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Context. Species classification disputes can be resolved using integrative taxonomy, which 
involves the use of both phenotypic and genetic information to determine species boundaries. 
Aims. Our aim was to clarify species boundaries of two commercially important cryptic species 
of halfbeak (Hemiramphidae), whose distributions overlap in south-eastern Australia, and assist 
fisheries management. Methods. We applied an integrative taxonomic approach to clarify 
species boundaries and assist fisheries management. Key results. Mitochondrial DNA and 
morphological data exhibited significant differences between the two species. The low level of 
mitochondrial DNA divergence, coupled with the lack of difference in the nuclear DNA, 
suggests that these species diverged relatively recently (c. 500 000 years ago) when compared 
with other species within the Hyporhamphus genus (>2.4 million years ago). Genetic differences 
between the species were accompanied by differences in modal gill raker counts, mean upper-
jaw and preorbital length, and otolith shape. Conclusions. On the basis of these genetic and 
morphological differences, as well as the lack of morphological intergradation between species 
along the overlapping boundaries of their geographical distributions, we propose that 
Hyporhamphus australis and Hyporhamphus melanochir remain valid species. Implications. This 
study has illustrated the need for an integrative taxonomic approach when assessing species 
boundaries and has provided a methodological framework for studying other cryptic fish species 
in a management context. 

Keywords: biogeography, diversity, fish, fisheries, garfish, genetics, otoliths, speciation. 

Introduction 

Received: 7 February 2022 
Accepted: 6 December 2022 
Published: 6 January 2023 

Cite this: 
Riley IJ et al. (2023) 
Marine and Freshwater Research, 74(2), 
125–143. 
doi:10.1071/MF22048 

© 2023 The Author(s) (or their 
employer(s)). Published by 
CSIRO Publishing. 
This is an open access article distributed 
under the Creative Commons Attribution 
4.0 International License (CC BY). 

OPEN ACCESS 

Systematics forms the backbone of many ecological fields, which allows policymakers to 
build conservation practices around species boundaries and identify endangered 
populations (Haig et al. 2006). Despite the importance of species classification, the 
existence of competing species concepts complicates the separation of similar species. 
Many widely accepted species concepts use competing diagnostic criteria that may 
establish different definitions of species boundaries and can result in contradictory 
species diagnoses (De Queiroz 2007). These conflicting opinions can result in taxonomic 
inflation, and surveys have shown that studies using the phylogenetic species concept 
hold a 48% higher species count than those using non-phylogenetic species concepts 
(Agapow et al. 2004). Problems with determining species boundaries are especially 
important for cryptic species, whose morphological forms are almost indistinguishable. 
Delimiting cryptic species boundaries is important because similar-looking species with 
different life-history traits may require different conservation or management tactics 
(Bickford et al. 2007). Cryptic fish species are common in marine ecosystems where their 
distributions can overlap (Knowlton 2000; Takahashi et al. 2020), and the management 
implications of cryptic species discrimination are crucial for commercially exploited 
marine fishes, as stock management practices may affect species in different ways. 
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The unified species concept defines a  species simply as a  
‘separately evolving metapopulation lineage’ and uses multiple 
diagnostic criteria to delimit species boundaries (De Queiroz 
2007). By accepting the many different characteristics a 
lineage can acquire along the course of divergence as different 
lines of evidence to assess a species status, the unified species 
concept provides a solution to the discrepancies in cryptic 
species delimitation through integrative taxonomy (De Queiroz 
2007, 2011). Integrative taxonomy aims to determine units 
of life from multiple complementary perspectives rather 
than relying on traditional morphological or more recent 
phylogenetic methods of species discrimination alone (Dayrat 
2005). Integrative methods, combining both morphological 
and molecular traits, are increasingly being used to resolve the 
taxonomy of cryptic fish species (Delrieu-Trottin et al. 2022; 
Liggins et al. 2022). Examining the differences between 
cryptic fish species using multiple lines of evidence not only 
aids in resolving species concept disputes but can also confirm 
stock subdivision and connectivity from multiple standpoints 
(Izzo et al. 2017), thus ensuring that management practices 
are tailored to species-specific needs. For example, the cryptic 
species diagnosis of two commercially targeted wobbegong 
species in eastern Australia, namely Orectolobus ornatus and 
Orectolobus halei (Huveneers 2006), has allowed species-
specific information regarding differences in distribution, 
reproduction, age, growth, and genetic structure to be incor-
porated into fisheries management (Corrigan et al. 2008, 
2016; Huveneers et al. 2013). 

Recent advances in genetic and morphological species-
discrimination techniques, such as DNA barcoding and otolith 
shape analysis, can aid in resolving cryptic fish-species 
boundaries. DNA barcoding usually involves a comparison 
of the mitochondrial cytochrome c oxidase subunit I (COI) 
gene between different species, with the number of base-pair 
differences between COI sequences acting as an indication of 
the level of genetic separation between different species 
(Hebert et al. 2003). Indeed, this is possible because of the 
utility of the ‘barcoding gap’, where interspecific sequence 
variability for congeneric COI sequences is almost always 
greater than is intraspecific sequence variability (Meyer and 
Paulay 2005). Although COI barcoding can provide a clear 
means of cryptic-species discrimination when morphological 
evidence is sparse, the use of genetic evidence alone to 
confirm cryptic-species status without thorough taxonomic 
assessment has been criticised (Moritz and Cicero 2004) 
and barcoding is more widely accepted when used in 
conjunction with other lines of genetic, morphological, 
behavioural, or ecological data (Padial et al. 2010; DeSalle 
and Goldstein 2019). Otolith shape analysis, involving the 
comparison of inner-ear bone morphology, is well established 
as a stock discrimination technique to compare different 
populations within a single species group (Stransky 2014), 
and has become another tool employed alongside genetic 
and morphological data to better distinguish cryptic fish 
species (Nielsen et al. 2010; Zhuang et al. 2015). 

Cryptic species are common within the globally distributed 
garfish (or ‘halfbeak’) genus Hyporhamphus. Of the 40 species 
within the Hyporhamphus genus, many can be distinguished 
only on the basis of slight differences in body shape 
or number of gill rakers (Supplementary Table S1). The 
small size of gill raker structures in Hyporhamphus species 
makes them difficult to count in the field, which poses 
problems for the discrimination of commercially exploited 
species and could hinder the implementation of species-
specific management practices. One pair of commercially 
important cryptic Hyporhamphus species that face this 
diagnostic dilemma includes the Australian-endemic garfish 
Hyporhamphus australis (Steindachner) and Hyporhamphus 
melanochir (Valenciennes). At present, gill raker count is 
the only diagnostic criterion for delimiting them as unique 
species (Collette 1974). This makes it difficult for recreational 
and commercial fisheries to distinguish between H. australis 
and H. melanochir in southern New South Wales (NSW) 
waters where their distribution is thought to overlap 
(Collette 1974). Species-level classification is important for 
stock management, given documented life-history differ-
ences between the two species (Supplementary Table S2). 
Hyporhamphus australis is a smaller but faster-growing 
species that reaches maturity at a smaller size and younger 
age than H. melanochir (Jones et al. 2002; Stewart et al. 
2005). Current minimum mesh-size restrictions for ocean 
garfish lampara nets in NSW protect H. australis juveniles 
below 20.1-cm fork length (FL) (Stewart et al. 2004); 
however, these management practices are not designed to 
protect immature H. melanochir stocks that may also be 
found in NSW waters. 

Whereas the level of genetic differentiation between 
H. australis and H. melanochir has not been thoroughly 
explored (but see Noell et al. 2001 for brief notes on 
mitochondrial DNA or mtDNA comparison), newer methods 
of discrimination such as DNA barcoding and otolith shape 
analysis could clarify their species boundaries. Using a 
nuclear DNA marker alongside COI barcoding can further 
confirm the extent of their genetic separation and, if 
diagnostic base pair differences are present, identify hybrid 
individuals (Pavan-Kumar et al. 2016). Hybridisation near 
the town of Eden (37°S, southern NSW), where the distri-
butions of H. australis and H. melanochir are likely to overlap, 
has been hypothesised from the collection of a single 
specimen with intermediate morphological traits (Collette 
1974). However, further analysis of the levels of gene 
exchange between the species is necessary to support this 
assumption. 

This study aims to explore genetic and morphological 
differences between H. melanochir and H. australis to 
determine the best method of discrimination between the 
two species and confirm their overlapping distributions in 
southern NSW. Using whole fish and tissue samples collected 
throughout the mainland Australian distributions of both 
species, we assessed differences in the body morphology 
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and otolith shape between the two species alongside genetic 
differences in the mtDNA COI and nuclear TMO-4C4 regions. 
We hypothesise that this integrated taxonomic study will 
identify new genetic and morphological methods to better 
discriminate between H. australis and H. melanochir, and that 
an examination of the COI and TMO-4C4 regions between the 
species may indicate the presence of hybrid individuals. 

Materials and methods 

Sample collection and preparation 

In total, 120 whole fish specimens were obtained from 
recreational and commercial catches across the mainland 
Australian distribution of H. australis and H. melanochir 
(Fig. 1, Table 1, Supplementary Table S3). All specimens 
were stored frozen at −20°C prior to analysis. An additional 
set of tissue and otolith samples was acquired from 187 fish 
(Table 1, Supplementary Table S4) collected by NSW 
Department of Primary Industry (NSW DPI) as part of their 
port-monitoring program between January and July of 2019. 
These samples were chosen to ensure a balanced mix of 
individuals from different age, sex, and size classes from 
each catch. All whole fish were processed at the Australian 
Museum (detailed methods and voucher numbers are 
outlined in the ‘Supplemental detailed sample preparation’ 
section in the Supplementary material). 

All fish samples were obtained from the NSW DPI 
commercial-fishery port-monitoring program. The program 
is exempt from requiring Animal Care and Ethics Approval 
as all fish sampled have been captured and retained for sale 
by licenced commercial fishers working under approved 
fishing practices. 

Genetic analysis – mitochondrial COI 

DNA was extracted from a total of 307 tissue samples by using 
the ISOLATE II Genomic DNA Kit (Meridian Bioscience, 
Cincinnati, OH, USA) following the manufacturer’s protocol. 

A 609-base pair (bp) segment of the mtDNA COI gene 
was amplified with a combination of Fish F1/F2 and Fish 
R2 primers (Supplementary Table S5) following polymerase 
chain reaction (PCR) conditions from Ward et al. (2005). 
All mtDNA amplification by PCR, gel visualisation, and 
Sanger sequencing were performed by the Ramaciotti Centre 
for Genomics at the University of New South Wales in Sydney, 
Australia. The DNA sequences were aligned, edited, and 
trimmed to the same length by using Geneious Prime (ver. 
2020.2.4, see https://www.geneious.com) and deposited in 
the National Centre for Biotechnology Information (NCBI) 
GenBank nucleotide database (GenBank accession numbers 
MZ575768–MZ576070). 

To determine a species ID for each fish and divide samples 
into species groups for downstream analysis, the trimmed and 
edited COI sequences were compared with reference 

Fig. 1. Distribution and sampling locations of Hyporhamphus australis (distribution dotted) and Hyporhamphus melanochir 
(distribution dark grey), with New South Wales Sites 1–8 enlarged. Open circles indicate sampling locations (Eden, the town 
within the 56-km stretch of coastline where both species distributions overlap, is indicated with a star). Site numbers 
correspond with Table 1. Data on species distribution were sourced from the CSIRO CAAB Australian National Fish Expert 
Distributions (CSIRO 2009a, 2009b). 
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Table 1. Summary of sample collection date and type for each location. 

Site number Location Sampling period Latitude and longitude n (tissue and otolith) n (whole fish) 

1 Forster, NSW Mar. 2019–Feb. 2020 32.18°S, 152.51°E  20  10  

2 Tea Gardens, NSW Apr. 2019 32.66°S, 152.15°E  20  – 

3 Nelson Bay, NSW Mar.–Apr. 2019, Aug. 2019 32.72°S, 152.15°E  30  10  

4 Sydney, NSW Apr. 2019 33.87°S, 151.21°E  20  – 

5 Wollongong, NSW Jan.–Mar. 2019 34.43°S, 150.8931°E  26  – 

6 Kiama, NSW Jan.–Feb. 2019 34.67°S, 150.84°E  25  – 

7 Ulladulla, NSW Jan.–Apr. 2019 35.36°S, 150.46°E  26  – 

8 Eden, NSW June–July 2019, May 2018 37.07°S, 149.90°E  20  25  

9 Corner Inlet, VIC Aug. 2019 38.78°S, 146.33°E – 31 

10 Adelaide, SA Feb. 2020 34.93°S, 138.60°E – 20 

11 Perth, WA Apr. 2019 31.95°S, 115.86°E – 24 

Site numbers corresponds with the numbers in Fig. 1. 
NSW, New South Wales; VIC, Victoria; SA, South Australia; WA, Western Australia. 

sequences from GenBank for H. australis (GenBank accession 
number KX781932.1) and H. melanochir (GenBank accession 
number HQ956051.1) by using the Basic Local Alignment 
Search Tool (BLAST; Altschul et al. 1990). Initial comparison 
of these two sequences showed four consistent diagnostic base 
differences between the species. Only sequences with a 100% 
match to either of these reference sequences at these four 
diagnostic bases were assigned to a species group. Twelve 
sequences appeared to have mixed identity on the basis 
of these four diagnostic bases, including three sequences 
with double peaks on their chromatogram traces only at 
these base pair positions, and thus could not be assigned 
definitively to either species. 

All sequences were exported in FASTA format and 
collapsed into haplotypes before conversion into ARLEQUIN 
and NEXUS file formats by using the online tool FaBox 
(see http://www.birc.au.dk/software/fabox; Villesen 2007). 
Unique haplotypes were then imported into jModelTest 
(ver. 2.1.10, see http://evomics.org/learning/phylogenetics/ 
jmodeltest/; Guindon and Gascuel 2003; Darriba et al. 2012), 
which was used with an Akaike information criteria (AIC; 
Bozdogan 1987) to determine the best nucleotide substitu-
tion model for the sequence data. For the mtDNA haplotypes, 
the Tamura–Nei (TrN; Tamura and Nei 1993) model was 
selected for use in subsequent genetic analysis as required. 

To test for differences in genetic diversity between 
H. australis and H. melanochir, ARLEQUIN (ver. 3.5.2.2, see 
http://cmpg.unibe.ch/software/arlequin35; Excoffier and 
Lischer 2010) was used to calculate haplotype (h) and 
nucleotide (π) diversity. These diversity indices were then 
used in an analysis of molecular variance (AMOVA) to deter-
mine global ΦST values with non-parametric permutations 
(n = 99 999). Pairwise ΦST statistics were generated to 
test the significance of differences between locations and 
then adjusted to correct for false discovery rate (as per 
Narum 2006). Fu’s Fs values (Fu 1997) were also calculated 

to test for deviations from neutral sequence evolution, with 
significance being tested using 99 999 permutations. 

To visualise the relationship between haplotypes, the 
genetics software PopART (ver. 1.7, see https://popart. 
maths.otago.ac.nz/; Leigh and Bryant 2015) was used to 
construct a median-joining network, which was produced 
using algorithms and settings according to Bandelt et al. 
(1999). 

The corrected average Kimura two-parameter (K2P) 
pairwise difference between the COI haplotypes of both 
species was calculated in ARLEQUIN and divided by the 
number of base pairs in the sequence to determine the 
mean K2P percentage difference between the COI sequences 
of both species. This difference was then used to estimate 
the time of divergence on the basis of a molecular-clock 
calibration rate for fish of 1.2% COI divergence per million 
years. This calibration rate is rooted in differences between 
the COI regions of sister taxa separated by the rise of the 
Isthmus of Panama c. 3.8 million years ago (Bermingham 
et al. 1997) and has been used to estimate the time of 
divergence for a variety of marine fish species (Lessios 
2008; Tea et al. 2019; Delrieu-Trottin et al. 2022). To 
confirm that the K2P mean difference and time of 
divergence were supported by the model of nucleotide 
substitution that was chosen in jModelTest to best fit our 
species (i.e. Tamura–Nei), this approach was repeated using 
the corrected average TrN pairwise difference calculated in 
ARLEQUIN, which produced identical results (Supplementary 
Table S6). 

To contextualise genetic differences within the genus, the 
mean K2P percentage difference and approximate time of 
divergence was then calculated for all other species within 
the Hyporhamphus genus with available reference sequences 
on GenBank and compared to our two study species. All COI 
sequences over 600 bp long for 12 Hyporhamphus species 
were downloaded from GenBank, then aligned and trimmed 
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in Geneious Prime (Supplementary Table S7). Aligned 
sequences were then exported, collapsed into haplotypes, 
and converted to ARLEQUIN file format by using FaBox. 
This sequence-editing workflow was repeated for each species 
to construct a pairwise table of mean K2P percentage difference 
and approximate time since divergence between each species. 
These methods were then repeated using the corrected average 
TrN pairwise difference as above (Table S6). 

Genetic analysis – nuclear TMO-4C4 

A 450-bp segment of the nuclear DNA TMO-4C4 gene was 
amplified using primers TMO_f1_5 and TMO_r1_3 and PCR 
conditions outlined in Streelman and Karl (1997) prior to 
sequencing at the Ramaciotti Centre for Genomics (see the 
‘Supplemental detailed genetic methods’ section in the 
Supplementary material and Table S5). All TMO-4C4 
sequences were aligned, trimmed and visually inspected for 
base ambiguities in Geneious Prime and deposited in the NCBI 
GenBank nucleotide database (GenBank accession numbers 
MZ580145–MZ580399). Any alignments with ambiguous 
base calls were edited against their reverse complement for 
base confirmation, and all alignments with <70% high-
quality bases were excluded from further analysis (n = 16). 
After exporting sequences in FASTA format, the allelic states 
of these nuclear sequences were inferred using the Bayesian 
algorithm PHASE (ver. 2.1, see https://stephenslab.uchicago. 
edu/phase/download.html; Stephens et al. 2001; Stephens 
and Donnelly 2003) implemented within the software 
DnaSP (ver. 6.12.03, see http://www.ub.edu/dnasp/; Rozas 
et al. 2017). Three runs in PHASE (100 000 iterations) 
with a burn-in of 10 000 all returned consistent allelic 
identities, and PHASE was able to resolve most alleles 
with 100% certainty. Individuals with <80% certainty at 
single nucleotide positions were removed from further 
analysis (n = 34 individuals, 13% of total samples). Allelic 
sequences were then exported in FASTA file format, 
collapsed into unique alleles, and converted into ARLEQUIN 
file format with FaBox prior to genetic analysis. 

AIC analysis of unique TMO sequences in jModelTest also 
resulted in the selection of the TrN model, which was used 
in ARLEQUIN to calculate diversity indices (h and π), Fu’s 
Fs-values and AMOVA statistics to complement those 
performed for the mitochondrial COI gene. 

Morphological analysis – body morphometrics 
and meristics 

Following formalin preservation, 14 morphometric measure-
ments and 6 meristic counts were recorded for each whole 
fish. All characters measured were taken from past comprehen-
sive studies of other Hyporhamphus species (Collette 1974; 
Banford 2010; Table 2). Measurements were recorded to the 
nearest 0.1 mm with digital callipers, and vertebrae were 
counted from the X-rays taken of each specimen at the 
Australian Museum, visualised using Adobe Illustrator. X-Rays 

Table 2. List of all meristic and morphometric characters measured 
on Hyporhamphus australis and H. melanochir. 

Item Abbreviation Description 

Meristic character 

Dorsal fin rays DOR All elements counted 

Anal fin rays ANA All elements counted 

Pectoral fin rays P1 All elements counted 

Vertebrae VERT Precaudal + Caudal = total 
includes hypural as last 
vertebrae 

Gill rakers on first arch RGR1 All on right side 

Gill rakers on second 
arch 

RGR2 All on right side 

Morphological character 

Standard length SL Tip of upper jaw to caudal 
base 

Lower-jaw length LJL Tip of upper jaw to tip of 
lower jaw 

Upper-jaw length UJL Tip of upper jaw to where 
upper jaw bends 

Upper-jaw width UJW Measured where upper jaw 
bends 

Head length HDL Tip of upper jaw to 
posterior end of opercular 
membranes 

Pectoral fin length P1L Base of uppermost pectoral 
ray to tip of longest ray 

Dorsal fin base length DBASE Origin of fin to last ray 

Anal fin base length ABASE Base length of anal fin 

Pectoral–pelvic length P1-P2 Distance from origin of 
pectoral fin to origin of 
pelvic fin 

Pelvic–caudal length P2-C Distance from origin of 
pelvic fin to caudal base 

Body depth 1 BD P1 At origin of pectoral fin 

Body depth 2 BD P2 At origin of pelvic fin 

Diameter of soft orbit ORB Soft orbit diameter 

Preorbital length PREORB Corner of mouth to anterior 
margin of orbit 

All characters and descriptions have been taken from past studies by Collette 
(1974), Banford (2010) and Banford and Collette (1993). 

were also used to corroborate the dorsal and anal fin ray  counts  
taken directly from specimens. 

All data were partitioned into species groups for analysis in 
R (ver. 4.0.4, R Foundation for Statistical Computing, Vienna, 
Austria, see https://www.R-project.org/), on the basis of the 
species diagnosis obtained from the COI analysis. Any 
samples that could not be diagnosed as either species were 
excluded from further morphological analysis. 

Multivariate principal component analysis (PCA) was 
performed on morphometric and meristic data separately, 
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to visually assess the degree of morphological difference 
between each species and identify which morphological 
characters had the greatest variation. To reduce the effect 
of allometric differences among individuals and species, 
all morphometric measurements were log-transformed 
and regressed against the corresponding log-transformed 
standard length to obtain residual values for use in PCA. 
Logarithmic transformations were performed to reduce the 
scaling effects between standard length and residual variance. 
Scores for the first two principal components were visualised 
as bivariate plots, and factor loadings of each variable 
were used to assess their contribution to PC variation (see 
Tea et al. (2019) for a similar transformation and analysis). 

To assess significant differences in the meristic counts 
of each species, histograms and summary tables of the most 
important variables contributing to factor loadings along 
the first axis were constructed. The size-adjusted mean 
morphometric variables for each species were compared by 
performing an analysis of covariance (ANCOVA) on each 
variable. All measurements were log-transformed to meet 
assumptions of normality and reduce scaling effects, and 
any observations whose standardised residuals were >3 
were considered outliers and excluded from that analysis. 
Bonferroni adjustments were applied to the resulting 
P-values to adjust for multiple testing. Morphological vari-
ables identified as significantly (P ≤ 0.003) different 
were then visualised as boxplots to further explore differences 
among species and locations. 

Morphological analysis – otolith shape 

All otoliths were photographed using a Leica IC80 HD camera 
mounted on a Leica M125 dissecting microscope. Left-side 
sagittal otoliths were positioned distal side up with their 
rostrum horizontally aligned, on a black background (Fig. S1). 
Any otoliths that had broken in storage were pieced together 
under the microscope by using tweezers. Adobe Photoshop 
(ver. 22.2.0, Adobe Inc., San Jose, CA, USA) was used to 
align and stitch together these fragments to reconstruct the 
shape outline. In cases where the left-side otolith was missing 
or broken and the right-side one was intact, the right-side 
otolith was photographed, and Adobe Photoshop was used 
to flip the image to align horizontally with the other 
samples (see Steer and Fowler 2015 for similar methods on 
H. melanochir otoliths). Data were partitioned into species 
groups prior to analysis on the basis of the results from COI 
barcoding. 

To extract otolith contour outlines and transform them 
into independent coefficients by using discrete wavelet 
analysis, all photographs were processed using the R package 
ShapeR (ver. 0.1.5, see https://cran.r-project.org/package= 
shapeR; Libungan and Pálsson 2015). The mean otolith 
shape for each species was plotted, and coefficients that 
showed an interaction with fish length (n = 6) were removed 
to adjust each otolith shape with respect to allometric 

relationships with fish length. To analyse the variation in 
otolith shape between the two species, a permutational 
multivariate analysis of variance (PERMANOVA) was applied 
to the length standardised wavelet coefficients by using the 
R package vegan (ver. 2.5.6, J. Oksanen, F. G. Blanchet, 
M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, 
R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, 
E. Szoecs, and H. Wagner, see https://cran.r-project.org/ 
web/packages/vegan/). Assumptions of equal variance among 
groups were checked with a dispersion test by using the 
function ‘betadisper()’. No differences were detected between 
the outlines of the photoshopped and non-photoshopped 
files (PERMANOVA, P > 0.1 for all locations, Supplementary 
Table S8). Random forest classification analysis was then 
performed on these coefficients by using the R package 
randomForest (ver. 4.6.14, see https://cran.r-project.org/ 
package=randomForest; Liaw and Wiener 2002) to determine  
the error rate of classification of individuals to their 
species group. 

Species discrimination 

To assess the potential use of morphological variables as 
diagnostic markers, classification trees were constructed 
using the R packages rpart (ver. 4.1.15, T. Therneau and B. 
Atkinson, see https://CRAN.R-project.org/package=rpart) 
and rpart.plot (ver. 3.0.9, S. Milborrow, see https://CRAN. 
R-project.org/package=rpart.plot). Ratios were constructed 
among key variables identified from PCA and ANCOVA to 
account for differences in standard length among samples 
and to attempt to increase the strength of differences in 
variables among the species. Trees with diagnostic error 
rates were then constructed separately for meristic counts 
and ratios of key measurements to compare the probability 
of correct diagnosis between both methods. To reduce the 
impact of differences in sample size between species on 
probability estimates and account for potential geographic 
variation in H. melanochir morphology, only data from 
NSW and Victoria were used to construct classification trees 
(see Table 1, Sites 1–9). 

Results 

Genetic analysis – mitochondrial COI 

The mitochondrial COI fragment for H. australis amplified in 
this study differed from that of H. melanochir by 0.66%. On 
the basis of a 1.2% per million year rate of divergence 
calibrated with the COI gene and the rise of the Isthmus of 
Panama (Bermingham et al. 1997), our study suggests that 
the two species may have separated c. 500 000 years ago. 
Comparison of this pairwise genetic difference with other 
species in the genus indicates that, of the 12 Hyporhamphus 
species found on GenBank, H. australis, H. melanochir and 
the New Zealand endemic H. ihi are the most closely 
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related on the basis of COI (Table 3). Because there was only a 
single haplotype present on GenBank for H. australis and 
H. melanochir, the difference between these samples 
was slightly higher than the results from our overall 
sampling efforts (0.7% difference, indicating separation c. 
600 000 years ago, Table 3). Average conspecific (within-
species) differentiation at COI was only 0.03% for H. australis 
and 0.04% for H. melanochir. 

The low genetic divergence observed among and 
within species groups is supported by the median-joining 
haplotype network (Fig. 2a). Within each species group, 
one major haplotype was dominant (Fig. 2a). Haplotypes 
among species consistently differed at the four diagnostic 
nucleotides, whereas haplotypes of conspecifics differed by 
no more than two nucleotide substitutions. No haplotypes 
attributed to H. australis were found outside of NSW; 
however, the dominant H. melanochir haplotype (Fig. 2a) 
was found in NSW regions outside of their overlapping 
distribution at Eden (n = 4 samples, one each from Tea 
Gardens, Nelson Bay, Kiama, and Ulladulla). Aside from 
these four samples, Eden was the only location with a 
complete overlap in haplotypes from both species (Fig. 2a). 
The COI sequence data showed 13 haplotypes for H. australis 
and six for H. melanochir, with a small number of intermediate 
haplotypes (n = 3) that could not be attributed to either 
species group. One haplotype was found across multiple 
locations (Tea Gardens, Eden, Victoria, and Adelaide), and 
two were found only in Eden. Of the two intermediate 
haplotypes unique to Eden, one haplotype shared by three 
individuals had double peaks on their chromatogram traces 
at all diagnostic bases between the two species. 

AMOVA confirmed that there were significant genetic 
differences between the two species that explained 95% of 
the variation in haplotype diversity (overall ΦST = 0.95, 
P < 0.001, Supplementary Table S9). Population pairwise 
tests among all samples grouped by location showed that 
Eden was the only population that differed significantly 
from populations at all other geographic sites (Fig. 3, 
Supplementary Table S10). Victorian, South Australian, and 
Western Australian populations were significantly different 
from all NSW populations, but not from each other. All NSW 
populations (except for Eden) were also not significantly 
different from one another. Indeed, within each species 
group, there were no significant differences among locations 
(H. australis: overall ΦST = 0.005, P = 0.153; H. melanochir: 
overall ΦST = 0.04, P = 0.057; Table S9). 

When comparing across all locations, the haplotype 
diversity (h) of  H. melanochir was approximately 50% higher 
than that of H. australis, whereas nucleotide diversity (π) was 
the same for both species (Supplementary Table S11). Tests of 
neutrality showed negative and significant Fu’s Fs values for 
both species; within each species group, values of h, π and 
Fs varied across locations (Table S11). Within the H. australis 
group, the populations sampled at Forster, Nelson Bay, 
Wollongong, and Eden all had higher haplotype diversity and 
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Fig. 2. Median-joining network showing relationships (a) among mitochondrial COI haplotypes and (b) nuclear 
TMO-4C4 alleles for Hyporhamphus australis and H. melanochir. Each circle represents a haplotype or allele, and the 
circle size indicates the frequency of that haplotype or allele. The colours within circles indicate the location of 
origin of that haplotype or allele. Location numbers correspond with Table 1 and the map insert (Eden, the area 
where both species distributions overlap, is indicated with an arrow). Branches and black cross-bars represent a 
single nucleotide change. 

significant Fs values (Table S11). Within the H. melanochir 
group, Eden had the highest haplotype and nucleotide 
diversity, but significant Fs values were seen only in the 
Victoria and South Australia populations (Table S11). 

Genetic analysis – nuclear TMO-4C4 

The nuclear TMO-4C4 sequences of 221 garfish individuals 
showed 15 alleles, of which 8 were found in both species, 

with approximately equal allelic and nucleotide diversities 
(Table S11). Hyporhamphus melanochir from Eden and 
Western Australia were the only groups that contained 
unique alleles, and had significant and negative Fs values 
(Fs = −3.24 and −3.28 respectively; Table S11). 

AMOVA analysis and visualisation of the median-joining 
network based on the TMO-4C4 alleles indicated that there 
was no significant genetic difference between species 
(P = 0.09) or locations (P = 0.47; Supplementary Table S12, 
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Fig. 3. Heatmap of pairwise FST values based on mitochondrial DNA COI sequence data for 
Hyporhamphus australis and H. melanochir sampled at 11 locations throughout their mainland 
coastal distribution in Australia. Colours correspond to FST values as indicated in the legend. 
Numbers along the x-axis correspond with sampling location numbers shown in Fig. 1 and the 
map insert (Eden, the area where both species distributions overlap, is indicated with an arrow). 
Grey boxes surrounding sampling locations indicate groups of locations that do not significantly 
differ from one another, but which differ significantly from other grey location groups 
(P ≤ 0.003, Table S10). 

Fig. 2b). Two major alleles dominated at all locations across 
both species, which differed by only one nucleotide substitu-
tion (Fig. 2b). 

Morphological analysis – body morphometrics 
and meristics 

PCA showed clear distinctions between the meristic 
characters of the two species (Fig. 4a). Individuals were 
separated into species groups along the PC 1 axis, which 
accounted for 41.4% of the total variance (Fig. 4a). Gill 
raker counts on the first and second arch contributed 
the most to the factor loadings of PC 1 (−0.8 and −0.87 
respectively; Supplementary Table S13). 

The PCA of morphometric characters indicated separation 
between the species but with a considerable amount of 
overlap along the PC 2 axis, which accounted for 16.4% of 
the total variance (Fig. 4b). Preorbital length and upper-jaw 
length both contributed the most to factor loadings of PC 2 

(−0.74 and −0.65 respectively; Supplementary Tables 
S14, S15). 

Mean gill raker counts differed between the two species, 
with H. australis presenting higher mean gill raker counts 
on both the first and second gill arches (Fig. 5, Table 4). 
Mean vertebral counts also differed between the species; 
however, H. melanochir showed a significant amount of 
within-species variation among locations (Fig. 5). Vertebral 
counts were lower across the entire range of H. australis v. 
those for H. melanochir individuals from the geographically 
closest locations (Eden and Victoria), but there was no 
clear difference between vertebral counts of H. australis and 
H. melanochir from more distant locations (South Australia 
and Western Australia; Fig. 5, Table 4). Although dorsal 
fin rays were identified in PCA as contributing to factor 
loadings along the PC 1 axis, there was a high degree of 
overlap between the two species (Fig. 5). 

ANCOVA showed that, of the 13 morphometric measure-
ments examined, there were significant differences between 
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Fig. 4. Plots of the first two principal components from a principal component analysis (PCA) of (a) six meristic characters and (b) 13  
morphometric characters based on 30 specimens of Hyporhamphus australis and 81 specimens of H. melanochir. Arrows and labels indicate 
variables, names correspond with characters in Table 2. Arrow length is proportional to the contribution of variables to PC variation. 

the group means of only three measurements, namely, head 
length, upper-jaw length, and preorbital length (P < 0.003; 
Supplementary Tables S16, S17). Hyporhamphus australis 
was found to have a larger head size than was H. melanochir, 
which was driven by its longer upper-jaw and preorbital 
length (Fig. 6). There was no significant difference in 
the orbital diameter or distance between the orbit and the 
posterior end of the opercular membrane between the species 
(P = 0.5 and 0.08 respectively; Tables S16, S17). ANCOVA 
also showed a significant difference in the mean pectoral fin 
length between the species (P < 0.003; Tables S16, S17), but 
owing to the small effect size and high degree of overlap in the 
range of lengths for each group, this trait was deemed to be an 
unsuitable diagnostic feature (ges = 0.08, Tables S16, S17, 
Fig. S2). 

In general, both species maintained these differences in 
characteristics even within areas where their distributions 
overlapped (Eden, Fig. 6). Difference in upper-jaw length was 
more pronounced between species in Eden than between 
species from more geographically distant populations, but 
there was more overlap in preorbital length between species 
in Eden than between species from other locations (Fig. 6). 
Although the mean upper-jaw and preorbital lengths were 
significantly different between the two species, there was 
still a considerable amount of overlap in these characters 
(Fig. 6). 

Morphological analysis – otolith shape 

PERMANOVA showed significant variation in otolith shape 
between the two species (P = 0.001; Supplementary Table 
S18). Wavelet reconstruction of mean otolith shape showed 

that the otoliths of H. australis tend to have a slightly 
longer, more pointed rostrum than do those of H. melanochir 
(Fig. 7). 

Random forest classification based on wavelet coefficients 
resulted in assignment to species with a high degree of success 
(~88%; Supplementary Table S19). The within-class error 
was substantially lower for H. australis than H. melanochir 
(5.49 and 28.99% respectively; Table S19), suggesting a 
higher variability in H. melanochir otolith shape. 

Species discrimination 

Classification trees using data from NSW and VIC popula-
tions showed that, although it is possible to distinguish 
between the species on the basis of ratios of head charac-
teristics, gill raker counts remain the most accurate method 
of diagnosis between the two species (Fig. 8). The number 
of gill rakers on the second arch alone were enough to 
distinguish between the species with ~92% accuracy, 
whereas ratios of four separate measurements had a lower 
accuracy rate of ~89% (Fig. 8). These classification trees 
provide a more accurate species diagnosis than does otolith 
shape (Table S19); however, owing to the higher degree of 
overlap in morphological measurements between the 
species (see Fig. 6), gill rakers should be used to distinguish 
between species wherever possible. 

Discussion 

This study has demonstrated the use of an integrative 
taxonomic approach to separate two cryptic halfbeak species 
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Fig. 5. Histograms showing the difference in gill rakers, vertebrae, and dorsal fin rays of Hyporhamphus australis and H. melanochir samples 
across locations. Numbers next to each location name correspond to site numbers in Fig. 1 and Table 1. Dashed lines indicate group means. 
Numbers in parentheses indicate sample sizes. 

Table 4. Summary of differences in meristic characters between Hyporhamphus australis and H. melanochi. 

Species Gill rakers (first arch) Gill rakers (second arch) Vertebrae Dorsal fin rays 

Hyporhamphus Usually ≥34 (75% of 28 Usually ≥27 (89% of 27 55–57 Usually 15–16 
australis specimens examined) specimens examined) 

Hyporhamphus Usually ≤33 (93% of 78 Usually ≤26 or less (91% of 57–59 (Eden and Victoria) Usually 16–17 
melanochir specimens examined) 78 specimens examined) 56–58 (Adelaide and Perth) 
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Fig. 6. Violin plots displaying the differences between the head length, preorbital length and upper-jaw length of 
Hyporhamphus australis and H. melanochir grouped by (a) location and (b) pooled in species groups, standardised to 
account for differences in standard length. Plots display the residuals of log-measurements plotted on log-length, not 
raw measurements. Shaded areas represent kernel-utilisation distributions. Numbers next to each location name 
correspond to site numbers in Fig. 1 and Table 1. Numbers in parentheses indicate sample size. Measurements align 
with (c) the diagram of the heads of a typical H. australis and H. melanochir specimen displaying differences in (a) the  
upper-jaw length, (b) preorbital length, and (c) head length. Drawn in Adobe Photoshop by I. Riley. 
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Fig. 7. Mean otolith shape based on wavelet reconstruction for Hyporhamphus australis (n = 176) 
and H. melanochir (n = 86). Numbers represent angles in degrees based on polar coordinates. The 
centroid of the otolith (centre of the cross) is the centre point of the polar coordinates. 

Fig. 8. Classification trees for diagnosis between Hyporhamphus australis and H. melanochir using (a) second-arch 
gill raker counts and (b) ratios of body measurements. Each tree should be read from top to bottom and shows the 
number or value of each trait that is usually found in individuals from each species (e.g. Fig. 8a shows that H. australis 
usually has 27 or more gill rakers on their second gill arch, whereas H. melanochir usually has fewer than 27). The 
numbers on each branch correspond with the count or measurement (mm) of the label (trait) above it. The base 
nodes indicate the probability that samples belong to the fitted species class. The numbers below each node 
indicate the number of H. australis (AU) and H. melanochir (ME) samples assigned to each predicted species class. 

with overlapping distributions. Hyporhamphus australis has provided new methods to discriminate between the 
species and has confirmed that their distributions overlap 
in southern NSW. The identification of both H. melanochir 
and H. australis in landings from southern NSW has 
important implications for fisheries management, both 
providing new morphological methods to determine the 
species caught in landings around Eden and highlighting 

and H. melanochir are a cryptic halfbeak species pair with 
consistent differences in their mtDNA COI gene regions that 
align with differences in the number of gill rakers, head 
length, and otolith shape. Although these differences are 
modest, they reinforce previous findings (Collette 1974) 
and confirm the taxonomic status of both species. Our study 

137 

www.publish.csiro.au/mf


I. J. Riley et al. Marine and Freshwater Research 

the potential need for changes into catch regulation to 
accommodate the growth rates and life-history strategies of 
H. melanochir stocks in NSW. 

Genetic differences 

The shallow divergence in the mtDNA COI gene region 
and the lack of difference in the nuclear TMO-4C4 gene 
suggests that these two species have only recently diverged 
from each other relative to other species in the Hyporhamphus 
genus. A relatively short period of evolutionary isolation may 
not have allowed enough time for differences to develop in the 
nuclear genome since mtDNA has an effective population size 
approximately one-quarter that of nuclear markers (Hurst and 
Jiggins 2005) and, therefore, mutates at a faster rate. The low 
levels of genetic divergence identified among H. australis, 
H. melanochir and the New Zealand endemic species H. ihi 
suggest that these three species have only recently diverged 
from one another on an evolutionary time scale. 

The estimated time point of divergence c. 500 000 years 
ago is consistent with the assumed allopatric speciation of 
H. australis and H. melanochir across the Bass Strait 
(Collette 1974). During periods of low sea level associated 
with Plio-Pleistocene glacial maxima, the Bassian Isthmus is 
thought to have acted as a land bridge connecting Tasmania 
to south-eastern Victoria (Dartnall 1974; Lambeck and 
Chappell 2001). The hypothesis that the Bassian Isthmus 
created a biogeographical barrier fragmenting marine popula-
tions (Hedley 1904) is supported by genetic signatures 
of historical isolation in other marine species (DiBattista 
et al. 2014; Wilson et al. 2017). Since complete submergence 
of the Isthmus c. 14 000 years ago (Lambeck and Chappell 
2001), a combination of demersal spawning and contem-
porary oceanographic features may have sustained these 
patterns of historical vicariance. The complex convergence 
of the East Australian Current (EAC) and South Australian 
Boundary Current has been shown to limit colonisation and 
dispersal in other marine species separated historically by 
the Bassian Isthmus (Waters 2008; Colton and Swearer 
2012). Both H. melanochir and H. australis are demersal 
spawners, and their substrate-adhesive eggs and well 
developed larvae may increase the likelihood of early life-
stage retention within seagrass habitats (Jones et al. 2002; 
Stewart et al. 2005), thus likely limiting passive dispersal 
by coastal currents. 

Both H. australis and H. melanochir are found concurrently 
in southern NSW (Eden), making this an area of secondary 
contact between these cryptic species. The formation 
of hybrid zones resulting from secondary contact is not as 
rare as previously considered, especially in closely related 
marine species at the borders of biogeographic provinces 
(Hobbs et al. 2009, 2022; Montanari et al. 2014). Eden is 
located on the extremities of two such biogeographic 
provinces, namely, the eastern Peronian and southern 
Maugean, in an area of transition between warm and cool 

temperate waters (Poore and O’Hara 2007). Although little 
research has been conducted into the hybridisation of other 
marine fish around Eden, genetic signatures of introgression 
resulting from secondary contact after isolation have been 
discovered within the cuttlefish species Sepia apama in 
southern NSW (Kassahn et al. 2003). Eden is also an area 
of overlap of two distinct stocks of the commercially 
important snapper Chrysophrys auratus, with the suggestion 
of admixture and interbreeding (Morgan et al. 2018) around  
this area. Hybridisation at Eden was first suggested by 
Collette (1974) and is supported by the presence of individuals 
in this study with intermediate mtDNA haplotypes in Eden 
and adjacent areas of NSW. Four samples identified as 
H. melanochir from NSW may also represent backcrossed 
individuals, but this cannot be confirmed because of the lack 
of diagnostic nuclear DNA differences between the species. 
Future studies should focus on the development of a panel of 
single nucleotide polymorphism (SNPs) markers, because 
their high abundance and genomic coverage often enable 
the detection of fine-scale genetic differences, hybridisation, 
and introgression between overlapping species (Gaither 
et al. 2015). 

Species discrimination 

The largely allopatric distributions of H. australis and 
H. melanochir means that species identity can almost always 
be determined from an individual’s location of origin. 
However, the confirmation of a spatial and temporal species 
distribution overlap from the 56 km of coastline surrounding 
Eden, as well as the presence of a H. melanochir specimen 
from ~500 km north of their previous known range, makes 
diagnostic criteria essential for species identification. 

Counting gill rakers remains the most reliable morpho-
logical method to distinguish these two species, and gill 
raker numbers should be retained as their standard diagnostic 
feature. These small structures are difficult to count without 
training and the aid of a microscope, but provide higher 
accuracy than morphological ratios. We recommend that gill 
raker counts should be integrated into the current landings 
monitoring conducted by NSW DPI, to better understand 
the proportions of both species from catches in southern 
NSW. Morphological ratios can also be used to discriminate 
between specimens in circumstances (e.g. in the field) where 
gill rakers may be difficult to accurately count. However, 
these ratios should be used with caution because of the 
unknown level of phenotypic plasticity in the species’ morpho-
logical traits and their larger degree of overlap. Owing to the 
low number of individuals in this study from Eden (n = 25), 
the decision trees contain data from samples across NSW and 
Victoria; therefore, future studies should aim to use a much 
larger sample size taken across all seasons in the area of 
overlapping distributions. 
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Morphological difference 

The slight morphological differences found between the 
species and the lack of integration of characters from the 
closest geographic populations support a hypothesis of 
recent divergence and reinforce previously published 
findings (Collette 1974). Most meristic and morphological 
traits in fish are heritable, but they are also influenced by 
environmental factors affecting diet, ontogeny, and growth 
(Swain et al. 2005). Differences in gill raker number, 
jaw length, and skull structure in fish species are often 
attributed to adaptive divergence and radiation, because 
these functional morphological traits are directly related to 
feeding behaviour and trophic niche use (Harrod et al. 2010; 
Parsons et al. 2011). Both H. australis and H. melanochir are 
omnivorous, feeding on Zostera seagrass and hyperbenthic 
crustaceans (Table S2), and differences in prey size and 
availability across their distributions may be a factor driving 
the differences in their gill raker counts, and upper-jaw, and 
preorbital lengths. 

Vertebrae numbers are highly heritable in fish but are also 
influenced by environmental conditions during ontogeny 
(Swain et al. 2005). The high variability in vertebral counts 
within H. melanochir may be a plastic response to abiotic 
differences across the species latitudinal distribution, 
because differences found in vertebral counts are consistent 
with an increase in the number of fish vertebrae with an 
increasing latitude (i.e. Jordan 1891). The mechanism 
behind this pattern is unknown, but it is likely to be due to 
a combination of a longer ontogenetic development and 
larger body sizes in cooler waters (reviewed by McDowall 
2008). 

Our study also found significant differences in the 
mean otolith shapes between the two species. As is the case 
for other morphological features, both environmental and 
genetic influences have been shown to induce changes in 
otolith shape (Vignon and Morat 2010). This may be due to 
the direct and indirect effects of these factors on growth 
rates, which have been shown to significantly affect otolith 
shape in other fish species (Stransky 2014; Rodgveller et al. 
2017). Differences in growth rates between the species 
may therefore contribute to their different otolith shapes, 
with H. australis having a faster growth rate than has 
H. melanochir (230 mm FL and 160–180 mm FL at 1 year 
of age respectively; Jones et al. 2002; Stewart and Hughes 
2007; Table S2). 

Taxonomic considerations 

The corroborative genetic and morphological differences 
between H. australis and H. melanochir are reinforced by 
differences in their growth and life history. Hyporhamphus 
australis achieves smaller maximum sizes overall but 
grows faster and  reaches maturity at smaller  sizes and  
younger ages than does H. melanochir (Jones et al. 2002; 

Stewart et al. 2004; Table S2). Both species also have 
seasonal differences in their reproductive peaks, although 
there is a small degree of overlap owing to their protracted 
spawning seasons (Jones et al. 2002; Stewart and Hughes 
2007; Table S2). Together, these differences clearly show 
that H. australis and H. melanochir are two distinct groups 
of fish for management purposes; however, the question 
remains as to whether  these  fish should be considered 
different species. 

There are three reasons that could potentially be used to 
justify the revised classification of these populations as 
subspecies or stocks rather than species. First, the degree of 
genetic differentiation between this species pair (average 
K2P percent difference = 0.66%) is much lower than that of 
other species in the Hyporhamphus genus (Table 2) and 
among other congeneric species found in Australia (average 
K2P percentage difference = 9.93%; Ward et al. 2005). 
Second, the presence of intermediate COI haplotypes 
suggests hybridisation and potential introgression between 
the species, which goes against the criteria of reproductive 
isolation, which is needed to delimit species boundaries under 
the biological species concept (Mayr 1942). Finally, the 
morphological features that do distinguish the species have 
very small degrees of difference and exhibit some overlap. 

However, a subspecies classification of H. australis and 
H. melanochir does not consider the multiple lines of 
evidence found in our study that separate them, and this 
reclassification would go against standards employed across 
fish taxonomy and within the Hyporhamphus genus. Although 
the average K2P percentage difference between H. australis 
and H. melanochir is relatively low, their between-species 
difference (0.66%) is ~18× higher than their average 
intraspecific differences (0.03 and 0.04%, respectively). 
Comparing these interspecific and intraspecific differences 
can provide a threshold to delimit potential species bound-
aries. Hebert et al. (2004) proposed a standard threshold 
of interspecific difference at 10× that of intraspecific 
difference to flag provisional species, which would suggest 
H. australis and H. melanochir are different species, but a 
threshold of intraspecific to interspecific difference alone 
is not enough evidence to justify their species status 
(Moritz and Cicero 2004). The taxonomic status of this 
cryptic species pair is instead confirmed by the corrobora-
tion between their genetic separation, differences in 
morphology and life history, as well as the maintenance of 
distinct traits even in geographically proximate locations. 
Subspecies classification would be an unsuitable assignment 
in this case because it is rarely used in fish taxonomy and is 
usually based only on discrete (i.e. allopatric) distributions 
(Collette 1974; Haig et al. 2006). 

Implications 

The distributional overlap of H. australis and H. melanochir 
in Eden has significant implications for local fisheries 

139 

www.publish.csiro.au/mf


I. J. Riley et al. Marine and Freshwater Research 

management. Although the increase in lampara net mesh size 
from 25 to 28 mm and a reduction in fishing effort in NSW 
between 2004 and 2015 has successfully reduced the 
fishing mortality of H. australis (Broadhurst et al. 2018), 
these practices are not designed to accommodate the different 
age and size at maturity of H. melanochir (Table S2). The study 
that determined the optimal mesh size for H. australis also 
found that a larger 32-mm mesh size selected 50% of fish at 
24.5 cm FL, which would effectively prevent the retention 
of juveniles from both species; however, this mesh type also 
resulted in lowered catch rates and damage to export 
quality fish (Stewart et al. 2004). Going forward, fisheries 
management in Eden will need to weigh the potential 
benefits of further increasing the minimum mesh-size limits 
to protect immature H. melanochir against the negative 
effect this could have on fishery catch rates. 

Our study was able to show the presence of H. melanochir 
in Eden only in winter, and further research is needed to 
establish whether this presence is maintained year-round 
and explore the potential for spawning overlap. Future 
studies should also aim to examine traits from freshly 
caught fish, because the lower jaws of most of our study 
specimens snapped while frozen and these measurements 
were unable to be included in analysis. Collette (1974) 
noted that H. australis has a relatively longer lower jaw 
than does H. melanochir at larger sizes, but did not find a 
significant difference in their mean lengths. 

The impact of these management implications may 
seem localised, but they could become much broader in the 
face of potential climate change-driven shifts in species 
distributions. The warming rates of western boundary 
currents such as the EAC are two to three times faster than 
that of the global sea-surface mean, and current flows are 
also intensifying (Wu et al. 2012; Malan et al. 2021). 
Changing EAC flows could shift the range of H. australis, 
which already moves up and down the NSW coast following 
seasonal fluctuations in the strength and temperature of 
the EAC (Stewart and Hughes 2007), which pushes the 
species further south across management jurisdictions. 
Similar range shifts have already been observed for many 
other species in this region (reviewed by Gervais et al. 
2021). Although the smaller size and age at maturity of 
H. australis would likely mean that Tasmania’s current 
management strategies for H. melanochir are conservative 
enough to protect the juveniles of both species, their 
introduction may have unforeseen impacts on the genetic 
or population structuring of local stocks. Even if separate 
management strategies are difficult or ineffective to 
implement within a mixed fishery, exploring the potential 
presence of both species in both Eden and Tasmania can 
give a better assessment of the true sustainability of the 
fishery to all stocks present, as is currently recommended 
for other fisheries that contain cryptic species complexes 
(Huveneers 2006; Saha et al. 2017). 

Our study demonstrated the need for discrimination of 
cryptic species at multiple levels to validate species-level 
taxonomic assignment. When comparing these two species 
at a morphological and functional level, there are consistent 
differences between them that validate a distinct taxonomic 
classification. As De Queiroz (2007) showed in advocating 
for a unified species concept, these differences are properties 
that divergent species acquire in the process of lineage 
separation, which together provide evidence of speciation 
regardless of traditional species concepts. Studies into cryptic 
species should adopt similar integrative methods to those 
employed here, to reinforce species boundaries and aid in 
conservation and management. 

Supplementary material 

Supplementary material is available online. 
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