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Abstract

We present details of a model for calculating the mass spectrum of light-quark mesons and
decay constants of the pseudoscalar meson octet from a phenomenological model based on
Dyson–Schwinger and Bethe–Salpeter equations. In this model the Bethe-Salpeter kernel is
approximated by a separable ansatz obtained from input quark propagators.

1. Introduction

The dynamics of the light mesons is a sensitive test of confinement and
dynamical chiral symmetry breaking in QCD, with the pion being realised as
an almost-Goldstone boson. With this in mind, we present here details of a
phenomenological model of light mesons based on the application of approximate
Dyson–Schwinger (DS) and Bethe–Salpeter (BS) equations [1].

Central to the success of this model is the fact that the combined rainbow DS
equation and homogeneous ladder BS equation have the property that, in the
chiral limit, they admit as solutions massless Goldstone pions [2]. This property
has been used to advantage in a number of earlier studies [3] of light mesons.
However, the model presented here differs from previous models in that the only
inputs are light quark propagators inspired by established studies of QCD DS
equations [4]. The Bethe–Salpeter kernel is then approximated by a separable
effective form obtained by inverting the quark DS equation. Similar methods have
also been employed in a recent study by Cahill and Gunner [5]. We emphasise
that the philosophy behind such calculations is one of attempting to understand
physical processes driving observed phenomena, rather than numerical verification
of QCD itself.

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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2. The Model

We begin with the combination of a rainbow approximation DS equation for
each quark propagator, and the homogeneous ladder approximation to the meson
BS equation,

S−1
f (p)− i 6p−m = 4

3

∫
d4q

(2π)4
γµSf (q)∆(p− q)γµ , (1)

Γ(p, P ) = − 4
3

∫
d4q

(2π)4
∆(p− q)γµSf1(q − ξP )Γ(q, P )Sf2(q + (1− ξ)P )γµ . (2)

Here Sf (p) is the full quark propagator of flavour f , and Γ(q, P ) the BS
amplitude defined so that external outgoing and incoming quark lines carry
momenta q+(1− ξ)P and q− ξP respectively. In the DS equation, the full gluon
propagator has been modelled by the form g2Dµν(p − q) = δµν∆(p − q) which
one may describe as a representation of the propagator in a Feynman-like gauge.
In the BS equation, the generalised ladder approximation has been employed in
which the effect of the full kernel is assumed to be well approximated by the
insertion of a single gluon propagator. By rainbow approximation we mean that
the full quark–gluon vertex has been replaced by the bare vertex. The metric is
Euclidean.

The most general form of the fermion propagators consistent with Lorentz
covariance, together with C, P and T, is given in terms of two scalar functions.
Here we use either of the two following representations for our quark propagators:

S(p) = −i 6pσV (p2) + σS(p2) =
1

i 6pA(p2) +B(p2)
. (3)

To ensure quark confinement, and therefore the absence of spurious quark
production thresholds in the BS amplitudes, it is sufficient [1] that σV and σS
be entire functions in the complex p2-plane. Propagator amplitudes with this
property are the only input for the present approach. A separable ansatz for the
BS kernel is obtained by making the truncation

∆(p− q) = G(p2)G(q2) + p · qF (p2)F (q2) . (4)

This can be thought of as a separable approximation to the first two moments
of an expansion in terms of Tschebyshev polynomials in the angular variable
p̂ · q̂. Orthogonality of Tschebyshev polynomials with respect to the measure d4q
ensures that higher moments do not contribute to Eq. (1), whose solution then
requires

F (q2) =
1

a
(A(q2)− 1), G(q2) =

1

b
(B(q2)−m) , (5)

a2 = 2
3g

2

∫
d4q

(2π)4
q2σV (q2)(A(q2)− 1) , (6)

b2 = 16
3 g

2

∫
d4q

(2π)4
σS(q2)(B(q2)−m). (7)
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To treat mesons involving unequal quark masses (e.g. the kaon), the separable
ansatz for the BS kernel is generalized to a symmetric combination of the
functions F and G obtained for the individual quarks in such a way that Eq. (4)
is recovered in the limit mf2→mf1 .

3. Solution of the Bethe–Salpeter Equation

To illustrate the method of solving the BS equation, we consider the case of
equal quark masses: f1 = f2 and ξ = 1

2 in Eq. (2). The general form of the
scalar and pseudoscalar meson amplitudes can be written as [6]

Γscalar(q, P ) = gI(q
2, P 2, q ·P )I

+ [gP (q2, P 2, q · P )Pµ + gu(q
2, P 2, q · P )uµ(q)]iγµ, (8)

Γpseud(q, P ) = g5(q
2, P 2, q ·P )γ5

+ [gP5(q
2, P 2, q · P )Pµ + gu5(q

2, P 2, q · P )uµ(q)]iγµγ5 , (9)

where, for later convenience, we have defined

uµ(q) =
P 2qµ − (q · P )Pµ

q2P 2 − (q · P )2
, (10)

which satisfies P · u(q) = 0, q · u(q) = 1. Note that in a Feynman-like gauge it
follows from the Fierz identity that there is no piece proportional to [6P, 6q]. For
mesons which are even (odd) under charge conjugation, gI , gu, g5 and gP5 are
even (odd) functions and gP and gu5 odd (even) functions of q · P .

Defining kµ = qµ − 1
2Pµ and lµ = qµ + 1

2Pµ, we multiply Eq. (2) through by
I, 6P or 6u(p) and take traces to project out a set of coupled integral equations
for the pseudoscalar meson amplitudes:

g5(p, P ) = 16
3

∫
d4q

(2π)4
∆(p− q)

× {g5(q, P )[k · lσV (k2)σV (l2) + σS(k2)σS(l2)] .

+ gP5(q, P )[k · PσV (k2)σS(l2)− l · PσV (l2)σS(k2)]

+ gu5(q, P )[σV (k2)σS(l2)− σV (l2)σS(k2)]} , (11)
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P 2gP5(p, P ) = 8
3

∫
d4q

(2π)4
∆(p− q)

× {g5(q, P )[k · PσV (k2)σS(l2)− l · PσV (l2)σS(k2)] .

+ gP5(q, P )[(P 2k · l − 2k · Pl · P )σV (k2)σV (l2)

− P 2σS(k2)σS(l2)]

+ gu5(q, P )[−(k + l) · PσV (k2)σV (l2)]} , (12)

u2(p)gu5(p, P ) = 8
3

∫
d4q

(2π)4
∆(p− q)

× {g5(q, P )[σV (k2)σS(l2)− σV (l2)σS(k2)]q · u(p) .

+ gP5(q, P )[−(k + l) · Pq · u(p)σV (k2)σV (l2)]

+ gu5(q, P ).[(k · lu(p) · u(q)− 2q · u(p))σV (k2)σV (l2)

− u(p) · u(q)σS(k2)σS(l2)]} . (13)

Here we have employed the representation Eq. (3) of the quark propagator. The
corresponding equations for the scalar components gI , gP and gu are obtained
from these by making the replacement σS(l2)→−σS(l2) [but σS(k2) unchanged].

In order to extract on-mass-shell amplitudes, we set P = (0, iM), p = (p, p4)
and q = (q, q4). For the pseudoscalar states is convenient to rescale the scalar
amplitude components via the definitions f(|q|, q4;M) = ig5(q, P ), W (|q|, q4;M) =
iMgP5(q, P ) and U(|q|, q4;M) = gu5(q, p)/|q|. Then from Eqs (11), (12) and (14)
we obtain

f(p) = 16
3

∫
d4q

(2π)4
∆(p− q)(Tfff(q) + TfWW (q) + TfUU(q)) ,

W (p) = 8
3

∫
d4q

(2π)4
∆(p− q)(TWff(q) + TWWW (q) + TWUU(q)) ,

U(p) = 8
3

∫
d4q

(2π)4
∆(p− q) p · q

|p||q|
(TUff(q) + TUWW (q) + TUUU(q)) , (14)

where the T are given by

T pseud
ff = (|q|2 + q4

2 + 1
4M

2)|σV |2 + |σS |2 ,

T pseud
WW = (|q|2 − q42 − 1

4M
2)|σV |2 − |σS |2 ,

T pseud
UU = (−|q|2 + q4

2 + 1
4M

2)|σV |2 − |σS |2 ,
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T pseud
fW = − T pseud

Wf = M<(σ∗V σS) + 2q4=(σ∗V σS) ,

T pseud
fU = − T pseud

Uf = 2|q|=(σ∗V σS) ,

T pseud
WU = T pseud

UW = −2|q|q4|σV |2 , (15)

where σV = σV (k2), σ∗V = σV (l2), and a similar definition holds for σS . For the
scalar states the analogous definitions f(|q|, q4;M) = gI(q, P ), W (|q|, q4;M) =
iMgP (q, P ) and U(|q|, q4;M) = gu(q, P )/|q| lead once again to the form Eq. (14),
but with a different set of functions T scalar which can be obtained from the
T pseud by making the replacements |σS |2→−|σS |2, <(σ∗V σS)→=(σ∗V σS) and
=(σ∗V σS)→−<(σ∗V σS).

The form of the effective kernel ∆(p − q) appearing in Eq. (14) is so far
unspecified. We now assume the separable form Eq. (4). Carrying out the angular
integrals, and taking into account the symmetry properties of the functions f ,
W and U under q4→−q4 following from charge conjugation symmetry, we arrive
at the following pair of integral equations for the JPC = 0−+ mesons:

f(p) =
8

3π3

∫ ∞
0

dq4

∫ ∞
0

d|q| |q|2G(p2)G(q2)[T pseud
ff f(q) + T pseud

fW W (q)] ,

W (p) =
4

3π3

∫ ∞
0

dq4

∫ ∞
0

d|q| |q|2G(p2)G(q2)[T pseud
Wf f(q) + T pseud

WW W (q)] . (16)

Analogous sets of equations can be found for the JPC = 0++, 0+− and 0−−

mesons.
The separable form of the kernel allows solutions for these equations in terms

of the functions F and G. For the 0−+ meson for instance, one then has that
the solution must be of the form

f(p) = λfG(p2), W (p) = λWG(p2) . (17)

Substituting the above ansatz into the integral equations gives a matrix equation
of the form ~λ = K(M)~λ where ~λ = (λf , λW )T and K(M) is a 2× 2 matrix whose
elements are numerically tractable double integrals which are determined once
σV and σS are specified. One then adjusts the meson mass M until one of its
eigenvalues equals 1.

For the case of unequal quark masses one finds that the functions f , W and
U are complex and that Eq. (17) generalises to forms such as, for example,

f(p) = λ1Gu(p
2) + λ2Gs(p

2) + i[λ3p4Fu(p
2) + λ4p4Fs(p

2)] . (18)

The matrix K(M) becomes, in general, a 12 × 12 matrix, which reduces to a
10× 10 matrix when charge symmetry is taken into account.



100 C. J. Burden et al.

4. Decay Constants

Once the Bethe–Salpeter amplitude is determined, pseudoscalar decay constants
can be calculated. The decay constant fP is defined by (see Eqs (2 ·8 ·35) and
(2 ·8 ·24) of ref. [7]):

1√
2
〈0|Ψf1(0)γµγ5Ψf2(0)|Φ(P )〉 = PµfP , (19)

where |Φ(P )〉 is the pseudoscalar meson state vector, Ψf is the Dirac spinor field
corresponding to a quark of flavour f , and Ψγµγ5Ψ contains an implicit sum
over colours.

The Fourier transform of the fermion-dressed BS amplitude is

(2π)4δ4(p− q)Sf1(p− ξP )Γ(p, P )Sf2(p+ (1− ξ)P )

=

∫
d4xd4y eiP ·

(1−ξ)x+ξy
2 ei(x·q−y·p)〈0|Ψf1(x)Ψf2(y)|Φ(P )〉 , (20)

there being one such vertex for each colour. Taking Nctr( 6Pγ5 . . .) of both sides,
integrating out p and q and using Eq. (19) then gives

P 2fP =
Nc√

2

∫
d4k

(2π)4
tr[6Pγ5S1(p− ξP )Γ(p, P )S2(p+ (1− ξ)P )] . (21)

Before this formula can be used, the BS amplitude must be properly normalised.
The canonical normalisation of the mass shell BS amplitude Γ is given by [8]

2Pµ = −Nc
∫

d4k

(2π)4

× {−ξtr[Γ(k,−P )∂kµSf1(k − ξP )Γ(k, P )Sf2(k + (1− ξ)P )] .

+ (1− ξ)tr[Γ(k,−P )Sf1(k − ξP )Γ(k, P )∂kµSf2(k + (1− ξ)P )]} , (22)

where Γ(k, P )T = C−1Γ(−k, P )C defines the corresponding anti-meson amplitude.
Note that, in ladder approximation the scattering potential V is independent of
P , so there is no contribution from a ∂V/∂P term.

Finally, note that Eq. (21) can only be used for numerical calculations as it
stands away from the chiral limit mq = 0 because both sides of the equation
are of order P 2 as P 2→ 0. A similar calculation of decay constants is given in
ref. [9].

5. Summary and Results

We have set out a formalism for calculating the masses and decay constants
of light-quark mesons in terms of input model quark propagators. The method
involves the solution of a ladder approximation Bethe–Salpeter equation in which
the kernel is replaced by a separable ansatz. Our calculated BS results are
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based on quark propagators that summarize DS equation studies [4] through the
approximating analytic forms:

σV (s = p2) =
1

2D
σV

(
s

2D

)
, σS(s = p2) =

1√
2D

σS

(
s

2D

)
, (23)

where D is a mass scale and the dimensionless functions σV and σS are given by

σS(x) =
m̂

x+ m̂2 (1− e−2(x+m̂2))

+
1− e−b1x

b1x

1− e−b3x

b3x

(
b0 + b2

1− e−Λx

Λx

)
1− e−(εSx)

2

(εSx)
2 , (24)

σV (x) =
2(x+ m̂2)− e−εV(x+m̂2) + e−2(x+m̂2)

2(x+ m̂2)2
. (25)

These forms have been successfully applied elsewhere to studies of the electromagnetic
pion and kaon form factors [10]. In order to ensure convergence of the integrals in
Eqs (6) and (7), ultraviolet regulators have been introduced into these functions
in the form of gaussian damping factors. The four free parameters, consisting of
the bare masses m̂u/d, m̂s and the regulator parameters εV and εS , enable the
previously developed propagator forms to be adapted for the present work and
to fit the mass and decay constant of the pion and kaon.

Table 1. Input parameters for the the quark propagator functions
σV and σS

Up/down quark Strange quark

D 0 ·160 GeV2 0 ·160 GeV2

m̂ 0 ·00811 0 ·187
b0 0 ·131 0 ·105
b1 2 ·90 2 ·90
b2 0 ·603 0 ·740
b3 0 ·185 0 ·185
Λ 0 ·0001 0 ·0001
εV 0 ·1 0 ·1
εS 0 ·482 0 ·400

Results arising from the parameter choices in Table 1 are given in Table 2.
We find the results are in good agreement with experiment for low lying octet
pseudoscalar and vector states. It is of interest to note that a simple separable
BS kernel ansatz, determined only by the quark propagators and consistent with
the Goldstone mechanism, can produce good results for the non-Goldstone vector
mesons. We have also carried out calculations for the scalar mesons and find
our calculated masses to be well below those for the observed lightest scalar
mesons a0, f0 and K∗0 . The general consensus in the literature regarding these
states is that they cannot easily be explained as simple qq bound states (see for
instance ref. [12] and references therein). As pointed out in ref. [6] the relativistic
Bethe–Salpeter formalism does not necessarily disallow scalar or pseudoscalar
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Table 2. Meson results

Calculation Experiment [11]
(MeV) (MeV)

mπ 138 ·5 (fit) π±(140), π0(135)
fπ 92 ·4 (fit) π+(92 ·4)
ma0/f0 715 a0(980), f0(975)
mK 493 ·9 (fit) K±(494), K0(498)
fK 113 ·0 (fit) K+(113 ·0)
mK∗0 1180 K∗0 (1430)

mρ/ω 736 ω(783), ρ(770)
ma1/f1 1340 a1(1260), f1(1285)
mK∗ 868 K∗±(891 ·6)
mφ 980 φ(1020)

states with negative charge parity, though such states have not been observed.
We find that the separable ansatz yields very heavy 0+− and 0−− states with
m0−− ∼ 10m0−+ and m0+− ∼ 2m0++ , which is possibly beyond the limit of
applicability of the separable ansatz. Complete details of our results will be
presented elsewhere [13].
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