Emu Emu Society
Journal of BirdLife Australia
REVIEW

Quantitative genetics research in Zebra Finches: where we are and where to go

Barbara Tschirren A and Erik Postma B C
+ Author Affiliations
- Author Affiliations

A Department of Animal Ecology, Sölvegatan 37, Lund University, S-223-62 Lund, Sweden.

B Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.

C Corresponding author. Email: erik.postma@ieu.uzh.ch

Emu 110(3) 268-278 https://doi.org/10.1071/MU09092
Submitted: 16 September 2009  Accepted: 12 January 2010   Published: 18 August 2010

Abstract

The ease with which Zebra Finches can be kept and bred in captivity makes them a suitable model for avian quantitative genetic studies. After a brief introduction to some quantitative genetic concepts, we here provide an up-to-date overview of quantitative genetic studies in Zebra Finches. We discuss what these studies can teach us about the evolutionary and behavioural ecology of Zebra Finches and song birds in general, and make suggestions for future research. Throughout this article we plead for a greater appreciation of the advantages offered by working on captive birds, but also discuss their limitations. Although quantitative genetic analyses in natural populations are becoming increasingly powerful, these studies lack the control possible in captivity. However, obtaining meaningful estimates of the type and strength of selection acting on phenotypic variation is more difficult in captivity. Hence, quantitative genetic studies in the wild and captivity each have their strengths and weaknesses and should be considered complementary rather than opposing. However, whereas quantitative genetic studies in the wild have boomed, the unique advantages offered by captive Zebra Finches have remained underexploited. Here we make a first attempt at changing this by highlighting what we believe may be fruitful lines for future research.


Acknowledgements

We thank the editors, as well as Wolfgang Forstmeier and an anonymous reviewer for comments on this manuscript. The Swiss National Science Foundation (SNF) financially supported B. Tschirren (Fellowship no. PA00A3–121466) and E. Postma (grant 31003A-116794) during the writing of this review.


References

Airey, D. C. , and DeVoogd, T. J. (2000). Greater song complexity is associated with augmented song system anatomy in zebra finches. Neuroreport 11, 2339–2344.
CrossRef | PubMed |

Airey, D. C. , Buchanan, K. L. , Szekely, T. , Catchpole, C. K. , and DeVoogd, T. J. (2000a). Song, sexual selection, and a song control nucleus (HVc) in the brains of European sedge warblers. Journal of Neurobiology 44, 1–6.
CrossRef | PubMed |

Airey, D. C. , Castillo-Juarez, H. , Casella, G. , Pollak, E. J. , and DeVoogd, T. J. (2000b). Variation in the volume of zebra finch song control nuclei is heritable: developmental and evolutionary implications. Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 2099–2104.
CrossRef |

Balakrishnan, C. N. , Edwards, S. V. , and Clayton, D. F. (2010). The Zebra Finch genome and avian genomics in the wild. Emu 110, 233–241.
CrossRef |

Birkhead, T. R. (2010). Post-copulatory sexual selection and the Zebra Finch. Emu 110, 189–198.
CrossRef |

Birkhead, T. R. , Burke, T. , Zann, R. , Hunter, F. M. , and Krupa, A. P. (1990). Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia guttata, revealed by DNA fingerprinting. Behavioral Ecology and Sociobiology 27, 315–324.
CrossRef |

Birkhead, T. R. , Pellatt, E. J. , Brekke, P. , Yeates, R. , and Castillo-Juarez, H. (2005). Genetic effects on sperm design in the zebra finch. Nature 434, 383–387.
CrossRef | PubMed |

Birkhead, T. R. , Pellatt, E. J. , Matthews, I. M. , Roddis, N. J. , Hunter, F. M. , McPhie, F. , and Castillo-Juarez, H. (2006). Genic capture and the genetic basis of sexually selected traits in the zebra finch. Evolution 60, 2389–2398.
PubMed |

Blount, J. D. , Metcalfe, N. B. , Birkhead, T. R. , and Surai, P. F. (2003). Carotenoid modulation of immune function and sexual attractiveness in zebra finches. Science 300, 125–127.
CrossRef | PubMed |

Blows, M. W. , and Hoffmann, A. A. (2005). A reassessment of genetic limits to evolutionary change. Ecology 86, 1371–1384.
CrossRef |

Burley, N. , and Coopersmith, C. B. (1987). Bill color preferences of zebra finches. Ethology 76, 133–151.
CrossRef |

Calisi, R. M. , and Bentley, G. E. (2009). Lab and field experiments: are they the same animal? Hormones and Behavior 56, 1–10.
CrossRef | PubMed |

Charmantier, A. , and Sheldon, B. C. (2006). Testing genetic models of mate choice evolution in the wild. Trends in Ecology & Evolution 21, 417–419.
CrossRef |

Collins, S. A. (1999). Is female preference for male repertoires due to sensory bias? Proceedings of the Royal Society of London. Series B. Biological Sciences 266, 2309–2314.
CrossRef |

Collins, S. A. , Hubbard, C. , and Houtman, A. M. (1994). Female mate choice in the zebra finch – the effect of male beak colour and male song. Behavioral Ecology and Sociobiology 35, 21–25.
CrossRef |

Evans, M. R. , Roberts, M. L. , Buchanan, K. L. , and Goldsmith, A. R. (2006). Heritability of corticosterone response and changes in life history traits during selection in the zebra finch. Journal of Evolutionary Biology 19, 343–352.
CrossRef | PubMed |

Falconer D. S. , and Mackay T. F. C. (1996). ‘Introduction to Quantitative Genetics.’ (Longman: New York.)

Festing, M. F. W. (1999). Warning: the use of heterogeneous mice may seriously damage your research. Neurobiology of Aging 20, 237–244.
CrossRef | PubMed |

Forstmeier, W. (2005). Quantitative genetics and behavioural correlates of digit ratio in the zebra finch. Proceedings of the Royal Society of London. Series B. Biological Sciences 272, 2641–2649.
CrossRef |

Forstmeier, W. , and Birkhead, T. R. (2004). Repeatability of mate choice in the zebra finch: consistency within and between females. Animal Behaviour 68, 1017–1028.
CrossRef |

Forstmeier, W. , Schielzeth, H. , Schneider, M. , and Kempenaers, B. (2007a). Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata). Molecular Ecology Notes 7, 1026–1028.
CrossRef |

Forstmeier, W. , Segelbacher, G. , Mueller, J. C. , and Kempenaers, B. (2007b). Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Molecular Ecology 16, 4039–4050.
CrossRef | PubMed |

Forstmeier, W. , Burger, C. , Temnow, K. , and Derégnaucourt, S. (2009). The genetic basis of zebra finch vocalisations. Evolution 63, 2114–2130.
CrossRef | PubMed |

Gil D. (2008). Hormones in avian eggs: physiology, ecology and behavior. In ‘Advances in the Study of Behavior’. (Eds H. J. Brockmann, T. J. Roper, M. Naguib, K. E. Wynne-Edwards, C. Barnard and J. Mitani.) pp. 337–398. (Elsevier: San Diego, CA.)

Gil, D. , Graves, J. , Hazon, N. , and Wells, A. (1999). Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286, 126–128.
CrossRef | PubMed |

Gleeson, D. J. , Blows, M. W. , and Owens, I. P. F. (2005). Genetic covariance between indices of body condition and immunocompetence in a passerine bird. BMC Evolutionary Biology 5, 61.
CrossRef | PubMed |

Griffith, S. C. , and Buchanan, K. L. (2010). Maternal effects in the zebra finch: a model mother reviewed. Emu 110, 251–267.
CrossRef |

Groothuis, T. G. , and Schwabl, H. (2002). Determinants of within- and among-clutch variation in levels of maternal hormones in black-headed gull eggs. Functional Ecology 16, 281–289.
CrossRef |

Groothuis, T. G. G. , Müller, W. , von Engelhardt, N. , Carere, C. , and Eising, C. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews 29, 329–352.
CrossRef | PubMed |

Houtman, A. M. (1992). Female zebra finches choose extra-pair copulations with genetically attractive males. Proceedings of the Royal Society of London. Series B. Biological Sciences 249, 3–6.
CrossRef |

Hurley, P. , Pytte, C. , and Kirn, J. R. (2008). Nest of origin predicts adult neuron addition rates in the vocal control system of the zebra finch. Brain, Behavior and Evolution 71, 263–270.
CrossRef | PubMed |

Klaassen, M. , Oltrogge, M. , and Trost, L. (2004). Basal metabolic rate, food intake, and body mass in cold- and warm-acclimated Garden Warblers. Comparative Biochemistry and Physiology. Part A: Molecular & Integrative Physiology 137, 639–647.
CrossRef |

Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the ‘animal model’. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 873–890.
CrossRef | PubMed |

Kruuk, L. E. B. , and Hadfield, J. D. (2007). How to separate genetic and environmental causes of similarity between relatives. Journal of Evolutionary Biology 20, 1890–1903.
CrossRef | PubMed |

Kruuk, L. E. B. , Slate, J. , and Wilson, A. J. (2008). New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology, Evolution, and Systematics 39, 525–548.
CrossRef |

Leinonen, T. , O’Hara, R. B. , Cano, J. M. , and Merilä, J. (2008). Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. Journal of Evolutionary Biology 21, 1–17.
PubMed |

London, S. E. , and Clayton, D. F. (2010). The neurobiology of zebra finch song: insights from gene expression studies. Emu 110, 219–232.
CrossRef |

Lynch M. , and Walsh B. (1998). ‘Genetics and Analysis of Quantitative Traits.’ (Sinauer Associates, Inc.: Sunderland, MA.)

Merilä J. , and Sheldon B. C. (2001). Avian quantitative genetics. In ‘Current Ornithology’. (Eds V. J. Nolan and C. F. Thompson.) pp. 179–225. (Kluwer Academic/Plenum Publishers: New York.)

Mousseau T. A. , and Fox C. W. (1998). ‘Maternal Effects as Adaptations.’ (Oxford University Press: New York.)

Munsell, A. H. (1912). A pigment color system and notation. The American Journal of Psychology 23, 236–244.
CrossRef |

Neubauer, R. L. (1999). Super-normal length song preferences of female zebra finches (Taeniopygia guttata) and a theory of the evolution of bird song. Evolutionary Ecology 13, 365–380.
CrossRef |

Nilsson, J. A. (2002). Metabolic consequences of hard work. Proceedings of the Royal Society of London. Series B. Biological Sciences 269, 1735–1739.
CrossRef |

Nilsson, J. A. , and Råberg, L. (2001). The resting metabolic cost of egg laying and nestling feeding in great tits. Oecologia 128, 187–192.
CrossRef |

Nilsson, J. A. , Åkesson, M. , and Nilsson, J. F. (2009). Heritability of resting metabolic rate in a wild population of blue tits. Journal of Evolutionary Biology 22, 1867–1874.
CrossRef | PubMed |

Nowicki, S. , Hasselquist, D. , Bensch, S. , and Peters, S. (2000). Nestling growth and song repertoire size in great reed warblers: evidence for song learning as an indicator mechanism in mate choice. Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 2419–2424.
CrossRef |

Nussey, D. H. , Wilson, A. J. , and Brommer, J. E. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology 20, 831–844.
CrossRef | PubMed |

Odeh, F. M. , Cadd, G. G. , and Satterlee, D. G. (2003). Genetic characterization of stress responsiveness in Japanese quail. 2. Analyses of maternal effects, additive sex linkage effects, heterosis, and heritability by diallel crosses. Poultry Science 82, 31–35.
PubMed |

Pilz, K. M. , and Smith, H. G. (2004). Egg yolk androgen levels increase with breeding density in the European Starling, Sturnus vulgaris. Functional Ecology 18, 58–66.
CrossRef |

Pilz, K. M. , Smith, H. G. , Sandell, M. I. , and Schwabl, H. (2003). Interfemale variation in egg yolk androgen allocation in the European starling: do high-quality females invest more? Animal Behaviour 65, 841–850.
CrossRef |

Postma, E. , and Charmantier, A. (2007). What ‘animal models’ can and cannot tell ornithologists about the genetics of wild populations. Journal of Ornithology 148(Suppl. 2), 633–642.
CrossRef |

Postma, E. , Griffith, S. C. , and Brooks, R. (2006). Evolutionary genetics – evolution of mate choice in the wild. Nature 444, E16.
CrossRef | PubMed |

Powell J. R. (1997). ‘Progress and Prospects in Evolutionary Biology: The Drosophila Model.’ (Oxford University Press: New York.)

Price, D. K. (1996). Sexual selection, selection load and quantitative genetics of zebra finch bill colour. Proceedings of the Royal Society of London. Series B. Biological Sciences 263, 217–221.
CrossRef |

Price, D. K. , and Burley, N. T. (1993). Constraints on the evolution of attractive traits – genetic (co)variance of zebra finch bill color. Heredity 71, 405–412.
CrossRef | PubMed |

Price, D. K. , and Burley, N. T. (1994). Constraints on the evolution of attractive traits – selection in male and female zebra finches. American Naturalist 144, 908–934.
CrossRef |

Price, T. , and Langen, T. (1992). Evolution of correlated characters. Trends in Ecology & Evolution 7, 307–310.
CrossRef |

Qvarnström, A. , Brommer, J. E. , and Gustafsson, L. (2006). Testing the genetics underlying the co-evolution of mate choice and ornament in the wild. Nature 441, 84–86.
CrossRef | PubMed |

Reed, D. H. , and Frankham, R. (2001). How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55, 1095–1103.
PubMed |

Riebel K. (2009). Song and female mate choice in zebra finches: a review. In ‘Advances in the Study of Behavior’. (Eds M. Naguib, K. Zuberbuhler, N. S. Clayton and V. M. Janik.) pp. 197–238. (Elsevier: San Diego, CA.)

Rønning, B. , Moe, B. , and Bech, C. (2005). Long-term repeatability makes basal metabolic rate a likely heritable trait in the zebra finch Taeniopygia guttata. Journal of Experimental Biology 208, 4663–4669.
CrossRef | PubMed |

Rønning, B. , Jensen, H. , Moe, B. , and Bech, C. (2007). Basal metabolic rate: heritability and genetic correlations with morphological traits in the zebra finch. Journal of Evolutionary Biology 20, 1815–1822.
CrossRef | PubMed |

Schwabl, H. , Mock, D. W. , and Gieg, J. A. (1997). A hormonal mechanism for parental favouritism. Nature 386, 231.
CrossRef | PubMed |

Searcy W. A. , and Yasukawa K. (1996). Song and female choice. In ‘Ecology and Evolution of Acoustic Communication in Birds’. (Eds D. E. Kroodsma and E. H. Miller.) pp. 454–473. (Comstock Publishing Associates: Ithaca, NY.)

Silverin, B. (1998). Stress responses in birds. Poultry and Avian Biology Reviews 9, 153–168.


Spencer, K. A. , Buchanan, K. L. , Goldsmith, A. R. , and Catchpole, C. K. (2003). Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Hormones and Behavior 44, 132–139.
CrossRef | PubMed |

Spencer, K. A. , Wimpenny, J. H. , Buchanan, K. L. , Lovell, P. G. , Goldsmith, A. R. , and Catchpole, C. K. (2005). Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behavioral Ecology and Sociobiology 58, 423–428.
CrossRef |

Tobler, M. , Nilsson, J. A. , and Nilsson, J. F. (2007). Costly steroids: egg testosterone modulates nestling metabolic rate in the zebra finch. Biology Letters 3, 408–410.
CrossRef | PubMed |

Tschirren, B. , Richner, H. , and Schwabl, H. (2004). Ectoparasite-modulated deposition of maternal androgens in great tit eggs. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 1371–1375.
CrossRef |

Tschirren, B. , Rutstein, A. N. , Postma, E. , Mariette, M. , and Griffith, S. C. (2009a). Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches. Journal of Evolutionary Biology 22, 387–395.
CrossRef | PubMed |

Tschirren, B. , Sendecka, J. , Groothuis, T. G. G. , Gustafsson, L. , and Doligez, B. (2009b). Heritable variation in maternal yolk hormone transfer in a wild bird population. American Naturalist 174(4), 557–564.
CrossRef | PubMed |

Verboven, N. , Monaghan, P. , Evans, D. M. , Schwabl, H. , Evans, N. , Whitelaw, C. , and Nager, R. G. (2003). Maternal condition, yolk androgens and offspring performance: a supplemental feeding experiment in the lesser black-backed gull (Larus fuscus). Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 2223–2232.
CrossRef |

Willham, R. L. (1963). Covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19, 18–27.
CrossRef |

Willham, R. L. (1972). Role of maternal effects in animal breeding. 3. Biometrical aspects of maternal effects in animals. Journal of Animal Science 35, 1288–1293.
PubMed |

Wilson, A. J. (2008). Why h 2 does not always equal VA/VP? Journal of Evolutionary Biology 21, 647–650.
CrossRef | PubMed |

Wilson, A. J. , Coltman, D. W. , Pemberton, J. M. , Overall, A. D. J. , Byrne, K. A. , and Kruuk, L. E. B. (2005). Maternal genetic effects set the potential for evolution in a free-living vertebrate population. Journal of Evolutionary Biology 18, 405–414.
CrossRef | PubMed |

Wilson, A. J. , Pemberton, J. M. , Pilkington, J. G. , Coltman, D. W. , Mifsud, D. V. , Clutton-Brock, T. H. , and Kruuk, L. E. B. (2006). Environmental coupling of selection and heritability limits evolution. PLoS Biology 4, 1270–1275.
CrossRef |

Wilson, A. J. , Charmantier, A. , and Hadfield, J. D. (2008). Evolutionary genetics of ageing in the wild: empirical patterns and future perspectives. Functional Ecology 22, 431–442.
CrossRef |

Zann, R. (1985). Ontogeny of the Zebra finch distance call. 1. Effects of cross-fostering to Bengalese finches. Zeitschrift für Tierpsychologie 68, 1–23.


Zann R. (1996). ‘The Zebra Finch: A Synthesis of Field and Laboratory Studies.’ (Oxford University Press: New York.)


Export Citation Cited By (7)