Emu Emu Society
Journal of BirdLife Australia
ROWLEY REVIEW

Identifying crucial gaps in our knowledge of the life-history of avian influenza viruses – an Australian perspective

Marcel Klaassen A B C , Bethany J. Hoye B and David A. Roshier A
+ Author Affiliations
- Author Affiliations

A Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia.

B Netherlands Institute of Ecology (NIOO-KNAW), Department of Animal Ecology, PO Box 50, 6700 AB Wageningen, the Netherlands.

C Corresponding author. Email: marcel.klaassen@deakin.edu.au

Emu 111(2) 103-112 https://doi.org/10.1071/MU10042
Submitted: 2 June 2010  Accepted: 22 November 2010   Published: 3 May 2011

Abstract

We review our current knowledge of the epidemiology and ecology of avian influenza viruses (AIVs) in Australia in relation to the ecology of their hosts. Understanding the transmission and maintenance of low-pathogenic avian influenza (LPAI) viruses deserves scientific scrutiny because some of these may evolve to a high-pathogenic AIV (HPAI) phenotype. That the HPAI H5N1 has not been detected in Australia is thought to be a result of the low level of migratory connectivity between Asia and Australia. Some AIV strains are endemic to Australia, with Australian birds acting as a reservoir for these viruses. However, given the phylogenetic relationships between Australian and Eurasian strains, both avian migrants and resident birds within the continent must play a role in the ecology and epidemiology of AIVs in Australia. The extent to which individual variation in susceptibility to infection, previous infections, and behavioural changes in response to infection determine AIV epidemiology is little understood. Prevalence of AIVs among Australian avifauna is apparently low but, given their specific ecology and Australian conditions, prevalence may be higher in little-researched species and under specific environmental conditions.

Additional keywords: ecology, epidemiology, host species, HPAI, LPAI, migration, wild birds.


References

Alexander, D. J. (2000). A review of avian influenza in different bird species. Veterinary Microbiology 74, 3–13.
A review of avian influenza in different bird species.CrossRef | 1:STN:280:DC%2BD3c3mtF2isg%3D%3D&md5=3f463e0ba545c58ccb3a7b66a4ff1655CAS | 10799774PubMed |

Alexander, D. J. (2007a). An overview of the epidemiology of avian influenza. Vaccine 25, 5637–5644.
An overview of the epidemiology of avian influenza.CrossRef | 1:CAS:528:DC%2BD2sXnslWns7w%3D&md5=d1734346c880910079b4336752a6b46cCAS | 17126960PubMed |

Alexander, D. J. (2007b). Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002–2006. Avian Diseases 51, 161–166.
Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002–2006.CrossRef | 17494548PubMed |

Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., and Rohani, P. (2006). Seasonality and the dynamics of infectious diseases. Ecology Letters 9, 467–484.
Seasonality and the dynamics of infectious diseases.CrossRef | 16623732PubMed |

Arzey, G. (2004a). The role of wild aquatic birds in the epidemiology of avian influenza in Australia. Australian Veterinary Journal 82, 377–378.
The role of wild aquatic birds in the epidemiology of avian influenza in Australia.CrossRef | 1:STN:280:DC%2BD2czmsVSlug%3D%3D&md5=4312ccc84adcbcaa89d81264e2ee20a7CAS | 15267098PubMed |

Arzey, G. (2004b). The role of wild aquatic birds in the epidemiology of avian influenza in Australia – Reply. Australian Veterinary Journal 82, 644–645.
The role of wild aquatic birds in the epidemiology of avian influenza in Australia – Reply.CrossRef | 15887393PubMed |

Arzey, G. (2005). The role of wild waterfowl in the epidemiology of AI in Australia. Australian Veterinary Journal 83, 445.
The role of wild waterfowl in the epidemiology of AI in Australia.CrossRef | 1:STN:280:DC%2BD2MznslKksw%3D%3D&md5=7e64c7decad30036184e8a3ab11c2952CAS | 16035188PubMed |

Banks, J., Speidel, E. C., McCauley, J. W., and Alexander, D. J. (2000). Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Archives of Virology 145, 1047–1058.
Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses.CrossRef | 1:CAS:528:DC%2BD3cXksVeksLk%3D&md5=0558c120c3f8cccccc806710088c48aeCAS | 10881690PubMed |

Beehler, B., Pratt, T., and Zimmerman, D. (1986). ‘Birds of New Guinea.’ (Princeton University Press: Princeton, NJ.)

Beldomenico, P. M., and Begon, M. (2010). Disease spread, susceptibility and infection intensity: vicious circles? Trends in Ecology & Evolution 25, 21–27.
Disease spread, susceptibility and infection intensity: vicious circles?CrossRef |

Bishop, K.D. (2006). A review of the avifauna of the TransFly Eco-region: the status, distribution, habitats and conservation of the region’s birds. South Pacific Program of World Wildlife Fund, Report No. 9S0739.02.

Breban, R., Drake, J. M., Stallknecht, D. E., and Rohani, P. (2009). The role of environmental transmission in recurrent avian influenza epidemics. PLoS Computational Biology 5, e1000346.
The role of environmental transmission in recurrent avian influenza epidemics.CrossRef | 19360126PubMed |

Briggs, S. V. (1992). Movement patterns and breeding characteristics of arid zone ducks. Corella 16, 15–22.

Brown, J. D., and Stallknecht, D. E. (2008). Wild bird surveillance for the avian influenza virus. In ‘Methods in Molecular Biology. Vol. 436’. (Ed. E. Spackman.) pp. 85–97. (Humana Press: Totowa, NJ.)

Brown, J. D., Luttrell, M. P., Berghaus, R. D., Kistler, W., Keeler, S. P., Howey, A., Wilcox, B., Hall, J., Niles, L., Dey, A., Knutsen, G., Fritz, K., and Stallknecht, D. E. (2010). Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays. Journal of Wildlife Diseases 46, 896–911.
| 20688695PubMed |

Buehler, D. M., Piersma, T., Matson, K., and Tieleman, B. I. (2008). Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. American Naturalist 172, 783–796.
Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime.CrossRef | 18999941PubMed |

Bulach, D., Halpin, R., Spiro, D., Pomeroy, L., Janies, D., and Boyle, D. B. (2010). Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. Journal of Virology 84, 9957–9966.
Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007.CrossRef | 1:CAS:528:DC%2BC3cXhtlarsrbJ&md5=dec5b4cad3d2e7538a65d37abd74397cCAS | 20668069PubMed |

Bunn, C. M. (2004). The role of wild aquatic birds in the epidemiology of avian influenza in Australia. Australian Veterinary Journal 82, 644.
The role of wild aquatic birds in the epidemiology of avian influenza in Australia.CrossRef | 1:STN:280:DC%2BD2M3kvVemsA%3D%3D&md5=062cce705bc2688a4f7474c8f2c62c44CAS | 15887393PubMed |

Chambers, L. E., and Loyn, R. H. (2006). The influence of climate variability on numbers of three waterbird species in Western Port, Victoria, 1973–2002. International Journal of Biometeorology 50, 292–304.
The influence of climate variability on numbers of three waterbird species in Western Port, Victoria, 1973–2002.CrossRef | 16435107PubMed |

Costa, T. P., Brown, J. D., Howerth, E. W., and Stallknecht, D. E. (2010). The effect of age on avian influenza viral shedding in Mallards (Anas platyrhynchos). Avian Diseases 54, 581–585.
The effect of age on avian influenza viral shedding in Mallards (Anas platyrhynchos).CrossRef | 1:STN:280:DC%2BC3czpsF2qug%3D%3D&md5=373145d2ab696c17698d2fadf88034d0CAS | 20521698PubMed |

Cumming, G. S., Hockey, P. A. R., Bruinzeel, L. W., and Du Plessis, M. A. (2008). Wild bird movements and avian influenza risk mapping in southern Africa. Ecology and Society 13, 26.

Dingle, H. (2004). The Australo-Papuan bird migration system: another consequence of Wallace’s Line. Emu 104, 95–108.
The Australo-Papuan bird migration system: another consequence of Wallace’s Line.CrossRef |

Donis, R. O., Bean, W. J., Kawaoka, Y., and Webster, R. G. (1989). Distinct lineages of influenza-virus H4 hemagglutinin genes in different regions of the world. Virology 169, 408–417.
Distinct lineages of influenza-virus H4 hemagglutinin genes in different regions of the world.CrossRef | 1:CAS:528:DyaL1MXlt1OrsL0%3D&md5=751422c17a05b97eb7256fd2740cb1b5CAS | 2705304PubMed |

Downie, J. C., and Laver, W. G. (1973). Isolation of a type A influenza-virus from an Australian pelagic bird. Virology 51, 259–269.
Isolation of a type A influenza-virus from an Australian pelagic bird.CrossRef | 1:STN:280:DyaE3s7ksFWksg%3D%3D&md5=1f00d6452157995ba3224791fd5b3353CAS | 4632652PubMed |

Downie, J. C., Hinshaw, V., and Laver, W. G. (1977). Ecology of influenza-isolation of type-A influenza viruses from Australian pelagic birds. Australian Journal of Experimental Biology and Medical Science 55, 635–643.
Ecology of influenza-isolation of type-A influenza viruses from Australian pelagic birds.CrossRef | 1:STN:280:DyaE1c3htVagsw%3D%3D&md5=2340c3a27d9d7a43d20a9704789b4ad2CAS | 614832PubMed |

Drent, P. J., van Oers, K., and van Noordwijk, A. J. (2003). Realized heritability of personalities in the Great Tit (Parus major). Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 45–51.
Realized heritability of personalities in the Great Tit (Parus major).CrossRef |

East, I. J., Hamilton, S., and Garner, G. (2008a). Identifying areas of Australia at risk of H5N1 avian influenza infection from exposure to migratory birds: a spatial analysis. Geospatial Health 2, 203–213.
| 18686269PubMed |

East, I. J., Hamilton, S. A., Sharp, L. A., and Garner, M. G. (2008b). Identifying areas of Australia at risk for H5N1 avian influenza infection from exposure to nomadic waterfowl moving throughout the Australo-Papuan region. Geospatial Health 3, 17–27.
| 19021105PubMed |

FAO (2007). ‘Wildbirds and Avian Influenza: An Introduction to Applied Field Research and Disease Sampling Techniques.’ (Food and Agriculture Organization: Rome.)

Feare, C. J. (2007). The spread of avian influenza. Ibis 149, 424–425.
The spread of avian influenza.CrossRef |

Feare, C. J. (2010). Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Diseases 54, 201–212.
Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance.CrossRef | 20521633PubMed |

Fereidouni, S. R., Starick, E., Beer, M., Wilking, H., Kalthoff, D., Grund, C., Häuslaigner, R., Breithaupt, A., Lange, E., and Harder, T. C. (2009). Highly pathogenic avian influenza virus infection of Mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS ONE 4, e6706.
Highly pathogenic avian influenza virus infection of Mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses.CrossRef | 19693268PubMed |

Fereidouni, S. R., Grund, C., Haeuslaigner, R., Lange, E., Wilking, H., Harder, T. C., Beer, M., and Starick, E. (2010). Dynamics of specific antibody responses induced in Mallards after infection by or immunization with low pathogenicity avian influenza viruses. Avian Diseases 54, 79–85.
Dynamics of specific antibody responses induced in Mallards after infection by or immunization with low pathogenicity avian influenza viruses.CrossRef | 20408403PubMed |

Forsman, A. M., Vogel, L. A., Sakaluk, S. K., Grindstaff, J. L., and Thompson, C. F. (2008). Immune-challenged House Wren broods differ in the relative strengths of their responses among different axes of the immune system. Journal of Evolutionary Biology 21, 873–878.
Immune-challenged House Wren broods differ in the relative strengths of their responses among different axes of the immune system.CrossRef | 1:STN:280:DC%2BD1c3kvVOhuw%3D%3D&md5=d444e8356f60239a98923998b7ea7a28CAS | 18298497PubMed |

Fouchier, R. A. M., and Munster, V. J. (2009). Epidemiology of low pathogenic avian influenza viruses in wild birds. Revue Scientifique Et Technique-Office International Des Epizooties 28, 49–58.
| 1:STN:280:DC%2BD1Mvps1Ckuw%3D%3D&md5=f0c2a398481497f9f5ae80f0a11679c5CAS |

Fouchier, R., Munster, V. J., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D. L., Rimmelzwaan, G., Olsen, B., and Osterhaus, A. (2005). Characterisation of a novel influenza A virus hemagglutinin subtype (H16) obtained from Black-headed Gulls. Journal of Virology 79, 2814–2822.
Characterisation of a novel influenza A virus hemagglutinin subtype (H16) obtained from Black-headed Gulls.CrossRef | 1:CAS:528:DC%2BD2MXitlaqurs%3D&md5=18bb265c01b48a07314b864505e4f778CAS | 15709000PubMed |

Gaidet, N., Cappelle, J., Takekawa, J. Y., Prosser, D. J., Iverson, S. A., Douglas, D. C., Perry, W. M., Mundkur, T., and Newman, S. H. (2010). Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. Journal of Applied Ecology 47, 1147–1157.
Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry.CrossRef |

Gauthier-Clerc, M., Lebarbenchon, C., and Thomas, F. (2007). Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis 149, 202–214.
Recent expansion of highly pathogenic avian influenza H5N1: a critical review.CrossRef |

Gilbert, M., Xiao, X. M., Domenech, J., Lubroth, J., Martin, V., and Slingenbergh, J. (2006). Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5N1 virus. Emerging Infectious Diseases 12, 1650–1656.
| 17283613PubMed |

Gronesova, P., Kabat, P., Trnka, A., and Betakova, T. (2008). Using nested RT-PCR analyses to determine the prevalence of avian influenza viruses in passerines in western Slovakia, during summer 2007. Scandinavian Journal of Infectious Diseases 40, 954–957.
Using nested RT-PCR analyses to determine the prevalence of avian influenza viruses in passerines in western Slovakia, during summer 2007.CrossRef | 1:CAS:528:DC%2BD1cXhtl2qtL7M&md5=40a09523acced9e3b517efe9c5fd711eCAS | 18777249PubMed |

Halse, S. A., Pearson, G. B., Jaensch, R. P., Kulmoi, P., Gregory, P., Kay, W. R., and Storey, A. W. (1996). Waterbird surveys of the Middle Fly River floodplain, Papua New Guinea. Wildlife Research 23, 557–569.
Waterbird surveys of the Middle Fly River floodplain, Papua New Guinea.CrossRef |

Halvorson, D. A., Kelleher, C. J., and Senne, D. A. (1985). Epizootiology of avian influenza – effect of season on incidence in sentinel ducks and domestic Turkeys in Minnesota. Applied and Environmental Microbiology 49, 914–919.
| 1:STN:280:DyaL2M3isVWhsQ%3D%3D&md5=8c0e62e962934e4fc0e49bbb286c6e77CAS | 4004223PubMed |

Hamilton, S. A., East, I. J., Toribio, J. A., and Garner, M. G. (2009). Are the Australian poultry industries vulnerable to large outbreaks of highly pathogenic avian influenza? Australian Veterinary Journal 87, 165–174.
Are the Australian poultry industries vulnerable to large outbreaks of highly pathogenic avian influenza?CrossRef | 19382922PubMed |

Hasselquist, D. (2007). Comparative immunoecology in birds: hypotheses and tests. Journal of Ornithology 148, S571–S582.
Comparative immunoecology in birds: hypotheses and tests.CrossRef |

Haynes, L., Arzey, E., Bell, C., Buchanan, N., Burgess, G., Cronan, V., Dickason, C., Field, H., Gibbs, S., Hansbro, P. M., Hollingsworth, T., Hurt, A. C., Kirkland, P., McCracken, H., O’Connor, J., Tracey, J., Wallner, J., Warner, S., Woods, R., and Bunn, C. (2009). Australian surveillance for avian influenza viruses in wild birds between July 2005 and June 2007 Australian Veterinary Journal 87, 266–272.
Australian surveillance for avian influenza viruses in wild birds between July 2005 and June 2007CrossRef | 1:STN:280:DC%2BD1MvmtlCmtw%3D%3D&md5=bfbc4eb25486f44f5cf35311284e1c02CAS | 19573149PubMed |

Heckert, R. A., McIsacc, M., Chan, M., and Zhou, E.-M. (1999). Experimental infection of Emus (Dromaiius novaehollandiae) with avian influenza viruses of varying virulence: clinical signs, virus shedding and serology. Avian Pathology 28, 13–16.
Experimental infection of Emus (Dromaiius novaehollandiae) with avian influenza viruses of varying virulence: clinical signs, virus shedding and serology.CrossRef | 1:STN:280:DC%2BD2MvnslOmsw%3D%3D&md5=7faf85cc987015e9d59df4aff4f436d1CAS | 16147545PubMed |

Hinshaw, V. S., Webster, R. G., and Turner, B. (1980). The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology 26, 622–629.
The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl.CrossRef | 1:STN:280:DyaL3c3ktlOqsA%3D%3D&md5=38077d7a16aa2e87e0bb250660257c76CAS | 7397605PubMed |

Hinshaw, V. S., Wood, J. M., Webster, R. G., Deibel, R., and Turner, B. (1985). Circulation of influenza-viruses and paramyxoviruses in waterfowl originating from two different areas of North America. Bulletin of the World Health Organization 63, 711–719.
| 1:STN:280:DyaL287gs1GntA%3D%3D&md5=2b41dbedb2a19f85501aebaad49369c5CAS | 3878741PubMed |

Hinshaw, V. S., Nettles, V. F., Schorr, L. F., Wood, J. M., and Webster, R. G. (1986). Influenza-virus surveillance in waterfowl in Pennsylvania after the H5N2 avian outbreak. Avian Diseases 30, 207–212.
Influenza-virus surveillance in waterfowl in Pennsylvania after the H5N2 avian outbreak.CrossRef | 1:STN:280:DyaL283mvVyisQ%3D%3D&md5=90de5bc8a691dcb001171af883b2db84CAS | 3015104PubMed |

Homme, P. J., and Easterday, B. C. (1970). Avian influenza virus infections. 4. Response of pheasants, ducks, and geese to influenza A/Turkey/Wisconsin/1966 Virus. Avian Diseases 14, 285–290.
Avian influenza virus infections. 4. Response of pheasants, ducks, and geese to influenza A/Turkey/Wisconsin/1966 Virus.CrossRef | 1:STN:280:DyaE3c3jtVSlsw%3D%3D&md5=b1551b5b2b275dadf165b8a30bf3c5b3CAS | 5427235PubMed |

Hoye, B. J., Munster, V. J., Nishiura, H., Fouchier, R. A. M., Madsen, J., and Klaassen, M. (2010a). Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos , .
Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway.CrossRef |

Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M., and Fouchier, R. A. M. (2010b). Surveillance of wild birds for avian influenza virus. Emerging Infectious Diseases 16, 1827–1834.
| 21122209PubMed |

Hubalek, Z. (2004). An annotated checklist of pathogenic microorganisms associated with migratory birds. Journal of Wildlife Diseases 40, 639–659.
| 15650082PubMed |

Hurt, A. C., Hansbro, P. M., Selleck, P., Olsen, B., Minton, C., Hampson, A. W., and Barr, I. G. (2006). Isolation of avian influenza viruses from two different transhemispheric migratory shorebird species in Australia. Archives of Virology 151, 2301–2309.
Isolation of avian influenza viruses from two different transhemispheric migratory shorebird species in Australia.CrossRef | 1:CAS:528:DC%2BD28XhtFSnsLzK&md5=68f069234b47bed6ccf508b26c1ef55aCAS | 16732420PubMed |

Isoda, N., Sakoda, Y., Kishida, N., Bai, G. R., Matsuda, K., Umemura, T., and Kida, H. (2006). Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. Archives of Virology 151, 1267–1279.
Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals.CrossRef | 1:CAS:528:DC%2BD28XmtFGqurc%3D&md5=7b32fd506522162648b600715ae42458CAS | 16502281PubMed |

Ito, T., Okazaki, K., Kawaoka, Y., Takada, A., Webster, R. G., and Kida, H. (1995). Perpetuation of influenza-A viruses in Alaskan waterfowl reservoirs. Archives of Virology 140, 1163–1172.
Perpetuation of influenza-A viruses in Alaskan waterfowl reservoirs.CrossRef | 1:CAS:528:DyaK2MXns1WjtL0%3D&md5=8ce99a426228b3a888562397eb1afda6CAS | 7646350PubMed |

Jourdain, E., Gunnarsson, G., Wahlgren, J., Latorre-Margalef, N., Brojer, C., Sahlin, S., Svensson, L., Waldenstrom, J., Lundkvist, A., and Olsen, B. (2010). Influenza virus in a natural host, the Mallard: experimental infection data. PLoS ONE 5, e8935.
Influenza virus in a natural host, the Mallard: experimental infection data.CrossRef | 20126617PubMed |

Keawcharoen, J., van Riel, D., van Amerongen, G., Bestebroer, T., Beyer, W. E., van Lavieren, R., Osterhaus, A. D. M. E., Fouchier, R. A. M., and Kuiken, T. (2008). Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases 14, 600–607.
Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1).CrossRef | 1:CAS:528:DC%2BD1cXltFamtL4%3D&md5=5b8652804170a6b2456cf83c2e7947baCAS | 18394278PubMed |

Kida, H., Yanagawa, R., and Matsuoka, Y. (1980). Duck influenza lacking evidence of disease signs and immune-response. Infection and Immunity 30, 547–553.
| 1:STN:280:DyaL3M%2FmvVKgsg%3D%3D&md5=eaec10e88ff80e443092b3648dd1c3f0CAS | 7439994PubMed |

Kilpatrick, A. M., Chmura, A. A., Gibbons, D. W., Fleischer, R. C., Marra, P. P., and Daszak, P. (2006). Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences of the United States of America 103, 19 368–19 373.
Predicting the global spread of H5N1 avian influenza.CrossRef | 1:CAS:528:DC%2BD2sXhs1ylug%3D%3D&md5=81f2b1baf597e78fb5cf765066320f37CAS |

Kingsford, R. T., and Norman, F. I. (2002). Australian waterbirds – products of the continent’s ecology. Emu 102, 47–69.
Australian waterbirds – products of the continent’s ecology.CrossRef |

Kingsford, R. T., Roshier, D. A., and Porter, J. L. (2010). Australian waterbirds – time and space travellers in dynamic desert landscapes. Marine and Freshwater Research 61, 875–884.
Australian waterbirds – time and space travellers in dynamic desert landscapes.CrossRef | 1:CAS:528:DC%2BC3cXhtVansL%2FI&md5=49f8afb7500c57938acb8ba6ce1fa7e3CAS |

Kishida, N., Sakoda, Y., Shiromoto, M., Bai, G. R., Isoda, N., Takada, A., Laver, G., and Kida, H. (2008). H2N5 influenza virus isolates from terns in Australia: genetic reassortants between those of the Eurasian and American lineages. Virus Genes 37, 16–21.
H2N5 influenza virus isolates from terns in Australia: genetic reassortants between those of the Eurasian and American lineages.CrossRef | 1:CAS:528:DC%2BD1cXntFKmurg%3D&md5=c16c2a88625bd625bb85e53e9fac4eabCAS | 18454312PubMed |

Krauss, S., Walker, D., Pryor, S. P., Niles, L., Li, C. H., Hinshaw, V. S., and Webster, R. G. (2004). Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.) 4, 177–189.
Influenza A viruses of migrating wild aquatic birds in North America.CrossRef | 15631061PubMed |

Langstaff, I. G., McKenzie, J. S., Stanislawek, W. L., Reed, C. E. M., Poland, R., and Cork, S. C. (2009). Surveillance for highly pathogenic avian influenza in migratory shorebirds at the terminus of the East Asian–Australasian Flyway. New Zealand Veterinary Journal 57, 160–165.
Surveillance for highly pathogenic avian influenza in migratory shorebirds at the terminus of the East Asian–Australasian Flyway.CrossRef | 1:STN:280:DC%2BD1MvhsVGjtw%3D%3D&md5=469f55d4db1d1293ce89d35bb8cd6e11CAS | 19521465PubMed |

Latorre-Margalef, N., Gunnarsson, G., Munster, V. J., Fouchier, R. A. M., Osterhaus, A., Elmberg, J., Olsen, B., Wallensten, A., Haemig, P. D., Fransson, T., Brudin, L., and Waldenstrom, J. (2009). Effects of influenza A virus infection on migrating mallard ducks. Proceedings of the Royal Society of London. Series B. Biological Sciences 276, 1029–1036.
Effects of influenza A virus infection on migrating mallard ducks.CrossRef |

Laver, W. G., and Webster, R. G. (1972). Antibodies to human influenza-virus neuraminidase (a/Asian/57 H2n2 Strain) in sera from Australian pelagic birds. Bulletin of the World Health Organization 47, 535–541.
| 1:STN:280:DyaE3s7osVWitg%3D%3D&md5=344b2efd20e3c97ded0cd477f9598d1fCAS | 4541008PubMed |

Mackenzie, J. S., Edwards, E. C., Holmes, R. M., and Hinshaw, V. S. (1984). Isolation of ortho- and paramoxyviruses from wild birds in Western Australia, and the characterisation of novel influenza A viruses. Australian Journal of Experimental Biology and Medical Science 62, 89–99.
Isolation of ortho- and paramoxyviruses from wild birds in Western Australia, and the characterisation of novel influenza A viruses.CrossRef | 6430260PubMed |

Mackenzie, J. S., Britten, D., Hinshaw, V., and Wood, J. (1985). Isolation of avian influenza and paramyxoviruses from wild birds in Western Australia. In ‘Veterinary Viral Diseases: Their Significance in South-east Asia and the Western Pacific’. (Ed. A. J. Delaa-Porta.) pp. 336–339. (Academic Press: Orlando, FL.)

Marchant, S., and Higgins, P. (Eds) (1990). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 1: Ratites to Ducks.’ (Oxford University Press: Melbourne.)

Martin, L. B., Weil, Z. M., and Nelson, R. J. (2008). Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 363, 321–339.
Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs.CrossRef |

McCallum, H., Barlow, N., and Hone, J. (2001). How should pathogen transmission be modelled? Trends in Ecology & Evolution 16, 295–300.
How should pathogen transmission be modelled?CrossRef |

McCallum, H. I., Roshier, D. A., Tracey, J. P., Joseph, L., and Heinsohn, R. (2008). Will Wallace’s Line save Australia from avian influenza? Ecology and Society 13, 41.

Mendes, L., Piersma, T., Lecoq, M., Spaans, B., and Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396–404.
Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats.CrossRef |

Munster, V. J., Baas, C., Lexmond, P., Waldenström, J., Wallensten, A., Fransson, T., Rimmelzwaan, G. F., Beyer, W. E. P., Schutten, M., Olsen, B., Osterhaus, A. D. M. E., and Fouchier, R. A. M. (2007). Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathogens 3, e61.
Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds.CrossRef | 17500589PubMed |

Nestorowicz, A., Kawaoka, Y., Bean, W. J., and Webster, R. G. (1987). Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza-viruses – role of passerine birds in maintenance or transmission. Virology 160, 411–418.
Molecular analysis of the hemagglutinin genes of Australian H7N7 influenza-viruses – role of passerine birds in maintenance or transmission.CrossRef | 1:CAS:528:DyaL1cXmvFOktg%3D%3D&md5=b4f80b42259a088f56474335e82c6a2eCAS | 3660587PubMed |

Nishiura, H., Hoye, B., Klaassen, M., Bauer, S., and Heesterbeek, H. (2009). How to find natural reservoir hosts from endemic prevalence in a multi-host population: a study of influenza in waterfowl. Epidemics 1, 118–128.
How to find natural reservoir hosts from endemic prevalence in a multi-host population: a study of influenza in waterfowl.CrossRef | 21352759PubMed |

Norman, F. I., and Chambers, L. E. (2010). Counts of selected duck species at Corner Inlet, Victoria: changes in relation to local and distant meteorological variations. International Journal of Biometeorology 54, 269–282.
Counts of selected duck species at Corner Inlet, Victoria: changes in relation to local and distant meteorological variations.CrossRef | 19937455PubMed |

Olsen, B., Munster, V. J., Wallensten, A., Waldenstrom, J., Osterhaus, A., and Fouchier, R. (2006). Global patterns of influenza A virus in wild birds. Science 312, 384–388.
Global patterns of influenza A virus in wild birds.CrossRef | 1:CAS:528:DC%2BD28XjslSktbc%3D&md5=f2014d26adbf0a8bd95f424e66e72dd2CAS | 16627734PubMed |

Ots, I., Murumagi, A., and Horak, P. (1998). Haematological health state indices of reproducing Great Tits: methodology and sources of natural variation. Functional Ecology 12, 700–707.
Haematological health state indices of reproducing Great Tits: methodology and sources of natural variation.CrossRef |

Peroulis, I., and O’Riley, K. (2004). Detection of avian paramyxoviruses and influenza viruses amongst wild bird populations in Victoria. Australian Veterinary Journal 82, 79–82.
Detection of avian paramyxoviruses and influenza viruses amongst wild bird populations in Victoria.CrossRef | 1:STN:280:DC%2BD2c7pt12ktA%3D%3D&md5=eadb8bac3ce8ff241241951381c34f91CAS | 15088965PubMed |

Peterson, A. T., Bush, S. E., Spackman, E., Swayne, D. E., and Ip, H. S. (2008). Influenza A virus infections in land birds, People’s Republic of China. Emerging Infectious Diseases 14, 1644–1646.
Influenza A virus infections in land birds, People’s Republic of China.CrossRef | 18826836PubMed |

Piersma, T. (1997). Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80, 623–631.
Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?CrossRef |

Reid, J. (2009) Australian Pelican: flexible responses to uncertainty. In ‘Boom and Bust – Bird Stories for a Dry Country’. (Eds L. Robin, R. Heinsohn and L. Joseph.) pp. 95–120. (CSIRO Publishing: Melbourne.)

Rohani, P., Breban, R., Stallknecht, D. E., and Drake, J. M. (2009). Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proceedings of the National Academy of Sciences of the United States of America 106, 10 365–10 369.
Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion.CrossRef | 1:CAS:528:DC%2BD1MXot1Gnsbc%3D&md5=12ca99a2b031554bbf86fd7a2d56771eCAS |

Roshier, D. A., Whetton, P. H., Allan, R. J., and Robertson, A. I. (2001). Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate. Austral Ecology 26, 371–384.
Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate.CrossRef |

Selleck, P. W., Arzey, G., Kirkland, P. D., Reece, R. L., Gould, A. R., Daniels, P. W., and Westbury, H. A. (2003). An outbreak of highly pathogenic avian influenza in Australia in 1997 caused by an H7N4 virus. Avian Diseases 47, 806–811.
An outbreak of highly pathogenic avian influenza in Australia in 1997 caused by an H7N4 virus.CrossRef | 1:STN:280:DC%2BD3svpslOnsw%3D%3D&md5=b80d693268da70096790f363aeb023f0CAS | 14575068PubMed |

Senne, D. A. (2003). Avian influenza in the Western Hemisphere including the Pacific Islands and Australia. Avian Diseases 47, 798–805.
Avian influenza in the Western Hemisphere including the Pacific Islands and Australia.CrossRef | 1:STN:280:DC%2BD3svpslOnsg%3D%3D&md5=a5f8c8bbb558ab2671b81743e5acb3d6CAS | 14575067PubMed |

Si, Y. L., Skidmore, A. K., Wang, T. J., de Boer, W. F., Debba, P., Toxopeus, A. G., Li, L., and Prins, H. H. T. (2009). Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns. Geospatial Health 4, 65–78.
| 19908191PubMed |

Simpson, K., and Day, N. (2010). ‘Field Guide to the Birds of Australia.’ 8th edn. (Viking: Melbourne.)

Sims, L. D. (2006). A risk-based approach to avian influenza virus research priorities. (Australian Biosecurity Cooperative Research Centre: Manuda, QLD.) Available at http://www.abcrc.org.au/UPLOADS/PUBLICATIONS/PUBLICATION_250.pdf [Verified 5 April 2011].

Sims, L. D., and Turner, A. J. (2008). Avian influenza in Australia. In ‘Avian Influenza’. (Ed. D. E. Swayne.) pp. 239–250. (Blackwell: Ames, IA.)

Spackman, E. (2009). The ecology of avian influenza virus in wild birds: what does this mean for poultry? Poultry Science 88, 847–850.
The ecology of avian influenza virus in wild birds: what does this mean for poultry?CrossRef | 1:STN:280:DC%2BD1M7pvF2ktQ%3D%3D&md5=ad874c667ae96f0e753163989e6e4fe3CAS | 19276433PubMed |

Stallknecht, D. E., Kearney, M. T., Shane, S. M., and Zwank, P. J. (1990). Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water. Avian Diseases 34, 412–418.
Effects of pH, temperature, and salinity on persistence of avian influenza viruses in water.CrossRef | 1:STN:280:DyaK3czhsV2juw%3D%3D&md5=e5dc1fe0fb488e01ebbb63250ed3c9d8CAS | 2142421PubMed |

Suarez, D. L., and Schultz-Cherry, S. (2000). Immunology of avian influenza virus: a review. Developmental and Comparative Immunology 24, 269–283.
Immunology of avian influenza virus: a review.CrossRef | 1:CAS:528:DC%2BD3cXisleisb8%3D&md5=99c694895119ca9598315f3f74e4b1bfCAS | 10717293PubMed |

Tracey, J. P. (2010). Risk-based surveillance of avian influenza in Australia’s wild birds. Wildlife Research 37, 134–144.
Risk-based surveillance of avian influenza in Australia’s wild birds.CrossRef |

Tracey, J. P., Woods, R., Roshier, D., West, P., and Saunders, G. R. (2004). The role of wild birds in the transmission of avian influenza for Australia: an ecological perspective. Emu 104, 109–124.
The role of wild birds in the transmission of avian influenza for Australia: an ecological perspective.CrossRef |

Turner, A. J. (2004). The role of wild aquatic birds in the epidemiology of avian influenza in Australia. Australian Veterinary Journal 82, 713.
The role of wild aquatic birds in the epidemiology of avian influenza in Australia.CrossRef | 1:STN:280:DC%2BD2Mzisleksg%3D%3D&md5=17e0356977dd0fd2295960892d3620f7CAS | 15977620PubMed |

Van Borm, S., Thomas, I., Hanquet, G., Lambrecht, N., Boschmans, M., Dupont, G., Decaestecker, M., Snacken, R., and van den Berg, T. (2005). Highly pathogenic H5N1 influenza virus in smuggled Thai eagles, Belgium. Emerging Infectious Diseases 11, 702–705.
| 15890123PubMed |

van Gils, J. A., Munster, V. J., Radersma, R., Liefhebber, D., Fouchier, R. A. M., and Klaassen, M. (2007). Hampered foraging and migratory performance in swans infected with low-pathogenic avain influenza A virus. PLoS ONE 2, e184.
Hampered foraging and migratory performance in swans infected with low-pathogenic avain influenza A virus.CrossRef | 17264886PubMed |

Wallensten, A., Munster, V. J., Latorre-Margalef, N., Brytting, M., Elmberg, J., Fouchier, R. A. M., Fransson, T., Haemig, P. D., Karlsson, M., Lundkvist, A., Osterhaus, A., Stervander, M., Waldenstrom, J., and Olsen, B. (2007). Surveillance of influenza A virus in migratory watefowl in northern Europe. Emerging Infectious Diseases 13, 404–411.
Surveillance of influenza A virus in migratory watefowl in northern Europe.CrossRef | 17552093PubMed |

Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., and Kawaoka, Y. (1992). Evolution and ecology of influenza-A viruses. Microbiological Reviews 56, 152–179.
| 1:STN:280:DyaK383lt1OqtQ%3D%3D&md5=9a3750f4f5cf96b67fb5a8233ab16f2aCAS | 1579108PubMed |


Full Text PDF (286 KB) Export Citation