are varying levels of existing information on physiologi-
cal tolerances and traits of each species; in particular, there is

much detailed work on the physiological tolerances of brown
trout against which to contrast the observed associations arising
from our correlative models.

Materials and methods

Fish distribution data

Survey records detailing species distribution data were drawn
from the Victorian Department of Sustainability and Environ-
ment’s Aquatic Fauna Database (AFD), which holds records

from sites across Victoria as far back as the late 1800s. We
restricted our analysis to 3708 sites surveyed between 1980 and
2000 for which reliable location and sampling information were

available, overcoming some of the problems associated with the
reliability of (particularly early) records in these sorts of data-
bases. AFD data were supplemented by more recent data col-
lected between 2004 and 2006 from 769 sites across Victoria

that were surveyed as part of the Murray–Darling Basin

Sustainable Rivers Audit (SRA) and the Southern Basins Audit
(SBA). SRA and SBA surveys used electrofishing (backpack-,

bank- and/or boat-mounted units), whereas the AFD database
records involved a range of methods, including electrofishing,
nets and piscicides. Sites below large impoundments were

excluded from our analyses because such reaches tend to hold
fish communities that are markedly atypical of those expected
on the basis of natural climate and hydrology (e.g. Pollino et al.

2004; Quist et al. 2005), which could lead to misleading mod-
elled relationships. We also excluded sites for which the spatial
coordinates could not be reconciled against other information
such as stream name and other site information, indicating

potential errors in location details. All data were converted to
presence/absence for themodelling, and in total, 43 species were
represented (Table 1). This included several estuarine species

frequently encountered in freshwater environments, but did
not distinguish between some taxa for which taxonomic
uncertainties remain, including the Hypseleotris species com-

plex (including H. klunzingeri and several undescribed species)
and Galaxias olidus, which also consists of several as yet
undescribed species.

Environmental data

The major source of environmental data was a digital elevation
model (DEM)-derived stream network linked to a set of sum-

mary statistics on climate and catchment characteristics asso-
ciated with each reach (Stein 2006). The stream network is
derived from a 900 DEM and includes more than 45 000 reaches
across Victoria. Catchment and climate datasets linked to the

stream network are described in more detail by (Stein 2006;
Walsh et al. 2007), and indicators of catchment disturbance in
Stein et al. (2002). Variables used in the modelling are

summarised in Table 2.
As with similar studies, we attempted to restrict the set of

environmental predictors used in the modelling to those for

which a mechanistic link with fish occurrence could be identi-
fied (e.g. Leathwick et al. 2005), and further sought to focus on
climate-related predictors to maximise model sensitivity to

climate-change scenarios. A comparison of model structures
did, however, show that the inclusion of elevation improved the
fit of the models for a small number of species (especially
estuarine taxa), while having very minor impacts on predictions

and scenarios for other species. There was also a weaker than
expected correlation between temperature and elevation
(r¼ 0.65), and here we present results from models that include

elevation.

Hydrologic data

Given the recognised importance of hydrology as an environ-
mental filter on biotic distributions in south-eastern Australia

(e.g. Growns and West 2008; Bond et al. 2010), information on
the hydrologic regime of individual river reaches was seen as a
key component of the environmental-data requirements for

modelling climate-change impacts. Although there is an
increasing emphasis on ecologically relevant aspects of the flow
regime in studies of climate-change impacts on runoff (e.g.
Gibson et al. 2005; CSIRO 2008), most such studies are based

on summarising results from calibrated rainfall–runoff models,
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which can realistically only be calibrated for specific nodes in a
river network, generally at gauged sites where calibration data

are available. Although this approach produces detailed time-
series of runoff, logistically it is not feasible to build these
models at a density capable of representing hydrologic char-

acteristics of the entire river network. An alternative approach is
to develop regression models relating flow characteristics (flow
indices) measured at a gauge with climate and upstream catch-

ment characteristics, and to use these models to extrapolate
hydrologic indices to other parts of the river network (Sinclair

Knight Merz 2005; Sanborn and Bledsoe 2006). This approach
provides insights into long-term stream-flow characteristics that

can be combined with other catchment attribute data to develop
SDMs (Lyons et al. 2010). Gauge data for use in the hydrologic
modelling were drawn from 120 unregulated sites distributed

across Victoria (see Kennard et al. 2010b, for gauge locations),
with sufficient record length to adequately quantify hydrologic
regimes – in this casemore than 15 years (Kennard et al. 2010a).

A small set of hydrologic indices, including mean daily flow,
daily and annual coefficient of variation in flow volumes (daily

Table 1. Fish species for which species distributionmodels were constructed andmodel fit based on area under the receiver operator-characteristic

curve (AUC)

Conservation status under the federal Environmental Protection and Biodiversity Conservation (EPBC) Act and state Flora and Fauna Guarantee (FFG) Act.

Listings include vulnerable (VU), near threatened (NT), endangered (EN), listed (L)

Scientific name Common name Conservation status Model fit

EPBC FFG AUC (naı̈ve) AUC (bootstrap)

Acanthopagrus butcheri Black bream 1.00 0.99

Aldrichetta forsteri Yelloweye mullet 1.00 1.00

Anguilla australis Short-finned eel 0.95 0.94

Anguilla reinhardtii Marbled eel 0.98 0.99

Atherinosoma microstoma Small-mouth hardyhead 1.00 1.00

Bidyanus bidyanus Silver perch L 0.50 0.50

Craterocephalus stercusmuscarum fulvus Fly-specked hardyhead L 0.93 0.89

Gadopsis bispinosus Two-spined blackfish 1.00 0.99

Gadopsis marmoratus River blackfish 0.95 0.93

Galaxias brevipinnis Climbing galaxias 0.98 0.97

Galaxias fuscus Barred galaxias EN L 0.92 0.88

Galaxias maculatus Common jollytail 0.95 0.95

Galaxias olidus Mountain galaxias 0.99 –

Galaxias truttaceus Spotted galaxias 0.91 0.89

Galaxiella pusilla Eastern little galaxias VU L 0.87 0.84

Geotria australis Pouched lamprey 1.00 0.94

Gobiomorphus australis Striped gudgeon NT 0.97 0.91

Hypseleotris klunzingeri Western carp gudgeon 0.92 0.85

Maccullochella macquariensis Trout cod EN L 0.98 1.00

Maccullochella peelii peelii Murray cod VU L 0.99 1.00

Macquaria ambigua Golden perch 0.99 0.96

Macquaria australasica Macquarie perch EN L 1.00 0.96

Macquaria colonorum Estuary perch 1.00 0.97

Macquaria novemaculeata Australian Bass 1.00 0.97

Melanotaenia fluviatilis Australian rainbowfish L 0.99 0.85

Mordacia mordax Short-headed lamprey 1.00 1.00

Nannoperca australis Southern pygmy perch 0.99 0.99

Nannoperca obscura Yarra pygmy perch VU L 1.00 0.95

Nannoperca variegata Ewen pygmy perch VU L 0.99 0.98

Philypnodon grandiceps Flathead gudgeon 0.96 0.97

Prototroctes maraena Australian grayling VU L 1.00 0.98

Pseudaphritis urvillii Congolli 1.00 0.99

Retropinna semoni Australian smelt 0.89 0.86

Tetractenos glaber Smooth toadfish 0.93 0.92

Carassius auratus Goldfish Introduced 0.90 0.86

Cyprinus carpio Common carp Introduced 0.93 0.91

Gambusia holbrooki Mosquitofish Introduced 0.97 0.95

Misgurnus anguillicaudatus Weatherloach Introduced 0.95 0.97

Oncorhynchus mykiss Rainbow trout Introduced 0.88 0.88

Perca fluviatilis Redfin perch Introduced 0.99 0.84

Rutilus rutilus Roach Introduced 0.91 0.91

Salmo trutta Brown trout Introduced 1.00 1.00

Tinca tinca Tench Introduced 0.99 0.95
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and annual CVs), daily 10th (daily Q10) and 90th (daily Q90)
percentile flows, and mean annual number of zero-flow days

were included in the predictive modelling. As with the species
distribution models themselves, hydrologic indices were mod-
elled as a function of climate and catchment attributes in the

catchment above each gauge (Table 2). As summarised in the

results section, high flow events could not be modelled with
sufficient reliability to be included in the fish predictive models.

Clearly, this removes our capacity to identify the impact of
altered high flow regimes on species distributions; however, this
is partially offset by the fact that changes in low flow char-

acteristics are critical hydrologic filters affecting in-channel

Table 2. Environmental predictors used in modelling hydrologic regimes and fish-occurrence patterns

Variable Description Unit Included in models

Hydrology Fish

TEMPHOTQ Average daily temp in hottest 13 weeks 8C ü ü
TEMPCOLDQ Average daily temp in coldest 13 weeks 8C ü ü
SOLRAD Local annual mean solar radiation MJm�2 day�1 ü ü
RAIN (MONTHLY) Average rainfall in each month (Jan.–Dec.) mm ü
RAIN_ANN Average annual rainfall mm ü ü
TMAX (MONTHLY) Average maximum daily temperature in each month 8C ü
TMAX_ANN Annual mean maximum temperature 8C ü ü
TMIN (MONTHLY) Average minimum daily temperature in each month 8C ü
TMIN_ANN Annual mean minimum temperature 8C ü ü
APET (MONTHLY) Monthly areal potential evapotranspiration (Jan.–Dec.) mm ü
APET_ANN Annual areal potential evapotranspiration mm ü ü
SOLPAWHC Solum plant-available water holding capacity mm ü
A_KSAT Saturated hydraulic conductivity mmh�1 ü
Trees Tree cover % ü
GRASSES Grass cover % ü
OTHER Shrublands and other vegetation types % ü
CATRELIEF (Mean upstream elevation – pour point elevation)/(max upstream

elevation – pour point elevation)

% ü

RCHELEMEAN Mean reach elevation m ü ü
RCHELEMIN Minimum reach elevation m ü
RCHELEMAX Maximum reach elevation m ü
SUBELEMEAN Mean subcatchment elevation m ü
SUBELEMIN Minimum subcatchment elevation m ü
SUBELEMAX Maximum subcatchment elevation m ü
CATELEMAX Maximum upstream elevation m ü
CATELEMEAN Mean upstream elevation m ü
SUBAREA Subcatchment area km2 ü
RCHLEN Reach length km ü
CONFINEMEN Indicator of valley confinement (RCHCONF) % ü ü
CATAREA Catchment area km2 ü ü
STRAHLER Strahler stream order ü
UPSDIST Upstream distance km ü
VALLEYSLOP Valley slope % ü
CATSLOPE Catchment slope % ü
SUBSLOPE Subcatchment slope % ü
ASPECT Local aspect % ü
CDI Catchment disturbance ü ü
SCDI Subcatchment disturbance ü ü
LUF Subcatchment land-use ü
IF Subcatchment infrastructure Development ü ü
EF Subcatchment point sources of pollution ü ü
SF Subcatchment urbanisation ü ü
RDI Overall disturbance ü ü
STRDENS Stream density kmkm�2 ü
STRFREQ Stream frequency no. streams km�2 ü
COASTAL Inland v. coastal drainages ü
MDF Mean daily runoff ML ü
CV_Daily Variability in daily flows ü
CV_Ann Variability in annual runoff ü
Q90 Low-flow discharge 90th percentile ML ü
ZFD Number of zero flow days Days ü
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riverine species distributions (Balcombe et al. 2011; Pratchett
et al. 2011).

Climate scenarios

We examined the impacts of three climate-change scenarios
(consisting of changes (d) in temperature (T), precipitation (P)

and evapotranspiration (Etw)). Scenarios corresponded to the
low, median and high estimates of dT (þ0.548C, þ0.858C and
þ1.248C) for 2030 from the SRES marker scenarios of IPCC

(2001). Estimates of changes in P and Etw were drawn from a
spreadsheet model accompanying Jones and Durack (2005),
which presented lower, median and upper estimates of dP
(�1.1%,�3.3%,�6.0%) and dEtw (þ2.0%,þ3.1%,þ4.6%) in
catchments across Victoria from 10 climate models scaled to the
low, median and upper IPCC temperature scenarios. Changes in

T, P and Etw were applied to baseline climate characteristics
from the climate atlas of Australia (Bureau of Meteorology
2002).

The effects of climate change on species distributions were

modelled by first running the statistical hydrology models to
derive predicted hydrologic characteristics for each reach under
each of the three scenarios. These derived hydrologic data were

then combined with scenario climate data and fixed catchment
attributes as input to the statistical models built using the
historical climate and species-distribution data.

Statistical modelling

Statistical models for both hydrology and fish were built using
boosted regression trees (BRTs; Elith et al. 2008). BRTs rep-
resent a form of model averaging, in which multiple models are

combined for prediction and inference, thereby accounting for
uncertainty inmodel structure. The BRTmethod combines large
numbers of relatively simple regression-tree models in an
adaptive fitting process (Friedman 2001). BRTs have strong

predictive performance, are well suited to identifying important
predictor variables, and capture non-linearity in the response to
individual predictors, and interactions among predictors (Elith

et al. 2008). BRT models were built using the gbm package
(Ridgeway 2007) in R (R Development Core Team 2009), with
the default shrinkage (‘learning rate’ in Elith et al. 2008) value

of 0.001 and the maximum interaction depth (‘tree complexity’)
set to 5. Initial BRT models were based on 4000 trees, and the
out-of-bag (OOB) estimate of predictive performance was used
to select the optimal number of trees for each species. OOB

estimates of error rate are based on bootstrap sampling using a
random subset of records (50%) as training data for each
iteration.

Model fit was assessed on the basis of the residual error (R2)
in the case of continuous response variables, and on the basis of
the area under receiver operator-characteristic curves (area-

under-curve; AUC) for binomial variables. The receiver opera-
tor curves indicate the relative proportions of correctly and
incorrectly classified predictions over a wide range of probabil-

ity threshold levels, and are therefore independent of the (arbi-
trary) choice of a threshold probability to determine whether or
not a site is predicted to be occupied (Burgman 2005). AUC
values are also largely independent of species prevalence

(Pearce and Ferrier 2000). AUC values .0.7 are generally

deemed to indicate adequate discrimination for occupancy
models, whereas AUC values.0.9 indicate excellent discrimi-

nation (Pearce and Ferrier 2000). Additional cross-validation of
the model predictions included bootstrap validation, by which
an estimate of a ‘naı̈ve’ models optimism is derived from

simulations of model building and model testing performed on
bootstrap samples (samples drawn with replacement from the
model-building data). We used the ‘.632þ bootstrap’ method

(Efron and Tibshirani 1997) with 50 bootstrap samples, to
calculate adjusted validation statistics for each species. At each
bootstrap iteration, we built new hydrology models, based on
bootstrap samples of the flow data, so that uncertainties associ-

ated with hydrological models were propagated into bootstrap
estimates. In addition, we examined predictive performance
when models were built using only AFD or SRA and SBA

datasets and tested against the other independent dataset, and
found results similar to those from combining the two datasets
and using a cross-validation approach. Only results from the

cross-validation are reported here.
Measures of uncertainty in the predictions associated with

each stream reach were also generated for 4 of the 43 species for
the median climate-change scenario, by taking repeated boot-

strap samples of the biological datasets (n¼ 50), deriving flow
and fish BRT models at each iteration, and using these to
produce predictions for all reaches in the environmental dataset.

Lower and upper bounds (5th- and 95th-percentile values) from
this set of predictions were used as an estimate of the confidence
interval for each reach. Here, we simply summarise these by

using the average interval range for each species across all
reaches.

The influence of individual predictor variables was exam-

ined with reference to relative influence (RI) statistics and
partial-dependence plots. RI statistics are based on the number
of times a variable is selected for splitting each regression tree,
weighted by the squared improvement to the model as a result of

each split, and averaged over all trees (Elith et al. 2008). Values
are scaled to sum to 100, with higher values indicating stronger
influence on the response. Partial-dependence plots indicate

how occurrence probabilities change in response to variation in
individual predictor variables, after accounting for the average
effect of all other variables included in the models (Elith et al.

2008). In this instance, the ‘effect’ (represented on the y-axis) is
the log-odds ratio; the log of the ratio of the probability of fish
being present or being absent, which varies in response to the
value of the predictor (represented on the x-axis). The shape of

the relationship in the partial-dependence plot therefore indi-
cates how relative-occurrence patterns change as one moves
along environmental gradients.

Results

Hydrology

Of the hydrologic indices examined for inclusion in SDM
models, only five (MDF, DailyCV, ZFLOWS, Q90, AnnualCV)

could be predicted with a sufficiently high degree of confidence
to be of use in subsequent species modelling. Bootstrap R2-
values for these predictors were 0.64, 0.69, 0.5, 0.40 and 0.67,
respectively. Results for high-flow characteristics were gener-

ally poor (R2, 0.4), most likely because the monthly averages
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in T, P and Etw are poor predictors of individual storm events
that drive high-flow characteristics. Importantly, as for climate

and physiographic variables, hydrologic characteristics dis-
played a high degree of spatial variation, thereby providing
strong gradients in hydrologic filters across the state.

Fish SDMs

Overall, BRT models were highly successful in predicting the
contemporary (current) distributions of most species, with

models for 41 species having bootstrap AUC values of .0.80
(Table 1), and the only two poorly predicted species (Bidyanus
bidyanus and Galaxias fuscus) being very rare in the AFD and

SRA datasets, the latter having so few records that bootstrap
AUC values could not be calculated.

Overall, influential predictors consisted of a broad mix of
climatic-, hydrologic-, physiographic- and human-disturbance

indicators (Table 3). The variables TEMPHOTQ, TEMP-
COLDQ, TMAX_ANN, RCHELEMEAN, SCDI, COASTAL
and ZFD had the strongest influence on distribution patterns for

any single species. Among the four species for which detailed
response functions are discussed, the relative influence of
individual predictors differed greatly, although in all cases,

temperature (either maximum or minimum temperature or
both) and hydrologic variables were ranked highly. Measures
of catchment disturbance and catchment physiographywere less

important except RCHELEMEANandCOASTAL,which stood
out for G. marmoratus, and RCHELEMEAN, which was influ-
ential for P. grandiceps and S. trutta (Fig. 1a–d). Partial-
response functions for individual predictors were frequently

non-linear, with species detection probabilities increasing or

decreasing sharply along important environmental gradients.
Examples include the dramatic decrease in occupancy of

G. marmoratus and S. trutta at sites with non-perennial flow,
and a relatively narrow band of minimum and maximum
temperatures (Fig. 1a, d).

Scenario predictions

The models predicted responses by most species to each of the
three climate-change scenarios, with range contractions and
range expansions as well as overall range shifts (i.e. balanced

contraction and expansions; Table 4) for both native and exotic
species. Results differed depending on the approach to sum-
marising range shifts. For example, some species showed
consistent changes in both total occupied stream length and

changes in the length of stream having high rates of occurrence
(Pr. 0.5). Species showing strong and consistent range con-
tractions included Gadopsis bispinosus and Gadopsis marmor-

atus, and the exotic species Salmo trutta and Oncorhynchus

mykiss. Species showing predicted range expansions included
Macquaria ambigua, and several diadromous and estuarine

species often encountered in the lower reaches of coastal rivers,
as well as several exotic species, includingGambusia holbrooki
and Misgurnus anguillicaudatus. A larger group of species

showed inconsistent trends, with some showing range increases
overall, but substantial declines in the length of stream with
high occurrence probabilities (e.g. Nannoperca variegata and
Philypnodon grandiceps) or vice versa. The direction of

response by such species also tended to vary with each climate
scenario (Table 4). These various patterns of losses and gains
from reaches with historically low, moderate and high occur-

rence probabilities are represented by changes in the occurrence
of G. marmoratus, M. ambigua, P. grandiceps and S. trutta

(Fig. 2), as are the resultant range shifts based on comparisons of

historical and median climate change-predicted distribution
maps (Fig. 3a–d). Confidence intervals for individual scenarios
(baseline and median climate change) for these four species
were also relatively narrow, as were those for relative changes

in predicted occupancy under the median climate-change
scenario, which ranged from �,3% for S. trutta to approxi-
mately�,15% for M. ambigua (Table 5).

Discussion

Predicted ‘baseline’ distributions

We developed SDMs to describe the historic distributions of
43 species of freshwater fish in Victoria, south-eastern
Australia. Together with detailed response functions for influ-

ential predictor variables, the resultant maps provide a useful
approach for examining predicted range shifts as well as the
utility of SDMs in generating information that can be used to

guide the development of mechanistic models. An important
strength of BRTs is their capacity to fit non-linear response
functions that more adequately describe species responses to

environmental gradients than is possible with traditional
modelling approaches such as linear regression. Such utility is
associated with an increasing array of modelling tools (Elith
et al. 2010). Importantly, our analyses suggest such non-linear

associations with hydro-climatic variables are common.

Table 3. Summary of the relative influence of individual predictors in

the final boosted regression tree (BRT) models for the 43 fish species

Abbreviations as in Table 2

Variable Mean Median Max. Min.

TEMPHOTQ 10.96 5.40 50.49 0.88

TEMPCOLDQ 6.35 4.44 41.33 0.00

SOLRAD 3.91 3.59 14.00 0.29

RAIN_ANN 5.16 3.06 24.15 0.07

TMAX_ANN 4.29 3.08 31.34 0.03

TMIN_ANN 4.50 3.87 15.70 0.00

APET_ANN 4.67 3.48 28.61 0.06

RCHELEMEAN 11.27 5.74 46.79 0.00

CONFINEMEN 2.74 2.38 7.61 0.00

CATAREA 4.90 3.33 17.91 0.00

SCDI 4.85 3.84 31.22 0.00

EF 0.17 0.00 1.46 0.00

IF 2.53 2.50 6.93 0.00

SF 3.10 1.88 18.42 0.00

CDI 4.59 3.76 16.53 0.00

RDI 4.63 3.70 18.38 0.00

COASTAL 3.46 0.08 55.07 0.00

MDF 3.01 2.56 9.00 0.00

CV_Daily 3.55 2.80 14.24 0.00

CV_Ann 3.68 2.96 13.06 0.00

Q90 3.21 3.08 11.01 0.00

ZFD 4.46 3.36 26.62 0.01
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For example, the species forwhichwe presented detailed analyses

of environmental drivers, all showed strong threshold relation-
ships to at least some of the predictor variables, especially
temperature and the occurrence of cease-to-flow spells, a feature
of the hydrologic regime that is frequently regarded as an

important threshold in flowing waters (Boulton and Hancock
2006). Thus, although correlative approaches such as this cannot
demonstrate causality, nor elucidate specific mechanisms (Sinclair

et al. 2010), the results strongly concord with expectations derived

from other independent sources of information, and could help

devise quantitative and testable hypotheses.
In more general terms, the models also help provide a clear

narrative describing the types of environment in which each of
these species is most commonly encountered. For example, the

models predict that river blackfish (G. marmoratus) occurs
primarily in perennial streams with annual maximum and
minimum temperatures in the range of ,8–158C and relatively

stable annual and daily flow volumes. Similarly, S. truttamostly
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Fig. 1. (a–d) Plots showing the detailed response functions for each of the nine most influential predictor variables for each species. The y-axis reflects

changes in log-odds ratios as one moves along each of the environmental gradients depicted in the figures. Values in parentheses in the x-axis labels are

‘relative influence’ (RI) values, which indicate the relative contribution of each variable to predicting the response.
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occupy small, perennial streams at higher altitudes (above
,200m) with high baseflow, catchment rainfall exceeding

,1000mmyear�1, and annual average maximum temperatures
not exceeding ,188C. Reported critical thermal maxima for
S. trutta range between 23.5–26.78C, with optimal water tem-

peratures in the range of 8–178C (Barton 1996). Given that our
data are based on average maximum air temperatures, this
suggests a reasonably high level of concordance, although more
accurate reconciliation of these different measures of tempera-

ture would require further work. In contrast, M. ambigua are

clearly restricted to larger lowland rivers (large catchment area
and baseflow volumes). Further, M. ambigua was more preva-

lent in regions with summer air temperatures .208C and high
inputs of solar radiation, whereas P. grandiceps appears to
occupy primarily intermittent streams, including those with

smaller catchments than those whereM. ambiguawas observed.
These descriptions are derived directly from an examination
of the partial plots for influential predictors (Fig. 1a–c),
but (reassuringly) are largely consistent with the types of

qualitative habitat descriptions in many texts (e.g. Merrick and
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Fig. 1. (Continued)
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Schmida 1984; Koehn and O’Connor 1990), but with additional

quantitative support drawn from a data-driven assessment of
important predictors. Occasionally, the partial plots identify
inexplicable patterns, such as the sharp downward trend in

occupancy for P. grandiceps at ,188C (average annual maxi-
mum temperature). These anomalies can reflect biases in the
distribution of sampling locations, with respect to environmental

predictors. Our approach was to remove or modify (by making
monotonic) such anomalous relationships if they had a large
influence on themodel predictions (note that TMAX_ANNhad a

very low influence, Fig. 1c), and to focus on the more influential

variables for inference. An alternative approach recently advo-
cated by Elith et al. (2010) is to simplify tree complexity during
the model-building process, which has the effect of smoothing

the response functions.

Predicted climate change-induced range shifts

When combined with future climate scenarios, our models
predicted potentially severe impacts of climate change for some
species, including potential losses of populations from entire
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(c) Philypnodon grandiceps

Fig. 1. (Continued)
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catchments. For example, the models predicted almost a com-
plete loss of river blackfish (G. marmoratus) from some north-
flowing drainages in Victoria, an area where the species has
already undergone substantial range contractions and popula-

tion declines as a result of anthropogenic disturbances (Trueman
2007). The predicted contractions for this species in terms of the
types of habitats affected are also consistent with observed

declines in South Australia (Dale McNeil, pers. comm.) and in
parts of the Loddon and Goulburn catchments in north-central
Victoria during recent drought (N. Bond, unpubl. data). At the

same time, however, whereas some range contractions have
been consistent with recent drought impacts, the same cannot be
said for range expansions, with as yet limited evidence to sug-
gest that any of the species predicted to increase their range

(such as M. ambigua and G. holbrooki) have done so, despite
overall warmer (þ0.88C) and drier (�15% rainfall) conditions
across Victoria over the past 10 years (Bond et al. 2008). On the

one hand, such expansions may have occurred, but are yet to be
documented. On the other hand, there is a suite of reasons why
range expansions may not occur, or may occur more slowly than
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species are extirpated, including physical and biological con-

straints on dispersal (e.g. barriers, sedentary behaviour), and the
influence of important local drivers such as physical habitat
features, short-term hydrologic events, food availability or

biotic interactions, which may constrain species expansions –
many of the factors that have led some authors to caution on the
use of SDMs in predicting range shifts (Guisan and Thuiller
2005; Sinclair et al. 2010). Our view is that predictions arising

from these models are a useful step forward in framing discus-
sions about such limitations, and hence are a useful tool in
advancing our general understanding of climate-change

impacts, even where the initial model predictions may be

questioned – a conclusion shared by Araújo et al. (2005). This

can also lead to the identification of critical knowledge and data
gaps. For example, an obvious shortcoming identified in the
present study for which a statistical work-around was required

was the lack of spatially distributed information on both current
and potential future hydrologic characteristics of rivers, a gap
that reflects the difficulty in modelling hydrology at high spatial
and temporal resolutions, particularly in more intermittent sys-

tems (Smakhtin 2001). This data gap is likely to continue to
hamper our ability to refine predictions of ecological change in
response to shifting environmental conditions in ungauged

catchments.
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Fig. 2. Scatterplots of baseline-occupancy values against those under low, median and high climate-change scenarios for the four species discussed. These

plots are based on results for a random subset (n¼ 2000) of the 16 000 reaches for which predictions were generated to allow points from each scenario to be

depicted.
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Uncertainty in range-shift forecasts

We attempted to capture some indication of the uncertainty in

the model predictions for some species, although these are
expressed here only in tabular form (Table 5), and are restricted
to uncertainty associated with the SDMs themselves under each

of the modelled climate scenarios. Additional uncertainty in
global circulation models (GCMs) and future CO2 concentra-

tions (expressed here as different scenarios) also adds substan-
tially to uncertainty in future predictions when expressed
quantitatively alongside uncertainty in the species models
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Figs 3. Maps showing predicted historic (baseline) and median climate change-scenario predictions for (a) Gadopsis

marmoratus, (b) Macquaria ambigua, (c) Philypnodon grandiceps and (d) Salmo trutta.
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(Lyons et al. 2010). Differences between our scenarios support
the fact that even if species distributions can be modelled well,
there is still much uncertainty in how species rangesmay change

because of uncertainty about how the climate will change. There
is also a host of other sources of uncertainty that we have not
touched on, including the extent to which SDMs can be used to

extrapolate to novel climates (e.g. see Williams and Jackson
2007; Elith et al. 2010), and the way that hydrologic char-
acteristics may change as a result of altered ground–surface

water interactions under a drier climate – again something that is
not captured in our efforts to model hydrology. Thus, although
incorporating uncertainty in predictions based on the capacity of
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Figs 3. (Continued).
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the models to predict historic distributions is important in
demonstrating their validity, this aspect of uncertainty is just one
of those that needs to be considered when extrapolating to the

future (Elith and Leathwick 2009). SDMs can also be highly
sensitive to species prevalence in the datasets used to derive the
models, both in terms of their predictive performance (Olden

et al. 2002), and also in the extent to which existing distributions
(the realised niche) may influence predictions of future range
(Dormann 2007). In the present study, there were several now

relatively rare, but historically more common and widespread
taxa for which models of the realised niche based on contem-
porary data probably underestimate the historical realised niche.
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Examples include Bidyanus bidyanus, Galaxias fuscus, Mac-

cullochella macquariensis, Macquaria australasica and Pro-

totroctes maraena. For the reasons discussed above, we would
expect greater uncertainties in the predicted impacts of climate
shifts on these rare species relative to those that are more

common.

Pros and cons of using SDMs to predict range shifts

Much of the discussion of possible climate-change impacts on
species distributions in Australia has been based on relatively

simple qualitative assessments of existing observational and
experimental data (e.g. Morrongiello et al. 2011; Booth et al.

2011). One strength of these approaches is the ability to
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incorporate novel aspects of species biology that may be
important in determining climate-change responses, but which

may be difficult to infer from SDMs because of their specific
data requirements and application at large scales. At the same
time, generic statements of possible impacts are also much less

well suited to producing spatially explicit predictions that can
feed into decisions about how to prioritise restoration and con-
servation programs in the face of climate change. There has been
much debate about the relative merits of SDMs in predicting

climate change-induced range shifts. For example, numerous
authors point to the potential pitfalls associated with the
exclusion of species interactions, dispersal constraints and the

potential role of evolution (adaptation capacity) in determining
how species will respond to climate change (e.g. Davis et al.
1998; Sinclair et al. 2010). At the same time, there is a pressing

need to begin developing quantitative predictions, not least to
enable the strengths and weaknesses of different modelling
approaches to be evaluated – either explicitly through field

validation or by comparing the results derived fromqualitatively
different modelling approaches (e.g. Elith et al. 2010).

Summary and conclusions

Overall, our models predicted the combined impacts of altered
temperature and hydrologic regimes arising from climate

change to cause marked shifts in the distribution of many
freshwater fish species. Primary axes of response were shifts
upward along altitudinal gradients and shifts southward

(including both range expansions and contractions) in response
to climate warming, and the loss of species from increasingly
intermittent and ephemeral waterways, which overall were
predicted to become more common. Similar climate-change

impacts have been predicted in other parts of the world (e.g. Chu
et al. 2005; Lyons et al. 2010). An obvious next step from a
management perspective is to combine the model results for

these and other species, and to apply conservation-planning
approaches to identify river reaches that maximise species-
occupancy patterns under both historical and potential future

climate regimes. Results from such an analysis would support
efforts to prioritise investment in restoration and protection
strategies, and also guard against investing in reaches that may

fail to support currently occurring species in the future.
Although the predictions from these models remain just that,

we contend that, together with the additional information on
species responses to environmental gradients, they represent an

important step in gaining amore complete understanding of how
climate-change impacts may play out in the long term, and an
essential step in developing appropriate response strategies.
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