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Maximum entropy modelling (Phillips et al. 2006) version 3.3.3 estimated current and future 

geographic distribution of Eucalyptus marginata and E. diversicolor (Fig. 1, main paper) by: (1) 

modelling climate envelopes for interpolated bioclimatic conditions representative of 1950–2000 

(Hijmans et al. 2005); (2) projecting potential distributions in SWWA for projected 2070 climate 

under the IPCC RCP4.5 (Representative Concentration Pathway) climate change severity scenario 

(CSIRO Mk 3.6 global climate model: Jeffrey et al. 2013). Models used five biologically important 

climate variables (mean temperature wettest quarter, mean temperature warmest quarter, annual 

precipitation, precipitation seasonality, and precipitation warmest quarter) all at ~1 km resolution. 

Models had good predictive ability as estimated by area under curve (AUC) against test data (0.77–

0.95). The predicted climatic suitability results are logistic suitability values (0–1). Annual 

precipitation and precipitation seasonality made the largest contributions for E. marginata; annual 

precipitation and precipitation of warmest quarter for E. diversicolor. During model generation, by 

default background environmental data are selected within whole study area extent and these values 
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compared with species occurrences to differentiate environmental conditions under which a species 

can potentially occur. We used background data constrained to bioregions in which the species were 

observed, plus a buffer zone of 50 km. To reduce sampling bias influence due to clusters of E. 

marginata observations near metropolitan Perth, contrasting with sparser sampling elsewhere, 

observations were spatially rarefied, such that occurrence points were reduced to a single record 

within a distance of 2 km (Boria et al. 2014). For all models generated, the following parameters 

were altered from default settings: maximum iterations = 5000 with 25% random test percentage and 

only linear feature types used during model training. Default values were used for remaining model 

parameters. 
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