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Abstract

The control method of Ott, Grebogi and Yorke (1990) as applied to the Rössler system, a
set of three-dimensional non-linear differential equations, is examined. Using numerical time
series data for a single dynamical variable the method was successfully employed to control
several of the unstable periodic orbits in a three-dimensional embedding of the data. The
method also failed for a number of unstable periodic orbits due to difficulties in linearising
about the orbit or the tangential coincidence of the stable manifold and the motion of the
orbit with external parameter.

1. Introduction

The proposal by Ott, Grebogi and Yorke (OGY) (1990) for a method of
controlling chaos in experimental systems has stimulated much work in the area,
resulting in the control of chaos in many situations, a number of new methods
for controlling chaos based on the work of OGY, and a way of perturbing a
chaotic system so that it quickly enters a small, desired region of phase space
(targetting). For a review of this work see, for example, Shinbrot et al . (1993).
Most of this work has been of a theoretical nature, with some applications to real
experimental systems and other test applications using model dynamical systems,
but there has to date been no systematic study of the different methods, their
advantages and disadvantages. This paper seeks to do just that for the OGY
method. It describes a concrete implementation of the procedure and discusses
the successes and difficulties that arise.

In this paper the method of OGY is applied to the Rössler (1976) system,
a set of three first order differential equations. Continuous systems have been
controlled using a number of hybrid methods (Pyragas 1992; Kittel et al . 1992;
Azevedo and Rezendo 1991; Roy et al . 1992), but no attempt has been made to
control chaos in such a system using the original method of OGY.

This method is described in the original paper (Ott et al . 1990; see also
Corney 1995) and shall not be repeated in full here. It assumes a continuous
experimental time series of a scalar variable. A continuous delay coordinate
vector is formed

u(t) = {x(t), x(t− T ), . . . , x(t− (d− 1)T )}, (1)
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where for the Rössler system d = 3 and the delay T is determined from topological
considerations (Liebert et al. 1991). It is also assumed there is a parameter
which can be varied in a small range about some nominal value.

The system is then discretised by way of a Poincaré section. The result is
a set of points ξ1, ξ2, . . . , ξk where ξn denotes the coordinates on the section of
the nth piercing by the orbit u(t). The most common choice for the Poincaré
section is x(t− (d− 1)T ) = const, and therefore

ξn = {x(tn), x(tn − T ), . . . , x(tn − (d− 2)T )}, (2)

where tn is the time of the nth piercing. From this set of points the location and
stability properties of the orbit can be determined (Lathrop and Kostelich 1989).

Fig. 1. (a) Period one point ξF (p0), its stable and unstable manifold, and the line (dashed)
along which ξF moves if a small perturbation is applied. (b) Result of perturbing p to p+ δp;
the stable and unstable manifolds of ξF (p0 + δp) are shown as grey lines through ξF (p0 + δp).

For illustrative purposes, consider a period one orbit on a two-dimensional
Poincaré section; the extension to higher periods or dimensions is straightforward.
In the vicinity of such a fixed point the future path of iterates is directed by the
positions of the stable and unstable manifolds. For a typical initial condition a
trajectory will wander chaotically until it enters the region near the fixed point
where its behaviour is dominated by the stable and unstable manifolds. The
idea, as seen in Fig. 1, is to to alter a system parameter, and thus the location of
the two manifolds, so that the next iterate is directed onto the stable manifold
of the unperturbed fixed point. The system parameter is then returned to its
original value and the subsequent iterates now lie on the stable manifold of the
fixed point and so approach that point. Thus control is achieved.

The size of the perturbation, as given by OGY is

pn =
λu

λu − 1

ξn · fu
g · fu

, (3)

where λu is the unstable eigenvalue, fu is the contravariant basis vector
corresponding to the unstable eigenvector eu and g is a vector which approximates
the movement of the fixed point with small perturbations.
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For a noisy system the method is still valid, except that once the trajectory
enters the region where perturbations may be applied repeated perturbations are
required as the noise will necessarily knock a trajectory off the stable manifold
of the fixed point.

This is the method devised by OGY to control chaos. Unfortunately there are
two practical difficulties encountered when implementing the method; firstly in
theory all fixed points can be approximated by a linear system in some vicinty of
the point, although in practice this linearisation may be very difficult to obtain.
Secondly the time taken for the trajectory to enter the region where perturbations
can be applied could be rather long. The first of these flaws is without a solution
so far and shall be discussed further in Section 3. The second formed the genesis
of the targetting method developed subsequently (Shinbrot et al . 1990).

2. Linear Estimation

The control method of OGY can be applied to an experimental system in which
the equations governing the motion are unknown, indeed even the dimension
of the system is not initially required. The Rössler system is a mathematical
system, but throughout this paper it has been treated as an experimental system
where the equations of motion are not known. After consideration of the system
the control parameter was chosen to be b, whilst the dynamical variable used
was the x coordinate. For an explanation of these choices see Corney (1995)

In keeping with the original method proposed by OGY the Rössler system is
written

dx

dt
= − y − z, (4)

dy

dt
= x+ ay,

dz

dt
= c+ z(x− b− p).

The control parameter is, therefore, p with a nominal value p = p0 = 0.
The fundamental period of the system can be determined by measuring the

time between intersections of the trajectory and a plane and then averaging this
time for a great many such intersections. The averaging process was carried out
by allowing one hundred randomly-generated initial conditions to evolve over a
time interval of 1000 s. This process showed that there is little variation in the
time between intersections and yielded an overall average period of τ = 5 ·84 s.

The stability properties of each periodic orbit must now be determined. This
involves finding a linear fit to the dynamics around each point near an unstable
periodic orbit. Following the method of OGY, the scalar time series x(t) is
embedded in a three-dimensional phase space

u(t) = {x(t), x(t− T ), x(t− 2T )} , (5)

where T = 0 ·83, as calculated by Liebert et al . (1991). This is then discretised
by way of a Poincaré section. For this experiment the section took the form of
the plane x(t− 2T ) = 0, so the series becomes two-dimensional with coordinates

ξn = {x(tn), x(tn − T )} . (6)
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Fig. 2. Poincaré return map for the delay coordinates using the time delay of Liebert et al .
(1991).

Fig. 3. Set of points on the return map attractor which have a first return number of m = 1
together with the stable and unstable manifolds superimposed on the position of the unstable
fixed point.



      

Control of Chaos 267

The result of this process is a set of points which lies in a region which is
almost linear, save for a hook at one end. The Poincaré section for a run of
1500 s can be seen in Fig. 2. Although the time delay as suggested by Liebert et
al. (1991) was used, the shape of the attractor agrees well with that suggested
by Fraser and Swinney (1986). From examining Fig. 2 it can be seen that the
highest density of points occurs on the hook of the attractor. In fact for a time
series of 34000 points about 10000 points (29%) are in the region of the hook. It
is probable that much of the stretching and folding occurs in this high density
region and different unstable periodic orbits may be difficult to distinguish. This
will be confirmed later in this section. For this reason it is unlikely that on this
hook it will be possible to accurately estimate the dynamics of the system. If
perturbations need to be applied on the hook then more sophisticated methods
than those considered here will have to be employed.

For a time series of more than 34000 points, the first return number m of
each point was calculated. Table 1 shows the number of points of each period
up to period 15 for the unperturbed system (b = 5 ·7). Of the 34000 points in
the time series, in excess of 28000, or 84%, have a period ≤15.

Table 1. Number of points with each m value up to 15 for the unperturbed (p = 0) and
perturbed system (p = 0 ·005)

The time series was 34100 points long. 84% of points have an m value less than 15

Period No. of points Period No. of points
p = 0 p = 0 ·005 p = 0 p = 0 ·005

1 2015 1797 8 2457 2553
2 1301 1168 9 1597 1689
3 8447 8532 10 1466 1222
4 882 1114 11 1644 1688
5 1339 1251 12 883 845
6 2908 3323 13 1091 878
7 849 735 14 1004 1223

15 673 591

For the control algorithm used it is also necessary to calculate the position
of the periodic orbits for a system which is slightly perturbed from the original.
The first return number m of a time series with b = 5 ·705 (i.e. p = 0 ·005) is
also shown in Table 1.

Lathrop and Kostelich (1989) proposed in their paper that the stability
properties could be estimated from an average of the linear fits of neighbourhoods
around each point with a given m value. Fig. 3 shows the set of points with
m = 1; it can be clearly seen that they are all clustered together and that the
unstable fixed point must be somewhere in the cluster. This figure also indicates
that it is unnecessary to perform a linear fit around each point in the set, as
the neighbourhoods around different points will contain almost entirely the same
points. Therefore, instead of performing a large number of linear fits (one for
each point with m = 1), it was thought that one linear fit using almost all points
(as not quite all points are within the cluster shown) with m = 1 would suffice.
This method has an advantage over that proposed by Lathrop and Kostelich
(1989); their method included points with a different m value in the linear fit
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around each reference point being considered. These points are not directly
under the influence of the period one orbit (as m 6= 1) and are probably more
influenced by another periodic orbit. It was therefore thought that the fitting
technique would be corrupted by these points. The proposed method uses only
points with the correct m value, which are expected to be directly under the
influence of the period m orbit.

Table 2. Stability properties of the period one orbit

Basin 1 n = 2005

ξF = {9 ·16762, 7 ·19014} ξF (p) = {9 ·10635, 7 ·36531}

A =

(
−2 ·00384 −1 ·14477

−0 ·866581 0 ·502326

)
b =

(
35 ·7691

11 ·522

)
λu = −2 ·35146 eu = {0 ·372303,−0 ·928111}
λs = 0 ·849947 es = {−0 ·956857,−0 ·290559}

(2a) Period One

For the period one orbit a least squares fit was done to find the best fit of

ξn+1 = Aξn + b , (7)

where ξn is a period one point. Ten of the period one points were not used
in this fitting as these points did not occur in the central cluster (which from
now on will be called the basin of the period one orbit) and so are probably
anomalies in the attractor. The result of this fitting can be seen in Table 2.
The unstable fixed point can be determined by solving for the fixed point of the
linear approximation, i.e.

ξF = AξF + b , (8)

where A and b are the matrix and vector determined by the linear fit. The
perturbed system has almost identical stability properties, but the slightly different
fixed point ξF (p) is crucial to the control algorithm and so both are given in
Table 2.

Fig. 3 shows a superposition of the eigenvectors, the unstable fixed point (by
the linear fit method) and the period one basin. The fixed point as determined
by the linear fit is on the edge of the cluster of points making up the period
one basin. This is not what would be expected and suggests that the numerical
linearisation may not be a good approximation to the true linearisation in the
vicinity of the unstable fixed point.

(2b) Period Two

For the m = 2 points one would expect two basins, corresponding to the two
points of a period two orbit. As can be seen in Fig. 4, there are four basins,
containing 233, 73, 270 and 176 points respectively. This is most likely to
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Fig. 4. Four basins of the m = 2 set. The two outer basins are from the one orbit, as are
the two inner basins.

correspond to two distinct period two orbits on the attractor. A linear fitting
to each of these basins, using the initial point and its image two strikes of the
section later, confirms this. The stability data of the four separate basins can
be seen in Table 3. Two pairs exist with similar eigenvalues and eigenvectors,
but are noticeably different from the remaining two basins. The eigenvalues
and eigenvectors of an unstable periodic orbit are constant on that orbit, thus
implying that there exist two period-two orbits in the Rössler system. These
orbits shall be called the p21 and p22 orbits.

(2c) Period Three

There are five distinct basins of period three points. The linear fitting technique
applied to each of these yields the results shown in Table 4. As can be seen, there
exist two pairs of basins (corresponding to two orbits) and a fifth basin, which lies
on the hook region of the attractor. As was stated, it is unlikely that an accurate
linear fit can be employed in this basin, a situation reflected in the results of
the linear fit. In all probability this basin is actually a mixture of the remaining
two basins of the two period-three orbits identified from the first four basins.

(2d) Higher Periods

All the higher periods (sets of points with an m value greater than three)
have points on the hook region of the attractor; the set of period four points
consists of four basins, three of which appear to be accurately represented by
the linearisation (see Table 5) and a fourth on the hook. For some m values
over half of the points are on the hook, whilst for others the percentage is much
lower. Any point on the hook is lost to the linear analysis used, and therefore
represents useless data. If a serious attempt were to be made to control higher
periods of the Rössler system then a method would have to be devised which
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Table 3. Stability properties of the period two orbit

The total number of period two points was 1301

p21 n = 233

ξF = {6 ·28867, 4 ·47693} ξF (p) = {6 ·28485, 4 ·47739}

A =

(
−3 ·3485 −0 ·248862

−2 ·18873 −0 ·109648

)
b =

(
28 ·4439

18 ·7242

)
λu = −3 ·50874 eu = {−0 ·840773, −0 ·541387}
λs = 0 ·0505987 es = {0 ·0730188, −0 ·997331}

p21 n = 176

ξF = {9 ·69457, 8 ·03744} ξF (p) = {9 ·64709, 8 ·10376}

A =

(
−1 ·63348 −2 ·02754

−1 ·41098 −0 ·805985

)
b =

(
41 ·8267

28 ·1941

)
λu = −2 ·96098 eu = {−0 ·836628, −0 ·547771}
λs = 0 ·521518 es = {0 ·68524, −0 ·728318}

p22 n = 73

ξF = {9 ·19793, 7 ·48998} ξF (p) = {9 ·13803, 7 ·52794}

A =

(
5 ·03717 0 ·912868

0 ·969308 1 ·10125

)
b =

(
−43 ·9668

−9 ·67314

)
λu = 5 ·25043 eu = {0 ·973781, 0 ·227489}
λs = 0 ·887995 es = {−0 ·214873, 0 ·976642}

p22 n = 270

ξF = {9 ·43883, 6 ·60771} ξF (p) = {9 ·488, 6 ·52707}

A =

(
3 ·88803 1 ·46086

2 ·77427 2 ·20076

)
b =

(
−36 ·9126

−34 ·1203

)
λu = 5 ·22719 eu = {0 ·737147, 0 ·675733}
λs = 0 ·861607 es = {−0 ·434707, 0 ·900572}

could accurately determine the linearisation of these unstable periodic points.
This supports the claim that the hook is a region of much folding and stretching
as a number of different periodic points are mixed together, making effective
linearisation very difficult.

Another phenomenon which becomes more pronounced with higher period
orbits is the presence of isolated points of a given m value, or of very small basins
(<30 points). These are also useless data points, as the dynamics around a small
set cannot be accurately estimated by any fitting procedure. Nevertheless, for
all m values up to period ten (m = 10), which was the highest period examined,
there existed basins large enough so that the dynamics in that region could
be estimated, although for many of these basins the linearised dynamics did
not appear to accurately represent the actual behaviour of a trajectory in the
neighbourhood.

It was hoped that through estimating the Lyapunov exponents of the first
fifteen unstable periodic orbits an estimate of the Lyapunov exponents of the
system as a whole could be achieved (Lathrop and Kostelich 1989). However,
due to the significant proportion of points for which the numerical linearisation
method failed this was not possible.
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Table 4. Stability properties of the period three orbit

The total number of points in the period three orbit was 8447

p31 good n = 1265

ξF = {3 ·99033, 2 ·83285} ξF (p) = {3 ·99018, 2 ·83534}

A =

(
−2 ·10545 −0 ·0742427

−1 ·4763 −0 ·102041

)
b =

(
12 ·6021

9 ·01285

)
λu = −2 ·15874 eu = {−0 ·812381, −0 ·583128}
λs = −0 ·05 es = {0 ·0360745, −0 ·999349}

p32 good n = 688

ξF = {2 ·8352, 3 ·43558} ξF (p) = {4 ·84045, 3 ·43558}

A =

(
4 ·86774 0 ·234634

3 ·28956 0 ·286732

)
b =

(
−19 ·5025

−13 ·4552

)
λu = 5 ·02948 eu = {0 ·821696, 0 ·569927}
λs = 0 ·12399 es = {−0 ·0494117, 0 ·998778}

p31 good n = 987

ξF = {7 ·18809, 5 ·16694} ξF (p) = {7 ·1899, 5 ·16851}

A =

(
−2 ·10629 −0 ·21629

−1 ·68049 −0 ·137017

)
b =

(
23 ·4459

17 ·9548

)
λu = −2 ·27621 eu = {−0 ·786361, −0 ·617767}
λs = 0 ·0328102 es = {0 ·100599, −0 ·994927}

p32 fair n = 614

ξF = {8 ·51994, 6 ·28903} ξF (p) = {8 ·52524, 6 ·30563}

A =

(
4 ·48625 0 ·949183

3 ·51294 0 ·943364

)
b =

(
−35 ·6397

−29 ·5721

)
λu = 5 ·25585 eu = {0 ·775318, 0 ·631571}
λs = 0 ·170162 es = {−0 ·214956, 0 ·976624}

basin 5 very bad n = 4892

ξF = {9 ·27156, 8 ·06643} ξF (p) = undetermined

A =

(
0 ·787045 0 ·199019

−0 ·070614 0 ·802149

)
b =

(
0 ·369047

2 ·25066

)
λu = 0 ·794597 + 0 ·118i eu = {0 ·859133, 0 ·0325997 + 0 ·510i}
λs = 0 ·794597− 0 ·118i es = {0 ·859133, 0 ·0325997− 0 ·510i}

3. Control

Once the stability properties and movement of the periodic points have been
determined for a given orbit it should be a simple matter of applying small
perturbations to the system in accordance with the control algorithm of OGY
to control chaos in the Rössler system. In this section control will be attempted
for the six orbits with period four or less.

However, as may be expected, the situation is not so straightforward. For the
procedure to work, a number of assumptions are made about the dynamics of
the system, for example that the fixed point does not move in a direction parallel
to the stable manifold. The most important assumption is that the motion of
a trajectory near an unstable fixed point can be accurately modelled by the
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Table 5. Stability properties of the period four orbit

The total number of period four points was 882

p41 good n = 49

ξF = {5 ·61418, 4 ·00583} ξF (p) = {5 ·61782, 4 ·0039}

A =

(
−15 ·9867 −1 ·02419

−11 ·7349 −0 ·530427

)
b =

(
99 ·4692

72 ·0126

)
λu = −16 ·7287 eu = {−0 ·80982, −0 ·586679}
λs = 0 ·211551 es = {0 ·0631022, −0 ·998007}

p42 good n = 197

ξF = {8 ·69834, 6 ·42493} ξF (p) = {8 ·70641, 6 ·4287}

A =

(
−9 ·907434 −2 ·2266

−9 ·949169 −2 ·13532

)
b =

(
101 ·936

102 ·706

)
λu = −11 ·364 eu = {−0 ·697116, −0 ·716958}
λs = 0 ·15466 es = {0 ·234532, −0 ·972108}

p43 good n = 242

ξF = {9 ·43431, 7 ·20418} ξF (p) = {9 ·43912, 7 ·21197}

A =

(
−9 ·3005 −4 ·66418

−11 ·0697 −5 ·05809

)
b =

(
130 ·775

148 ·079

)
λu = −14 ·671 eu = {−0 ·655678, −0 ·75504}
λs = 0 ·312896 es = {0 ·436528, −0 ·899691}

basin 4 bad n = 381

ξF = {9 ·63213, 8 ·27891} ξF (p) = {9 ·67418, 8 ·27685}

A =

(
0 ·467671 −0 ·195715

−1 ·58287 −1 ·27174

)
b =

(
6 ·74777

34 ·0539

)
λu = −1 ·43457 eu = {0 ·120345, 0 ·994749}
λs = 0 ·630525 es = {0 ·768688, −0 ·639624}

linear least squares technique employed. This assumption, although integral to
the procedure, is not always valid, and when it is not the method of OGY has
little or no controlling influence on the system.

This section reports on attempts made to control the low period unstable
orbits of the Rössler system and the difficulties encountered in doing this. It will
be shown that of the first six unstable periodic orbits, only two can be fully
controlled using the linear approximation of OGY, while a third orbit can be
controlled for a limited time.

(3a) Period One

The stability properties of the unstable period one orbit (fixed point) are given
in Table 2. Because of the ever-present noise in the system (caused by switching
when changing parameters and the limitations of numerical solutions) it was
necessary to apply repeated perturbations, i.e. once the trajectory has entered
the region where the calculated perturbations are suitably small, a recalculated
perturbation is applied on every piercing of the Poincaré section.

A control algorithm was devised as follows. The scalar variable x(t) is embedded
and a Poincaré section is taken; the system is then transformed so that the fixed
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point, as calculated by the linear fit, is at the origin. A trajectory is allowed
to evolve and, as each new point on the section is formed, its magnitude is
determined. When a point is found which is sufficiently close to the origin, the
perturbation required to nudge it onto the stable manifold is calculated. The
external parameter is then changed by this amount and the trajectory of this
new system is allowed to evolve until it restrikes the section. This process of
calculating the perturbations and allowing the system to evolve is repeated for as
long as control is desired, or until the required perturbation becomes too large,
i.e. the trajectory trajectory is knocked out of the controllable region.

For the period one orbit the maximum perturbation was set at pmax = 0 ·3.
This corresponds to approximately 5% of the nominal value of b. A change
of this magnitude has no obvious effect on the system (Corney 1995). If the
control is effective, then the perturbations should quickly decrease in size. The
neighbourhood inside which the initial point must lie for the perturbations to
start was chosen to be a circle around the origin of radius 0 ·1. This is smaller
than is necessary using equation (2) given by OGY.

The OGY method failed to control the period one orbit of the Rössler system.
The controlling perturbations appeared to have no stabilising effect whatsoever,
and in fact only three to five perturbations were applied before a randomly
chosen chaotic trajectory wandered out of the controllable region. This is not
an unexpected result; recall that the fixed point for the linear fit was on the
edge of the basin. This would seem to indicate that the linear fitting was not
accurate and therefore may pose a problem when control methods are applied.
In short, the period one orbit may not be controllable.

The issue of controllability has long been an area of interest in engineering, but
almost all this work has dealt with unstable linear systems. An unstable linear
system is completely controllable provided it satisfies an established criterion,
known as controllability (Ogata 1990). A comprehensive treatment of linear
control can be found in a range of books, for example, Ogata (1990) or Van de
Vegte (1990).

The problem of controlling the period one orbit of the Rössler system is,
however, not one of linear controllability; the unstable linear system corresponding
to the period one orbit can be easily controlled using the same perturbations
as those calculated for the Rössler system. The control method of OGY is not
effective for the unstable period one orbit of the Rössler system and this is
primarily because of the failure of the linearisation method used, resulting in a
poor representation of the true linearisation of the dynamics. This can be seen
by defining the set of images of the points in the basin under the Ròssler system
as the ‘real images’, and the set of images of points in the period one basin under
the corrsponding linear system, as the ‘linear images’. If the Rössler system is
close to linear about the fixed point then these sets should be almost identical.
Fig. 5 is a plot of the real and linear images, with a line drawn between the
corresponding points in the two sets. The distance between almost all pairs of
points is quite small, but for points which exist where the real stable manifold
would be expected to lie (down the centre of the basin) the real and linear
images are on opposite sides of the cluster. This is rather disturbing, for it is
near the stable manifold that the perturbations are applied and to which the
system tends upon their application. Consequently it is especially important for
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Fig. 5. Comparison of the real and linear images. A line is drawn between the corresponding
points in each set. All pairs are reasonably close except those near the centre of the set (near
the stable manifold).

Fig. 6. OGY assume that the fixed point ξF (p) moves along a line with small changes in p.
This figure shows the location of ξF (p) for p = −0 ·01 (top left), 0, 0 ·005, 0 ·02, 0 ·1, 0 ·2, and
as can be seen they are far from co-linear.
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the linear approximation to hold in this region. As it does not, the control is
unlikely to be successful.

Another indicator of the non-linear nature of the fixed point can be seen in the
motion of the calculated fixed point with external parameter. This corresponds
to the vector g in OGY’s paper. The assumption of linearity implies that the
fixed point ξF (p) moves in a straight line (for small variations of p). Fig. 6 gives
the location of ξF (p) for six values of p; the motion of ξF (p) is far from linear.
As can be seen the vector g changes radically with slight perturbations, and so
the equation given by OGY, which relies on g, is invalid. In fact, the calculated
fixed point is outside its corresponding basin for any small perturbation.

In conclusion, the attempt to control the unstable period one orbit of the
Rössler system was doomed to failure. The reason for this was the non-linearity
of the dynamics of the system in the neighbourhood of the said fixed point.
If control of this fixed point is essential then a method which uses polynomial
fitting, or some other higher order technique, is necessary so that the stable and
unstable manifolds can be successfully modelled.

(3b) Period Two

The set of m = 2 points consisted of two unstable period two orbits. As these
orbits are distinct they will be controlled separately, starting with the p21 orbit
which consisted of basins 1 and 4.

For a period two or higher cycle the control algorithm is almost identical to
the period one case; for simplicity the system is transformed so that one of
the points is at the origin and the system is allowed to evolve. When a point
suitably close to the origin occurs, the control perturbation which will nudge the
double iterate of this point onto the stable manifold of the origin is determined
and applied to the system. The next strike of the Poincaré section is near the
second point of the period two orbit, and so the perturbation required to bring
the double iterate of this point onto the second point’s stable manifold is applied.
This two step process is repeated for as long as control is desired, or until the
trajectory is forced away from the orbit by non-linearities in the system.

The neighbourhood of the origin was chosen to be a circle of radius 0 ·1 and
the maximum perturbation pmax = 0 ·3. Once again, if control is effective the
perturbations should quickly decrease in size.

The attempt to control the p21 orbit was highly successful. Fig. 7 shows the
evolution of the scalar x coordinate with time. As can be seen, the system is
controlled almost instantly and kept there for as long as is desired. The controlled
orbit is somewhat noisy; the second point of the orbit has variations around the
fixed point of amplitude ≈ 0 ·3. This is reasonably large and may be a problem
if the controlled period two orbit is necessary in an experimental situation. The
first point of the orbit has very little noise.

An interesting feature of the p21 orbit is that the control is just as effective
with either one or two perturbations applied each period. Even the noise level
does not change significantly. The most likely cause of this is a slightly inaccurate
linear fit of the second point (Corney 1995).

The initial perturbation is quite large (≈0 ·3), but by the third iterate the
applied perturbation has fallen to ≈0 ·02. By the seventh iteration the calculated
perturbations have settled down into an almost periodic variation around δp = 0
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with an amplitude of approximately 0 ·02. Again this suggests a slightly inaccurate
linear fit.

Fig. 7. Controlled p21 orbit. The first perturbation is applied at t = 48 s and the perturbations
are stopped at t = 248 s.

The second period two orbit p22 is unlikely to be controllable as the linearised
fixed points are both well out of their respective basins. This indicates non-linear
behaviour near the orbit, perhaps even on a greater scale than the period one
orbit. Consequently a trajectory near the linearised fixed point will not be period
two and the dynamics near the real fixed point cannot be linear. The attempt
to control the p22 orbit was unsuccessful. Due to the inaccurate location of the
fixed point the system was actually displaying period one behaviour when the
perturbations were applied.

(3c) Period Three

The control of a period three orbit is a straightforward extension of the
technique for a period two orbit, except that the order of visitation of the points
must be known. This can easily be determined by studying the behaviour of a
point which has an m = 3 value. This shows that the third point of each orbit
is indeed on the hook. The fact that the stability properties of only two points
of each period three orbit are known should not be a problem as it was shown
for the period two orbit that control can be effectively achieved when one of the
points is not known.

The attempt at controlling the p32 orbit was successful, as can be seen in
Fig. 8. For the third point of the orbit the system was left in the perturbed state
as calculated using the previous point. The controlled period three orbit was far
less noisy than the period two orbit, although the second and third points do
have an almost periodic variation in their location. This variation is thought to
be indicative of slightly inaccurate linear fitting as well as noise in the system.
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Fig. 8. Controlled p32 orbit. Perturbations are first applied at t = 61 s and stopped at
t = 405 s.

Fig. 9. Perturbations that are applied to control the p32 orbit. Note the oscillation of the
two perturbations about a non-zero value, indicative of a slight error in the linear fit.

The movement of the controlled orbit away from the location of the p32 orbit
of the unperturbed system is due, once again, to a slightly inaccurate linear fit;
the perturbations actually nudge the system towards an unstable period three
orbit of the Rössler system which corresponds to a slightly different parameter
value. This can be seen in Fig. 9 by the convergence of the two perturbations
towards a non-zero value.
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The p31 orbit could not be successfully controlled. The reason for this is the
failure of the system to satisfy one of the assumptions of the OGY method; this
is the assumption that the movement of the fixed point with external control
parameter is not parallel to the stable manifold. This results in any required
perturbation being large (as the distance between the iterate and the stable
manifold remains almost constant with changes in parameter), which is invalid
as it changes the system in a fundamental way.

(3d) Period Four

The period four orbit consists of the three linearisable basins and the fourth
basin which lies on the hook. The control method used was almost identical to
the period three method. The maximum perturbation was set at pmax = 0 ·5,
and due to the small size (in phase space) of each of the basins the control
neighbourhood was set with a radius of 0 ·05.

The OGY method was partially successful at controlling the period four orbit;
a trajectory could be kept on the unstable orbit for an interval of the order of
twenty periods, but in this time would slowly move further away from the real
period four orbit and so larger perturbations were necessary to keep it behaving
as a period four orbit. Eventually the required perturbations became too large
and the system became uncontrolled.

4. Conclusion

All unstable periodic orbits up to and including period 10 were examined and
the stability properties for all basins of these periods were approximated using
a linear fitting technique (Corney 1995). For some orbits this process seemed to
accurately reflect the dynamics, but for others the linearisations were at best
suspect. As the period increased less points on a given orbit could be accurately
approximated and so control was not attempted past period four. The control
procedure has been shown to be effective in certain cases, as specified by OGY
in their original paper (Ott et al . 1990). The algorithm is not effective when
a good linear fit to the dynamics around a periodic orbit cannot be found, or
when the fixed point ξF (p) moves parallel to the stable manifold. Neither OGY,
Lathrop and Kostelich (1989), nor any other author (see Shinbrot et al . 1993
for a review) give any hint that these problems may be a common occurrence;
however two of the first six periodic orbits of the Rössler system exhibited such
poor linearisations as to render the control method ineffective and a third had
the problem of the motion of its fixed point being parallel to the stable manifold.
Only two orbits (p21 and p32) could be controlled for any length of time, whilst
the remaining orbit (p4) was controllable for only a finite time.

In conclusion, the method of OGY to control unstable periodic orbits in a
strange attractor is sound, but only when the dynamics of the system around such
an orbit satisfy the assumptions made in their original paper (Ott et al . 1990).
Unfortunately these assumptions (especially that of being able to successfully
linearise around the orbit) are not satisfied in many cases.

In order to improve the situation it is necessary to be able to determine the
manifolds about unstable orbits that are not easily linearisable. This may involve
developing a generalised least squares technique involving polynomial fitting for
two, or higher, dimensional data and then being able to obtain the manifolds and
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Lyapunov exponents from this fit. This has, as far as the author is aware, not
yet been achieved and indeed would be no easy task. Without such a technique
it is difficult to see how the percentage of orbits controllable by the OGY method
can be increased.
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