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Abstract. The North-east Australian Coastal Catchments (NACC) are host to nationally significant wetland complexes,
many of which, are ecologically connected to the Great Barrier Reef World Heritage area. However, these wetlands are
subject to ongoing and increasing pressure from human activities such as the intensification of land use. Current wetland

condition is monitored across the NACC, being assessed against a pre-development static baseline, which includes the use
of Regional Ecosystem mapping of remnant and pre-clearing vegetation to provide a broadscale present-day biotic
reference. Two sediment cores from wetlands within the Fitzroy Basin were analysed to establish a history of wetland

variability and to identify the potential influence of climate and land-use changes over the past,1000 years. Our results
have provided long-term environmental reconstructions, showing wetland histories influenced by natural climate
variability (El Niño–Southern Oscillation, the Little Ice Age), and environmental changes associated with European

land-use intensification. This study is the first of its kind for wetlands located within the Fitzroy Basin.
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Introduction

Globally, wetlands are under pressure from climate change and

human land-use intensification (Dudgeon et al. 2006; Gangloff
et al. 2016; Finlayson et al. 2017; Reid et al. 2019). Such pres-
sures on wetlands include hydrological modification (Schneider
et al. 2017), increased runoff and sedimentation rates (Ogden

2000), increased nutrients and pollutants (Gell et al. 2009), the
introduction of exotic species (Finlayson and Rea 1999) and
extreme climatic conditions (Pasut et al. 2021). These, and other

pressures, are also affecting wetlands situated in catchments of
the north-eastern Australian coast. Since European arrival, the
North-east Australian Coastal Catchments (NACC) have under-

gone significant land-use changes, for example, agriculture,
forestry, mining and urban townships (Gilbert 2000; Australian
Government: Great Barrier Reef Marine Park Authority 2001;
Lewis et al. 2021). Recognising the importance of wetland eco-

system intrinsic values, and the services they provide, presents a
significant foundation for understanding the conditions of
freshwater wetlands located within the NACC, which is an

objective of the Australian and Queensland Governments as part

of the Reef 2050 Long-term Sustainability Plan (Commonwealth
of Australia 2015; Australian Government and Queensland

Government 2016; State of Queensland 2018). The condition of
wetlands located in floodplain aggregations is monitored across
the NACC as part of the Paddock to Reef Wetland Condition
Monitoring Program (Australian Government and Queensland

Government 2016; State of Queensland 2018; Waterhouse et al.
2018), to inform overall management and restoration directions
and programs for improvement of wetland condition. Rapid-

assessment indicators are used (Australian Government and
Queensland Government 2016; Waterhouse et al. 2018),
including measures of the extent and integrity of native vegeta-

tion pre-clearing Regional Ecosystems (i.e. native vegetation
associated with specific geology, soil and geomorphic processes
within prescribed bioregions) as mapped by the Queensland
Herbarium. Pre-cleared vegetation or Regional Ecosystems are

defined as ‘the vegetation or Regional Ecosystem present before

clearing’ (i.e. ‘pre-1750 CE’ or ‘pre-European’; Neldner et al.
2019). The status of Regional Ecosystems is considered an

important indicator of catchment modification and wetland
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biophysical integrity (Queensland Government 2014; State of
Queensland 2018).

Palaeoecological research shows that wetlands are dynamic

systems with considerable variability over very long time

periods and can provide important insights into pre-European

conditions as well as anthropogenic impacts (e.g. Gell and Reid

2014; Gell et al. 2016; Wingard et al. 2017). Palaeoecological

studies of NACC wetlands are limited; however, Tibby et al.

(2019) provided two palaeolimnological records from two

tropical floodplain wetlands within the Burdekin Catchment,

Queensland, Australia. Natural variability and wetland stressors

were examined, with minor ecological change due to land

clearing for grazing; however, hydrological modification

caused a shift in diatom assemblage and increased invasive

aquatic taxa. These findings were correlated with modern

diatom samples from wetlands situated around the Burdekin

Catchment, and it has been suggested that this shift from

historical conditions (seen at Labatt Lagoon)may bewidespread

around the lower Burdekin River area. However, more site-

specific research would be required to ascertain this. Thus, there

is need for greater knowledge of historical wetland states and

transitions to contextualise current monitoring baselines and,

ultimately, support management decision-making.
To this end, a study of sediment cores taken from two

wetlands in the Fitzroy Basin (within the Brigalow Belt
bioregion) was undertaken to determine the degree to which
the pre-European vegetation baselines (Regional Ecosystem

classification scheme), which are used to assess wetlands,
reflect long-term conditions. This study will also identify
wetland variability due to changing environmental conditions

and any alterations in land use.

Fitzroy Basin

The Fitzroy Basin, located in central Queensland, covers an area
of 142 665 km2 and is the largest river catchment flowing into

the Great Barrier Reef lagoon on the eastern coast of Australia.
This basin is made up of seven subcatchments, including the
Fitzroy River catchment and the Dawson River catchment (see

Fig. 1; State of Queensland 2018). Nationally important
aggregations of remnant wetlands are located in these catch-
ments (The State of Queensland 2020; Department of Agricul-

ture, Water and the Environment, n.d.).
Within the NACC, the Fitzroy Basin has seen the most

widespread and rapid land-use intensification. Indigenous peo-
ples have inhabited and managed the land in this area for at least

the past,40000years before present (Walsh1999),withEuropean
occupation influencing the landscape from the 1840s CE
(Seabrook et al. 2006). Seabrook et al. (2006) determined four

stages of changing land use in the region. Initially, large pastoral
runs were established between 1840 CE and 1880 CE, followed
by a closer settlement scheme (between 1880 CE and 1940 CE)

that included mixed farming and smaller grazing leases
(which required land improvement, e.g. ring-barking). Between
1940 CE and 1990 CE, reductions in farm size occurred, which

were followed by the largest land development scheme
(Brigalow Development Scheme) ever undertaken in Australia.
This continued until the late 1990s CE, resulting in one of the
most rapid landscape transformations in Australia. From the

1990s CE to 2006 CE, there was a shift to more sustainable
development where attitudes about land clearing (and the
environmental impact caused) and climate change proceeded

to change policies about managing the environment (e.g. The
Land Act 1994; Vegetation Management Act 1999).

N

0 50 100 m

N

Dawson
River

Catchment

Fitzroy River
Catchment

Theodore

Rockhampton

0 50 10025 km75

0 50 100 m

N
Yeppoon

Includes material © The State
of Queensland, © 21AT ©
Earth-i, all rights reserved,

2020

Fig. 1. Map of Australia highlighting central south-eastern Queensland, with satellite imagery showing drainage

sub-basins of major river systems in central south-eastern Queensland (courtesy of Terri Sutcliffe). The star indicates

Lake Mary North (photograph taken by Patrick Moss, September 2018) and the hexagon represents the location of

Tualka (photograph taken by Maria VanderGragt, September 2018).
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Study sites

Lake Mary North

Lake Mary North (523.05 ha; wetland mapping V5; Depart-
ment of Environment and Science Queensland 2019) is located
in the Hedlow wetland aggregation within the Fitzroy River
subcatchment (Fig. 1). It is a floodplain palustrine wetland with

a water regime driven primarily by precipitation and evapora-
tion. This wetland is covered by water 40–60% of the time (The
State of Queensland 2020). Lake Mary North is located in the

subtropics and is dominated by hot, humid summers (Köppen
1931; Bureau of Meteorology 2006). Lake Mary North lies on
Quaternary alluvium, eroded from Devonian/Carboniferous

metamorphic basement rocks (Willmott et al. 1986).
LakeMaryNorth has a catchment area of 24 210 ha, of which

55% is remnant vegetation (Queensland Herbarium 2019). Lake

Mary North is classified as part of Regional Ecosystem (RE)
8.3.4, which is recorded as a coastal and subcoastal freshwater
floodplain wetland with permanent or semi-permanent water
with aquatic macrophytes (Queensland Herbarium 2019;

K. Glanville, Queensland Herbarium, pers. comm.). On the
basis of field observations, present-day vegetation is dominated
by pasture grasses during dry periods and populations of aquatic

macrophytes during wet periods.

Tualka

The Tualka wetland (77.81 ha; wetlandmappingV5; Depart-
ment of Environment and Science Queensland 2019) is a
floodplain lake on Tualka Creek, located within the Palm Tree

Robinson Creek aggregation in the Dawson River subcatchment
(Fig. 1; Queensland Herbarium 2019). The water regime of this
lake is influenced by creek flooding and potentially intermittent

ground water connectivity and is covered by water 80–100% of
the time (Department of Science, Information Technology and
Innovation 2015; The State of Queensland 2020). Tualka is
situated in the subtropics, and is dominated by hot, dry summers

and cold winters (Köppen 1931; Bureau of Meteorology 2006).
Underlying and surrounding Tualka are the Hutton Sandstone
and Boxvale Sandstone, which are both aquifers in the Surat

Basin (Habermehl and Lau 1997).
Tualka has a catchment area of 58 855 ha, 87% of which

consists of remnant native vegetation in state forests and national

parks (QueenslandHerbarium2019). Thiswetland is classified as
part ofRE 11.3.27g, which proposes an open body ofwaterwhich
may or may not have aquatic macrophytes and has fringing

eucalypt woodland (Eucalyptus coolabah, E. populnea and
Eremophila mitchellii) and sedgelands (Queensland Herbarium
2019). Presently, the surrounding landscape is used for grazing
purposes (The State of Queensland 2020).

Materials and methods

Two clay cores (LMN1, 46 cm; TUA1, 45 cm)were extracted via
Russian d-section from Lake Mary North (23806.4510S,
150835.2580E) and Tualka (25812.9100S, 149841.9600E) respec-
tively, in September 2018 (Fig. 1). These cores underwent sedi-
mentological, geochemical and palaeoecological analyses to
determine past wetland variability and to examine the effects of
climatic variation and human activities, which may have affected

the wetlands and surrounding landscape.

Chronology and sedimentology

Bulk sediment samples from the base of each core (45–46 cm for
LMN1 and 43.5–45 cm for TUA1) were sent for radiocarbon

dating to Beta Analytic, to obtain basal ages and to constrain the
palaeoenvironmental records. A further two samples from
LMN1were taken at 30 and 20 cm and one fromTUA1 at 20 cm,

which were prepared using Moss (2013) modified version of
pollen preparation, for the pollen concentrate to be radiocarbon
dated. With bulk sediment analysis, there may be a wider error

range than with pollen samples. Using OxCal (ver. 4.4, Bronk
Ramsey 1995, 2008, 2009, see https://c14.arch.ox.ac.uk/oxcal/
OxCal.html), the returned ages were calibrated to the southern
hemisphere using the SHCal20 calibration curve, with dates past

1950 CE, calibrated using the post-bomb atmospheric southern
hemisphere 1–2 curve (Hua et al. 2013; Hogg et al. 2020). After
which, Bayesianmodelling was used to create age-depthmodels

using the rbacon (ver. 2.5.0) package in RStudio (Blaauw and
Christen 2011; R Foundation for Statistical Computing, Vienna,
Austria, see https://www.R-project.org/; RStudio, PBC, Boston,

MA, USA, see http://www.rstudio.com/). Both LMN1 and
TUA1 were classified using an adapted version of the Troels-
Smith peat classification (Troels-Smith 1955; Kershaw 1997)

every 5 cm, to determine changes in visual and physical char-
acteristics along the cores.

Total organic carbon and carbon to nitrogen analyses

Both cores were subsampled every 5 cm for total organic carbon
(TOC) and carbon to nitrogen (C:N) ratios, following Meyers

and Teranes (2001) method. These samples were dried in an
oven for 29 h at 408C and then crushed into homogenous powder
using an agatemortar and pestle. Individual pillswere created by

measuring 0.1 g of sample into tin foil boats, which were then
pressed into pills and weighed again to provide accurate mea-
surements. The samples were analysed using an Elementar
MACRO cube at The University of Queensland. To ensure

quality assurance and control, blanks were placed at the
beginning, end and after every five samples, whereas phenyl-
alanine standards were run at the beginning and end of each core

to limit samples with high carbon concentration causing a carry-
on carbon effect.

X-ray fluorescence

Using an Olympus Innov-X Handheld X-ray Fluorescence
(XRF) Spectrometer (as part of a GEOTEK Multi-Sensor Core

Logger at The University of Queensland), both cores were
scanned to provide chemical trends for major inorganic ele-
ments. XRF is a non-destructive technique to determine trends

in elemental composition. This instrument has two calibration
modes: (1) soil mode and (2) geochemistry mode. Soil mode
produces a more reliable record with ‘heavier’ elements (e.g.

most transitionmetals and redox sensitive elements, such as iron
(Fe) and manganese (Mn)), and geochemistry mode records a
lower error rate with ‘lighter’ elements (e.g. silicon (Si) and

aluminium (Al)). A stainless-steel standardisation coinwas used
to calibrate the XRF spectrometer, before reporting values and
errors in milligrams per kilograms (mg/kg). Both cores were
analysed at 1 cm intervalswith a dwell time of 30 s. Variations in

moisture content can attenuate the intensity of light elements
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such as Si and Al (Tjallingii et al. 2007) and high organic con-
tents can affect the reliability of trace elements (e.g. copper

(Cu), nickel (Ni), scandium (Sc)), although titanium (Ti) and Fe
are generally thought to be reliable even in highly organic-rich
cores (Longman et al. 2019). Therefore, even though results are

reported in mg/kg, we only consider trends in immobile ele-
ments (e.g. zircon (Zr), Ti, Si, Al) as proxies for terrigenous
sediment input (as opposed to organic matter; Olsen et al. 2010;

Kylander et al. 2011; Evans et al. 2019) in the cores rather than
absolute values.

Palaeoecology

Palynological and micro-charcoal analyses were conducted at

5 cm intervals along the cores. These samples were processed by
utilising an adapted version (Moss 2013) of van der Kaars
(1991) method for pollen extraction from marine sediments.

Samples were heated in sodium hexametaphosphate to defloc-
culate clays, which were then sieved to remove particles greater
than 180 mm. Heavy liquid separation (sodium polytungstate;

specific gravity 1.9) was then used to isolate the organic fraction
from the minerogenic fraction. Samples then underwent acet-
olysis to dissolve excess cellulose for easier identification and

were mounted on slides in glycerol. At least 300 dryland
pollen grains (e.g. rainforest, sclerophyll arboreal and herba-
ceous taxa and pteridophytes) and 200 micro-charcoal particles
were identified and counted as per Walter and Willy (2004). A

tablet of known concentration of exotic Lycopodium clavatum

(9666 grains per tablet) was added to each sample at the
beginning of preparation to determine pollen and micro-

charcoal concentrations (spike concentration method; Wang
et al. 1999). Because only a small amount of sample is counted,
this method suggests how much pollen/micro-charcoal there

should be in the initial 1 cm3 sample. This entails dividing the
concentration of grains in an exotic Lycopodium tablet by the
amount of Lycopodium clavatum counted and multiplying it by
the amount of pollen/micro-charcoal. Using Tilia (ver. 2.6.1, see

https://www.tiliait.com/download/) data were graphed and
classified into biostratigraphic zones by Constrained Incre-
mental Sum of Squares (CONISS) (Grimm 1987).

Results

Chronology and sedimentology

Lake Mary North (LMN1)

As shown in Table 1, LMN1 returned a basal age of 1096–

1217 CE at 45 cm. At 30 cm, the age returned was 1876–1945

CE and at 20 cm the returned age was 2003–2007 CE. Rbacon
was used to produce an age–depth model using Bayesian

modelling and radiocarbon dates. However, the radiocarbon
age at 20 cm could not be made to fit the Bayesian model,
potentially indicating contamination from younger carbon

(Fig. 2). Sediments at Lake Mary North contained substantial
modern root mass at the top of the core. An additional tie point
for the chronology at Lake Mary North is the observation of

introduced vegetation indicative of European occupation
(Plantago lanceolata) at 15 cm, which is known to have
occurred in the 1840s CE in Rockhampton (Seabrook et al.

2006). Therefore, the youngest radiocarbon age was rejected

and not used in the rbacon age–depth model.
LMN1 is a 46 cm clay sediment core that increases in organic

content towards the top of the core (see Supplementary material

Table S1). The top 10 cm contains modern root mass and fibrous
herb detritus with little clay content. Herbs and fine detritus are
common throughout the core and from 46 to 15 cm, iron oxide

staining is present. Most of the core is 10YR 2/1 Black; however,
between 25–20 cm and between 15–10 cm there is a slight change
to 10YR3/1Very dark grey. From10 to 5 cm there ismodern root
detritus and sediment, while the top 5 cm of the core is modern

root mass (top 10 cm is coloured 10YR 6/3 Pale brown).

Tualka (TUA1)

TUA1 returned a basal age of 1142–1230 CE at 44 cm and

1955–1956 CE at 20 cm (Table 1).
TUA1 is a 45 cm clay core with very slight textural and

colour changes, with iron oxide staining throughout the core (see

Supplementarymaterial Table S2). At the base of TUA1, woody
and herb detritus are present. From 45 to 15 cm and from 10 to
5 cm, macro-charcoal is visible. At 30 cm, there is a shift from

10YR 4/1 Dark grey to 10YR 4/2 Dark greyish brown.

Total organic carbon and carbon to nitrogen analyses

Lake Mary North (LMN1)

For the majority of the Lake Mary North record, TOC values
showan increasing trend (Fig. 3). TOCpercentages begin lowuntil
30 cm, before peaking at 15 cm, and ending on slightly decreased

percentages. The C:N values follow a similar trend; however, they
peak earlier (25 cm) and end on slightly increased values.

Tualka (TUA1)

TUA1 has very low organicmatter, with TOC values ranging

between 0.83 and 1.28% (Fig. 4). TOC shows a general

Table 1. Returned ages from Beta Analytic, which were calibrated in OxCal (Bronk Ramsey 1995, 2008, 2009) using SHCal20 calibration curve

(Hogg et al. 2020) and the post-bomb atmospheric southern hemisphere 1–2 curve (Hua et al. 2013)

From these ages, age–depth models were determined using the rbacon package on RStudio (Blaauw and Christen 2011; R Foundation for Statistical

Computing, see https://www.R-project.org/; RStudio, see http://www.rstudio.com/)

Depth (cm) Site name Dated material Conventional radiocarbon age Error Oxcal calibrated age (CE)

20 LMN1 Pollen extract –57 4 2003–2007

30 LMN1 Pollen extract 70 30 1876–1945

45 LMN1 Bulk sediment 940 30 1096–1217

20 TUA1 Pollen extract –35 2 1955–1956

44 TUA1 Bulk sediment 910 30 1142–1230
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increasing trend, peaking at 30 cm, before slightly decreasing
and reaching a plateau,1% for the rest of the record. The C:N

values remain ,12 for the entirety of the record, with minimal
change.

X-ray fluorescence

Lake Mary North (LMN1)

From the base of the core to 40 cm, all elements show an
increasing trend (Fig. 3).Whereas Zr continues to peak at 35 cm,

Ti, Si and Al all decline to varying degrees before returning to
elevated levels. At 25 cm, all elements show a decreasing trend,
with Zr showing the greatest decrease and Al the smallest. At
15 cm, Ti, Si and Al show very low values before slightly

increasing and then returning to lowered values at the top of the
core. However, Zr shows an increasing trend from 15 cm to the

top of the record.

Tualka (TUA1)

The base of Tualka shows high values of Zr that remain fairly

constant until 35 cm, whereas Ti, Si and Al begin low and show
an increasing trend, peaking at 35 cm (Fig. 4). All elements
decrease and then Ti, Si and Al remain stable until ,8 cm,

whereas Zr increases, peaking at 15 cm. All elements record a
sharp decline at 10 cm, before showing increased fluctuations to
the top of the record. Ti, Si and Al all decrease at the top,
whereas Zr shows a slight increasing trend.
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Palaeoecology and micro-charcoal

Lake Mary North (LMN1)

Threemain biostratigraphic zones were determined using the
CONISS analysis (Fig. 5). These are described below.

Zone 1: 46–33 cm; ,1100–1600 CE

Zone 1 shows the greatest representation of aquatic macro-
phytes (Potamogeton, Polygonum and Myriophyllum) in the
record. This zone is dominated by increasing herbaceous taxa

(primarily Poaceae) and slightly decreasing sclerophyll arboreal
taxa (Eucalyptus and Casuarinaceae). Ericaceae peaks at the top
of Zone 1. Both pteridophytes and rainforest taxa remain low

throughout this zone. Micro-charcoal values record a high
concentration (1933200 particles cm�3) for the entire zone.

Zone 2: 32–18 cm; ,1600–1800 CE

There is a shift in dominant vegetation taxa in this zone.
Rainforest taxa (particularly Araucaria and Arecaceae) peak at
the top of Zone 2, whereas herbaceous taxa (mostly Poaceae)

decrease. Eucalyptus, Casuarinaceae and Ericaceae peak (with

the former recording the greatest change) at the top. Aquatics
show a decreasing trend, whereas minimal variations occur in
pteridophytes.Micro-charcoal values trough to 143300 particles

cm�3, before peaking at 25 cm (1933200 particles cm�3). At the
top of Zone 2, micro-charcoal concentration declines to 386640
particles cm�3.

Zone 3: 17–5 cm; ,1800–1900 CE

There is an abrupt shift from sclerophyll woodland to
savanna conditions (as indicated by the decreased sclerophyll

arboreal taxa and the increase in Poaceae and Asteraceae
(Tubuliflorae)). Although there is an overall decreasing trend
in sclerophyll arboreal taxa (in particular Casuarinaceae), at the
top of the record Eucalyptus values increase. Pandanus peaks

during this zone. The exotic species Plantago lanceolata

appears for the first time. Aquatics completely disappear at
the base of this zone, before re-appearing towards the top of the

record, with the inclusion of Restionaceae. Rainforest taxa are
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present in lower values, whereas pteridophytes show greater
variability. Micro-charcoal peaks at the base (1933200 particles
cm�3), before decreasing to its lowest concentration throughout

the record (113717 particles cm�3).

Tualka (TUA1)

The Tualka pollen results were also broken up into three

biostratigraphic zones (Fig. 6).

Zone 1: 45–28 cm; ,1100–1700 CE

There is a shift from more herbaceous (mostly Poaceae)

dominated taxa to sclerophyll arboreal taxa (primarily Eucalyp-
tus, Melaleuca and Casuarinaceae) at the base of this zone.
Towards the top of Zone 1, this reverts to greater percentages of
herbaceous taxa. Aquatics and rainforest taxa show a decreasing

trend, before increasing and peaking at the top of the zone,
whereas pteridophytes show two small peaks. Micro-charcoal
begins with a high concentration of 1933200 particles cm�3,

until 30 cm, where it decreases to its lowest concentration
throughout the record (193320 particles cm�3).

Zone 2: 27–13 cm; ,1700–2000 CE

Herbaceous taxa show an increasing trend, with peaks in
Asteraceae (Tubuliflorae), Poaceae and Amaranthaceae. Exotic
taxa Asteraceae (Liguliflorae) appears in the record at the base of

this zone. Aquatic taxa show low percentages, although with an
increasing trend. Rainforest taxa slightly decline before increas-
ing to the top of Zone 2. Pteridophyte values are their lowest
throughout the record. Micro-charcoal concentration begins low

(148707 particles cm�3), before peaking at 20 cm (1933200
particles cm�3) and reaching a plateau for the rest of Zone 2.

Zone 3: 12–0 cm; ,2000–2018 CE

Aquatics peak to their highest percentages at the top of the
record (primarily Potamogeton). Typha peaks during this zone.
Both rainforest taxa (namely Araucaria and Arecaceae) and

pteridophytes (Gleichenia) peak in the middle of this zone,
before decreasing. Ophioglossum appears for the first time.
Zone 3 shows greater variability in rainforest taxa, and Euphor-

biaceae appears for the first time in the record. Sclerophyll
arboreal taxa show a decreasing trend to the top of Zone 3,

whereas herbaceous taxa (Poaceae) increase. Micro-charcoal
shows decreased values of 843300 particles cm�3, which reach a
plateau for the rest of the record.

Discussion

Lake Mary North

The base of the LakeMary North record shows an infilling of the

lake basin. Because Ti, Si and Al all correlate and show similar
trends, we are confident that this is presenting a terrigenous sed-
iment input record. Zr shows a greater variance than the other

elements; however, it may be that this variance is suggesting a
change in particle size (Davies et al. 2015). This is correlatedwith
the high ratio of terrigenous sediment, which shows a decreasing

trend to ,1700s CE, with TOC values showing the inverse
(Fig. 7). With a greater particle size, the TOC concentration will
record lower values (Meyers and Teranes 2001). Even though

there are increased terrigenous sediment values, the recorded
sediment deposited in Lake Mary North is quite low. The C:N
ratio at the base of Lake Mary North is in the range of algae
(,4–10; Meyers 1994) during the basin infilling. The semi-

emergent species Myriophyllum and the aquatic taxa Potamo-

geton and Polygonum dominate the base of the pollen record as
shown in Fig. 7. This suggests that Lake Mary North was a

palustrine wetland ,1100 CE, also correlating with variable
water depths. Lake Mary North was surrounded by sclerophyll
woodland before shifting to a more open grassland-dominated

landscape.There is anextendedpeak inmicro-charcoal at the base
of this record (,1100 CE), which may be due to increased El
Niño–Southern Oscillation (ENSO) activity, which was sug-

gested to be drier and more variable from ,3000 years before
present (Barr et al. 2019).Variations in the frequency and strength
of ENSO can cause increased rate of burning because it enhances
both fuel loads with wet years and fire events with dry years

(Bradstock 2010; Mooney et al. 2011; Barr et al. 2019).
Between,1600CE and 1800CE, there is a shift to regionally

wetter conditions, which coincides with the Little Ice Age (LIA;

,1450–1850 CE; Rustic et al. 2015). During this period,
sclerophyll forest dominates the record, with an increasing trend
in rainforest taxa (particularly Araucaria, Arecaceae and

Agathis) and decreasing sclerophyll herbs, namely grasses
(Fig. 7). This correlates with pollen concentrations peaking to
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their highest values in the record, indicating increased vegeta-
tion for pollen production and wetter conditions for pollen

preservation. C:N values slightly increase, peaking at 15, which
indicates an increase in non-algal organicmatter (Meyers 1994),
perhaps because of the change in surrounding vegetation.

Micro-charcoal concentration peaks ,1700 CE, correlating
with this regional shift in climate, as does Ericaceae, which
suggests landscape disturbance. During these wetter conditions,
LakeMary North records decreased aquatic macrophytes owing

to a deeper water column. This corresponds with a shift towards
decreasing terrigenous input and increasing TOC trends. In
deeper lake basins, where the majority of particles are fine

grained, TOC concentrations increase (Meyers and Teranes
2001). This decrease in aquatic macrophytes and shift in the
ratio between terrigenous and organic sediment is indicative that

Lake Mary North transitioned to lacustrine conditions. Wetter
conditions during the LIA in Australia have been recorded in
North Stradbroke Island, Queensland (Barr et al. 2019), and

South Australian lake records (Barr et al. 2014), as well as with
tree ring data from Tasmania (Cook et al. 2000).

There is a major change in vegetation ,1800 CE, which
correlates with European occupation and changed land use,

starting during the 1840s CE (Seabrook et al. 2006). The exotic
(introduced) taxa Plantago lanceolata appears during this
period, providing evidence for human-altered landscape change

(Fig. 7). An abrupt increase in grasses then dominate the
vegetation record, with low values of sclerophyll arboreal taxa
and very little rainforest taxa. Around this time, there was

increased disturbance associatedwith land clearance, as inferred
by the greater presence of Asteraceae (Tubuliflorae) (Moss et al.
2016), which recorded its highest values at the top of the core.
TOC concentration shows a decreasing trend, while C:N con-

tinues to show a higher ratio of carbon than nitrogen, indicating a
combination of algae and vegetation with a greater carbon
content. While Lake Mary North showed a decreasing trend in

terrigenous sediment, there is a return to slightly higher values at
the top of the record. The sediment deposition at Lake Mary
North follows an increasing trend to the top of the record.

During this period, there is a large peak in micro-charcoal,
which correlates with a change in fire regimes (Fig. 7). Changes
in fire regimes is also indicated by a shift to greater fire-tolerant

Eucalyptus, whereas less fire-resistant species Casuarinaceae is
present in very low percentages. This decrease in Casuarinaceae

also correlates with European occupation because it was a
preferred timber used by early settlers (Crowley and Kershaw
1994). The appearance of Pandanus also suggests a fire regime

alteration and an opening up of the landscape. Changes in fire
regimes are complex and can be due to a variety of factors, such
as climate- or human-influenced landscape change. This alter-
ation may be caused by changes in land management practices,

from active burning practices associated with Indigenous land
management to European fire suppression. This correlates with
a shift to very low micro-charcoal concentrations from ,1900

CE to the top of the record. This trend has been recorded inMoss
et al. (2007, 2011, 2015) and represents a shift to less frequent
fire regimes, likely owing to post-European fire suppression.

Aquatics completely disappeared ,1840 CE, before return-
ing ,1890 CE. The reappearance of aquatic macrophytes is
likely to indicate a shallowing of Lake Mary North and coin-

cides with El Niño conditions from,1880 to 1889 CE (Bureau
of Meteorology 2021). The shallower conditions of Lake Mary
North correlates with the return to palustrinewetland conditions.
This coincides with an increase in the C:N ratio, which may be

due to the increase in aquatic macrophytes. At this time, there
was likely to be a major change in water regime relative to the
rest of the record as inferred by the reappearance of semi-

emergent speciesMyriophyllum, the first appearance of wetland
indicator family Restionaceae (which is commonly found in
moist to occasionally waterlogged wetlands) and also the

increase in pteridophytes (Fig. 7). Although there have been
many historic droughts (1856 CE, 1860 CE, 1878 CE) and
floods (1864 CE, 1890 CE, 1893 CE, 1896 CE) between the
1840s CE and,1890s CE that have affected the Rockhampton

area (Bird 1904), the present study does not have a high-enough
resolution to record these events and, therefore, shows a general
drying up of the wetland.

According to the Queensland Regional Ecosystem classifi-
cation scheme, just before European occupation, Lake Mary
North is characterised as being a coastal/subcoastal freshwater

palustrinewetlandwith permanent or semi-permanentwater and
aquatic vegetation (RE 8.3.4; Queensland Herbarium 2019; K.
Glanville, Queensland Herbarium, pers. comm.). About 1100
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CE, Lake Mary North was a palustrine wetland surrounded by

low to open woodland, dominated by Eucalyptus, Casuarinaceae
and Poaceae. However, just before European settlement, Lake
Mary North recorded regionally wetter conditions, dominated by

sclerophyll forest (Araucaria, Agathis, Arecaceae, Eucalyptus
and Casuarinaceae) with low grass values. Some of this rainforest
presence is likely to be due to surrounding microphyll vine forest
(RE 11.12.4).AlthoughAraucaria pollen can be transported from

large distances away (Moss et al. 2005), it is more likely that the
Araucaria pollen came from the nearby outcropping trachytic
hills, which are host to notophyll vine forest and vine thickets.

Prior to European settlement, Lake Mary North was a lacustrine
environment; however, the top of the record suggests a shift to
current palustrine conditions. Therefore, this classification of

‘freshwater palustrine conditions’ reflects current and also con-
ditions ,1100 CE; however, this does not correlate with pre-
European environmental conditions.

Tualka

The Tualka wetland provides a much more stable hydrological
record regarding the presence of constant aquatic taxa.

Groundwater-dependent ecosystem (GDE) mapping (Department
of Science, Information Technology and Innovation 2015; The
State of Queensland 2020) suggests with ‘moderate confidence’

that Tualka might be a GDE, which would explain the constant
presence of aquaticmacrophytes, even during drier environmental
conditions where it superficially appears dry.

Between,1100 CE and 1300 CE, the Tualka wetland was a
shallow lacustrine environment (indicated by the presence of
semi-emergent species Myriophyllum) surrounded by a mix of
sclerophyll woodland and forest, before changing primarily to

sclerophyll woodland,1500 CE (Fig. 8). It is likely that Tualka
was fringed by Eucalyptus ,1300 CE (owing to the high
Eucalyptus percentage). This change in vegetation coincides

with Zr recording increased values, and Si, Ti and Al showing
the opposite. It is inferred that there is a shift from coarser
particles to finer, which may indicate changes in sediment

transport owing to changing surrounding vegetation. C:N values
remain ,11, which suggests a combination of algae and
vegetation with greater carbon content during this period.

TOC values are minimal, with little change throughout this

record; however, there is a slight increasing trend. Low TOC

may indicate that Tualka was experiencing seasonally/annually
drier conditions and, therefore, not preserving organic matter.
This was a period of climatic variability (as indicated by high

micro-charcoal concentrations), which was similarly recorded
at Lake Mary and is likely to represent increased ENSO
variability. This increased micro-charcoal concentration may
be due to higher fuel loads associated with a greater tree cover.

Tualka records regionally wetter conditions during the LIA,
with a greater regional presence of arboreal taxa (as shown by
the increased rainforest taxa and consistent sclerophyll arboreal

taxa in Fig. 8). This is correlated with the large concentration of
preserved pollen, which indicates conditions conducive to
preservation (i.e. anaerobic, thus reflecting regular water cover

in Tualka). There is a marked increase in finer particles
(increased Si, Al and Ti), indicating a deeper water column.
TOC slightly peaks, whereas C:N marginally decreases.

Micro-charcoal concentrations decrease to their lowest
values in the record pre-European settlement, and pollen con-
centration also decreases (Fig. 8). It may be that this is recording
drier conditions (e.g. an extreme El Niño event,1650s CE; Liu

et al. 2017); however, a higher resolution record is required to
further investigate climate variability and how wetlands in the
NACC react during the LIA. Tualka records drier conditions

after the LIA, which is shown by the peaks in Asteraceae
(Tubuliflorae), Poaceae, Amaranthaceae, increasing trend in
Malvaceae and a decrease in rainforest taxa. Tibby et al.

(2018) also suggested a post-LIA dry period in easternAustralia.
Asteraceae (Liguliflorae) appears around the 1840s CE, which
coincides with European occupation. Both Eucalyptus and
grasses peak, likely as a result of European land-use practices.

Changes in land use are further indicated by the peak in micro-
charcoal in the,1900s CE, representing a probable shift in fire
regimes from the cessation of indigenous burning, causing a

high fuel load that increased fire intensities (Moss et al. 2016).
The Tualkawetland appears fairly stable during this period, with
minimal changes in aquatic macrophytes and terrigenous sedi-

ment. From the ,1900s CE to present, there appears to be an
increase in sediment entering Tualka.

Towards the top of the core, aquatic taxa (namely

Potamogeton) rapidly increase to ,50%. Potamogeton grows
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in eutrophic conditions and, therefore, the larger representation
in the pollen record may be a combination of drier conditions

causing a shallowing of the lake and cattle contributing to
nutrients in the soil (Leoni et al. 2016). This correlates with
decreased micro-charcoal because there was less fuel to ignite.

This may also represent post-European fire suppression
regimes. Further evidence of human landscape alteration is the
appearance of Euphorbiaceae (Ricinus communis, commonly

known as castor oil plant), an introduced species widespread in
riparian habitats within the region (Business Queensland 2020).

At the top of the record, rainforest taxa record a higher
representation than do sclerophyll arboreal taxa. It is likely that

the pollen record is showing a reduced extent of sclerophyllous
woodland, rather than an increase in rainforest-dominated
landscape. This was further corroborated by examination of

past satellite imagery and aerial photographs, which showed
a decreased amount of woodland post-1950s CE (State of
Queensland 1952; Google Earth 2006; DigitalGlobe 2012).

Grasses show their highest values to present. Coarser terri-
genous sediment shows a dip at 10 cm, whereas finer grains
peak before both coarse and fine sediments increase and show
more fluctuations to the top of the core. Thismay be attributed to

a combination of historical land clearing and drought causing
more exposed soil (e.g. the Millennium Drought; 2001–2009
CE; van Dijk et al. 2013), which affected Tualka, causing more

sediment instability and runoff.
According to the RE 11.3.27g description, before European

settlement, Tualka was, and currently is, a freshwater floodplain

lake that may have fringing Eucalyptus coolabahwoodland and
sedgelands (QueenslandHerbarium 2019). Surrounding Tualka,
the vegetation would have been shrubby woodland dominated

by Eucalyptus populnea and Eremophila mitchelli (RE 11.9.7;
Queensland Herbarium 2019). The Tualka record indicates that
this lacustrine environment has been relatively stable since
,1130 CE, with sclerophyll woodland and forest in the sur-

rounding landscape, and therefore follows the RE classification.
Tualka has a consistent presence of rainforest taxa (Araucaria
and Arecaceae) throughout the record, peaking both during the

LIA and at the top of the core. The presence of Arecaceae
(possibly the Dawson River fan palm Livistona nitida) is most
likely to be due to wetter refugia areas situated along the upper

Dawson River and also possibly from Isla Gorge, Nathan Gorge
or CarnarvonGorge, and theAraucaria is once again likely to be
located further away. Although regionally wetter conditions are
recorded pre-European settlement, locally vegetation does not

seem to shift greatly. However, drier conditions do appear to
dominate after European occupation. There is a clear shallowing
trend towards the top of the record, with the increase in aquatic

taxa Potamogeton and Typha. This correlates with changes in
sediment patterns,1900s CE, where a trend in greater sediment
accumulation occurs.

Wetland comparison

Whereas Tualka recorded a lacustrine environment for the past

,1000 years, Lake Mary North showed palustrine conditions
from ,1100 CE to present, except between ,1500 CE and
,1900 CE, when it shifted to a lacustrine environment. Climatic
variability was recorded from both sites between ,1100 CE

and ,1500 CE (as determined by high micro-charcoal

concentration). During this period, both wetlands also recorded
woodland/savanna surroundings around shallow waterbodies.

Both wetlands recorded regionally wetter conditions during
the LIA, with increased water. Lake Mary North shifted to a
more lacustrine environment, whereas Tualka recorded deeper

water conditions. A low micro-charcoal concentration ,1600
CE is consistent across both wetlands; however, micro-charcoal
concentration in Tualka remained low until,1800 CE, whereas

it peaked at LakeMaryNorth at,1700CE. This age variation in
micro-charcoal peaks is likely to reflect different fire regimes
owing to local site conditions (Moss et al. 2013).

Both Lake Mary North and Tualka recorded the presence of

exotic taxa ,1840 CE (Plantago lanceolata and Asteraceae
(Liguliflorae) respectively). This period was dominated by drier
conditions and increased land disturbance, as shown by

increased Asteraceae (Tubuliflorae) and peaks in Amarantha-
ceae in both records, aswell as the return to palustrine conditions
at Lake Mary North. Both wetlands recorded increased grasses,

owing to changed land management associated with pastoral-
ism. Lake Mary North showed decreased values in sclerophyll
arboreal taxa, whereas Tualka appeared relatively unaltered.
LakeMary North recorded a peak in micro-charcoal,1840 CE,

before it dropped to its lowest values at the top of the record.
Tualka also recorded a micro-charcoal peak during the,1900s
CE, before following the same trend as LakeMary North. These

peaks represent a shift in fire regimes to infrequent burning from
European fire suppression. At the top of the Tualka record, there
is a shift from sclerophyll woodland to savanna conditions, as

shown by the peak in herbaceous taxa and a decrease in arboreal
taxa. Tualka also recorded increased aquatic macrophytes and
pteridophytes towards the top of the core, indicating a shallow-

ing of the lake.
Both wetlands show a diverse site history affected by

climatic variability and human landscape alteration. At the top
of the LakeMary North record, increased presence of landscape

alteration was determined, whereas Tualka indicated a more
stable record, with some evidence of decreased arboreal taxa and
increased shallowing of the lake. Both sites indicate changes in

sedimentation patterns, with more sediment being deposited at
Lake Mary North from the ,1700s CE and later at Tualka
(,1900s CE). Increased sediment deposition post-European

settlement has also been recorded in floodplain wetlands within
the Burdekin Catchment, NACC (Tibby et al. 2019).

Conclusions

This research has shown that the Regional Ecosystem classifi-
cation is broadly applicable for monitoring purposes, but it is
unable to account for fluctuating aquatic vegetation baselines

associated with variable climate conditions and hydrological
regimes over longer time periods. This study also suggests
changes in catchment conditions and the need for further

investigation of sedimentation rates and processes potentially
affecting these wetlands. Diatom analysis could help provide
information on past and presentwater quality, such as changes in

salinity or nutrient availability, and therefore complement our
interpretations regarding relative changes in water depth and
also increased nutrients determined by the pollen record. The
inclusion of younger dating methods and plant macrofossil

analysis to these sites would provide more insight into modern
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ecological factors affecting the wetlands and also present a
greater understanding of local vegetation. Whereas the results of

this study are informative at the individual wetland scale,
aggregation-level studies are needed for NACC-wide manage-
ment and restoration decision-making. Specifically, further

research is needed to determine the degree towhich the individual
findings for Lake Mary North and Tualka are representative of
other wetlands within the Hedlow Creek and the Palm Tree

Robinson Creek aggregations and those aggregations overall.
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