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Abstract

We discuss an algebraic method for large-Nc baryon structure. In addition to the widely used
quark representation for the large-Nc algebra, we consider several other representations that
reflect important dynamical effects. The axial vector coupling constants both in the isoscalar
(flavour-singlet) and isovector sectors are discussed in detail. Importance of the pion degrees
of freedom is pointed out.

1. Introduction

In the last decade, hadron physics, in particular, baryon structure at low
energies has been studied extensively using effective models. They include quark
models (relativistic and non-relativistic ones), the Skyrme model, their hybrid
models (chiral bag, chiral quark models, ...), the NJL model etc. Many of these
models are able to describe nucleon properties almost at the same accuracy,
which is about typically at the 30% level, although their model setups look quite
different. For instance, the quark model and the Skyrme model appear to be
built upon totally different ground.

However, there is one common aspect which is shared by all these models:
that is, the group structure for spin and isospin (for Nf = 2) symmetry. This is
so because hadron spectra respect spin and isospin symmetry. It is then natural
to expect that the success of these models would be just a consequence of the
same underlying group structure. In fact, there was an attempt to relate the
quark and the Skyrme models by regarding them as different limits of the same
group representation [1, 2, 3]. For example, nucleon matrix elements of στ have
been calculated using the so-called quark representation and shown to contain
the same group theoretical factor [3]:

gA ∼
Nc

3

(
1 +

2

Nc

)
. (1)

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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This reproduces the famous quark model factor 5
3 when Nc = 3 and the

Skyrme model result gA ∼ O(Nc) when Nc → ∞. Such an algebraic method
should in principle be useful in making model independent predictions and in
deriving relations which become exact in the large-Nc limit. In some cases, it is
even possible to calculate higher 1/Nc corrections unambiguously. These are the
reasons that there have been many papers recently that have been concerned
with baryon properties based on the large-Nc algebra [4, 5, 6, 7, 8]. In fact,
motivated by the Skyrmion quantization at finite Nc, Amado et al . independently
studied essentially the same algebraic method [9, 10].

In this paper we consider a group theoretical aspect for large-Nc baryons, whose
algebra is dictated by a contracted SU(4) for the spin and isospin symmetry. We
investigate several representations in addition to the quark representation which
have been commonly used in the literature [1, 6]. The reasons are twofold:

(1) In contrast to the widespread belief that the quark representation produces
both the Skyrme model and the quark model matrix elements, we show explicitly
that there is an example in which this is not the case. That is the isoscalar
axial vector coupling constant g

(0)
A , the nucleon spin fraction carried by quarks.

(2) The quark representation is essentially an algebraic realization of the
non-relativistic quark model. We consider that there are important dynamical
effects missing in the quark representation, which cannot be ignored for a realistic
description of the nucleon. They are the relativistic effect of the quarks and the
pion-cloud effect. We compute the axial vector coupling constants to show the
role of these two effects.

We organize this paper as follows. In Section 2, we derive a large-Nc consistency
condition from the pion–nucleon scattering amplitude. This is a standard way to
derive the large-Nc commutation relations. In Section 3, we construct the quark
representation for the spin and isospin group SU(4), and realize the large-Nc

algebra by the method of group contraction. We calculate gA and g
(0)
A in the

quark representation and how the Skyrme model and the quark models are (and
are not) reproduced by varying a parameter involved in the representation, the
number of colours Nc. In Section 4, we consider the two dynamical effects, and
see how the problem raised in the previous section is resolved. Furthermore, we
present a simple estimate for gA and g

(0)
A in the algebraic framework. The final

section is devoted to a brief summary of this contribution. Many of the results
discussed in this paper has been published elsewhere [11].

2. Large-Nc Algebra

In this section we derive the large-Nc commutation relations from a consistency
condition for large-Nc QCD. Let us consider pion–nucleon scattering. To leading
order, two Born terms contribute to the scattering amplitude M (see Fig. 1):

M∼ Nc
∑
Y

{
VβXY VαY Z

ω +MZ −MY

− VαXY V
β
Y Z

ω −MX +MY

}
. (2)

Here
√
NcVαXY are the Yukawa vertices with the

√
Nc dependence factored out,

and MX··· are the masses of the baryons. Subscripts X, Y , · · · specify the
quantum numbers for the baryons which are in the fundamental representations
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Fig. 1. Born diagrams for pion–nucleon scattering.

of the spin and isospin symmetries, X ≡ (J(spin), I(isospin)) etc., while α, β
stand for the quantum numbers of the pions. The latter label the adjoint
representations of the spin and isospin group, since the pion carries unit isospin
and spin (P-wave coupling) into the vertices. From the Nc dependence of the
two Yukawa couplings, the scattering amplitude superficially grows proportional
to Nc.

However, from unitarity or from Witten’s large-Nc counting rule [12], the
scattering amplitude must be of order N0

c ∼ 1. This is accomplished if the two
terms in (2) cancel. Since baryons are degenerate in the limit Nc → ∞, the
following relations are sufficient for the cancellation [1]:

∑
Y

(
VβXY VαY Z − VαXY V

β
Y Z

)
Nc→∞−→ 0 . (3)

Here the left hand side must be suppressed at least to order 1/Nc. Eqs (3) are
regarded as matrix equations for Vα whose components are VαXY .

Combining the spin and isospin group K = SU(2) × SU(2) with the group
generated by (3), we obtain the following large-Nc commutation relations:

[J a,J b] = ifabcJ c , [J a,Vα] = it(a)αβVβ , [Vα,Vβ ] = 0 . (4)

Here J a ∈ K and fabc are the generators and the structure constants for the
group K, while t(a)αβ are the transformation coefficients for Vα under J a:
t(a)αβ ≡ 〈α|Ja|β〉. Eq. (4) shows that J a and Vα form the non-compact group
algebra G = K × T , the semi-direct product of K by the Abelian group T
generated by Vα. This group structure is similar to that of the Lorentz group.
Representations of the non-compact group (4) are constructed by the method of
induced representation . Here we note the following two results:

(1) The hedgehog state appears as the most symmetric representation of the
algebra.

(2) The resulting baryons built upon the hedgehog state form an infinite tower
of equal spin (J) and isospin (I), (I, J) = ( 1

2 ,
1
2 ), ( 3

2 ,
3
2 ), · · · ∞.
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3. Contracted SU(4) and the Quark Representation

(3a) Quark Representation

Let us start with counting the number of the generators of K × T , with
K = SU(p)× SU(q) and the T a direct product of the adjoint representations of
SU(p) and SU(q),

#(K × T ) = (p2–1) + (q2 − 1) + (p2–1)(q2–1) = (pq)2 − 1 . (5)

It is clear that this is the same as the number of the generators of SU(pq). The
commutation relations of SU(pq) are well known. Let us denote the generators of
the subgroup SU(p)×SU(q) by J a (a = 1, 2, ..., p2 +q2−2), and those of the coset
SU(pq)/SU(p) × SU(q) by Wα (α = 1, 2, ..., (p2 − 1)(q2 − 1)). The commutation
relations are

[J a,J b] = ifabcJ c, [J a,Wα] = it(a)αβWβ , [Wα,Wβ ] = i(gαβγ1 Wγ + gαβc2 J c) .

(6)

Here f , g1, g2 are the structure constants. For the case of p = q = 2, the constant
g1 vanishes and the last commutators of (6) can be written as

[Wia,Wjb] =
i

4
εijkδabJ

k +
i

4
εabcδijI

c , (7)

where J i and Ia are the generators of the spin and isospin group.
Consider now N -dimensional symmetric representations of SU(4) and suppose

that the matrix elements of W are of order N . Then the contraction of
SU(4)→ G = K × T can be performed by replacing Wα by Vα ≡ Wα/N . In the
limit N → ∞ the algebra (6) of the compact group reduces to the algebra (4)
of the non-compact group.

The index N can then be identified with the number of colours in the quark
representation. Consider the wave function of a low lying baryon. It is a direct
product of orbital, spin, isospin (flavour) and colour parts. Since the colour
part is totally antisymmetric, the rest of the wave function must be totally
symmetric. For low lying baryons, all quarks are assumed to be in the lowest
S state, which gives a symmetric orbital wave function, and thus the spin and
isospin part must be totally symmetric. This is the reason that we consider a
symmetric state for the spin and isospin group. The symmetric representation
of SU(4) ⊃ SU(2) × SU(2) is specified by an index N , which is identified with
the number of colours Nc.

It is convenient to introduce bosonic operators αµν (µ, ν = ± 1
2 ) for the

fundamental representations of SU(4) . For instance, αu↓ annihilates a u-quark
with down spin. One of symmetric Nc representations is then generated by the
hedgehog state

|Nc;hq〉 =

√
1

Nc!

[
1√
2

(α†u↓ − α
†
d↑)

]Nc
|0〉 , (8)



      

Algebraic Method for Large-N c QCD 215

where on the left hand side the subscript q indicates that it is the quark
representation. The operator in the square brackets is exactly what is obtained
by coupling the spin and isospin to zero grand spin: ~K = ~J + ~I = 0. The state
(8) breaks spin and isospin symmetries, and all the rotated states

|Nc;hq[A]〉 ≡ R(A)|Nc;h〉 (9)

=

√
1

Nc!

[
1√
2

(
D

1
2
uu(A)α†u↓ +D

1
2

du(A)α†d↓ −D
1
2

dd(A)α†d↑ −D
1
2

ud(A)α†u↑

)]Nc
|0〉

are degenerate. Here R(A) with A ∈ SU(2) is a rotational operator acting on

the isospin space and D
1
2
µν(A) are the SU(2) D-functions of rank 1

2 .
In large-Nc, the theory becomes semiclassical which is verified by looking at

the overlap function,

〈Nc;hq[A′]|Nc;hq[A]〉 = [cos θAA′† ]
Nc , (10)

where θAA′† represents symbolically the relative angle between the ‘orientations’
A and A′. After an appropriate rescaling of the states this overlap goes to a
delta function. This sharp peaking is characteristic of a semiclassical limit.

(3b) Nucleon Matrix Elements

The nucleon state |N〉 can be projected out from the hedgehog state |h〉 by
the method of generator coordinate projection [1, 3]:

|N〉 ∝
∫
d[A] D

1/2∗
t,−m(A)R(A) |h〉 . (11)

Here the third components of spin and isospin equal m and t. The nucleon
matrix elements of an observable ON can readily be computed by

ON =
〈N |O|N〉
〈N |N〉

, (12)

where the denominator is needed for normalization.
Let us now calculate the isoscalar (flavour singlet) axial-vector coupling

constants g
(0)
A and isovector axial-vector coupling constant gA. These are the

nucleon matrix elements of Si ≡
∑Nc
n=1 σi(n) and Tai ≡

∑Nc
n=1 τa(n)σi(n).

The actual computation is performed conveniently using the Euler angles α,
β and γ for rotation. The computational procedure is straightforward and we
just give some of the results here:

〈p ↓ |S3|p ↓〉 = −Nc

∫
d[A]C2

β S
2 CNc−1∫

d[A]CNc+1
= −Nc

Nc
= −1 , (13)
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〈p ↓ |T33|p ↓〉 = −Nc
3

∫
d[A](CNc+1 + CNc−1S2)∫

d[A] CNc+1
= −Nc

3

(
1 +

2

Nc

)
. (14)

Here we have introduced the notations Cβ = cos
β
2
, C = cos

β
2

cos
α+ γ

2
, S =

sin
α+ γ

2
, and d[A] = sinβ dβ dα dγ. The minus signs appear because the matrix

elements are for the p ↓ state. The result (13), 〈p ↓ |S3|p ↓〉 = −1, which is
independent of Nc is trivial, since the nucleon spin here is carried entirely by the
intrinsic quark spin. This is nothing but the result of the non-relativistic quark
model. In contrast, (14) has an explicit Nc dependence; it becomes 5

3 when Nc
= 3 as in the quark model, while it approaches Nc/3 in the limit Nc → ∞ as
corresponding to the Skyrme model result. This fact is the basis for the general
argument that the quark representation produces both the quark and the Skyrme
model results [3]. However, it is now apparent that this is not the case for g

(0)
A .

4. Other Representations

In this section we consider other algebraic realizations for the group SU(4),
which are contracted to the large-Nc algebra in the limit Nc →∞.

(4a) Relativistic Effects

A major relativistic effect is a mixture of the L = 1 state through the lower
component in the quark wave function:

ψ ∼
(

c1

c2 ~σ · r̂

)
. (15)

Here the coefficients c1 and c2, satisfying the normalization condition |c1|2+|c2|2 = 1,
dictates the ratio of the mixture of the upper and lower components∗ and cannot
be determined in the present framework.

Formally such an extension is performed in the algebraic framework by extending
the spin group SU(2)S to that of the total angular momentum J = S + L and
take its diagonal subgroup: SU(2)S ×O(3)L ⊃ SU(2)J=S+L, where the generators
of the diagonal group is the sum ~J = ~S+ ~L. The SU(2)J group is now combined
with the isospin SU(2)I group to form the desired SU(4) ⊃ SU(2)J × SU(2)I .

Explicitly, the relativistic hedgehog quarks are written as

|Nc;h〉 =

(
c1
[
[ 1
2 , 0]J=1/2, 1

2

]K=0

c2
[
[ 1
2 , 1]J=1/2, 1

2

]K=0

)Nc
|0〉 ≡

[(
c1

c2~σ · x̂

)
χ†
]Nc
|0〉 . (16)

∗ Actually, c1 and c2 are functions of the radial distance r. In the following discussions,
however, such a detailed structure of the wave function is not necessary, and we simply ignore
it.
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Here the coupling scheme is [[S,L]J , I]K and χ† ≡
[
[ 1
2 , 0]J=1/2, 1

2

]K=0
=√

1
2 (α†u↓ − α

†
d↑). The last expression of (16) is useful in actual computation. In

order to write this expression one should interpret χ as a column vector in spin
space. The matrix σ then acts on those spin components, and couples them to
the O(3) wave function x̂ to form the hedgehog state [[1

2 , 1]
1
2 , 1

2 ]00.
The matrix elements for S3 and T33 are computed in a straightforward manner

and the results are

〈p ↓ |S3|p ↓〉 = −(|c1|2 − 1
3 |c2|

2) ≡ −g(0)
A , (17)

〈p ↓ |T33|p ↓〉 = −(|c1|2 − 1
3 |c2|

2)
Nc

3

(
1 +

2

Nc

)
≡ −gA . (18)

We find the same suppression factor
(
|c1|2 − 1

3 |c2|2
)

for both the matrix elements.
This is understood such that a part of the nucleon spin (with and without isospin
factor) is carried by the pion angular momentum (L = 1) and the fraction of the
quark intrinsic spin is suppressed.

In the MIT bag model the suppression factor is 0 ·654 [13]. Accordingly,

g
(0)
A = 0 ·654 and gA = 5/3 · 0 ·654 = 1 ·09. If we wish to reproduce the

experimental value of g
(0)
A we need a very smaller suppression factor of about 1

4 .
This implies a too small gA ∼ 5

3 ×
1
4 ∼ 0 ·4. The inclusion of the asymptotic one

pion contribution does not help (see Fig. 3 as well as the discussions below). It
increases gA by about 50% [14], but the net value of about 0 ·6 is still too small
compared with the experimental value gA(exp) = 1 ·25. Since the relativistic

effect is just an overall factor for both gA and g
(0)
A , the quark representation with

the relativistic effect included cannot produce the quark model and the Skyrme
model results by simply varying Nc.

(4b) Pion Effects

We propose that pion effects will be more important for a realistic description of
nucleon properties and also for discussing the quark and the Skyrme model results
on the same footing. Phenomenologically, the pion is known to be important for
such quantities as the neutron charge radius and magnetic moments.

In the large-Nc baryons, the pion cloud together with the quark core form a
hedgehog state. The K = 0 state of the pion is formed by the coupling of its
unit isospin and orbital angular momentum. The relevant group for the pion is
then O(3)I ×O(3)L, which we once more imbed in an SU(4) group. Therefore,
the extended group for the hedgehog quarks and the pions is

SU(4)q × [O(3)I ×O(3)L]π ⊂ SU(4)q × SU(4)π . (19)

Once again, we pick up the diagonal subgroup, SU(4)q+π ⊂ SU(4)q × SU(4)π.
We consider an ansatz of the direct product of the Nc quarks and Nπ pions.

The SUπ(4) algebra can be realized in terms of the same type of bosonic operators
as for the quark algebra, which we denote as βµν . The pion hedgehog can now
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be expressed as
[√

1
2 (β†u↓ − β

†
d↑)
]2

. This has the correct symmetries expected

for a q̄q state, and has the spin and isospin structure ([1
2 ,

1
2 ]00)2. Note that this

construction includes the σ-like excitations as well as those of the pion. However,
their combination is chiral symmetric just as U ∼ σ + i~τ ·~π of chiral models.

Now the hedgehog state takes the direct product of the quark and pion
hedgehog:

|Nc;hq+π〉 =

√
1

Nc!

[
1√
2

(α†u↓ − α
†
d↑)

]Nc
|0〉

×
√

1

(2Nπ)!

[
1√
2

(β†u↓ − β
†
d↑)

]2Nπ

|0〉 . (20)

Fig. 2. Counting of the pion number in the nucleon. The pion–
quark Yukawa vertex is of order N

−1/2
c , while the combination

factor of picking up two quark lines out of Nc is Nc(Nc − 1).
This makes the number of pions of order Nc.

The meaning of the number of the pions is not very clear, and perhaps it would
be difficult to give it a precise dynamical meaning. But it is related, as shown
later shortly, to how the nucleon spin is partitioned between quarks and pions.
In a large-Nc baryon of an Nc quark bound state, the number of pions in the
baryon is expected to be proportional to Nc, Nπ = cNc. This is understood from
a diagrammatic counting as shown in Fig. 2. The coefficient c, however, cannot
be determined in the present algebraic framework.

We calculate the nucleon matrix elements for Si and Tia. Note that those
operators act only on the Nc quarks. The results are

〈p ↓ |S3|p ↓〉 = − Nc

Nc + 2Nπ
≡ −g(0)

A , (21)

〈p ↓ |T33|p ↓〉 = −Nc
3

(
1 +

2

Nc + 2Nπ

)
≡ −gA . (22)

These results, though simple, have interesting implications. The nucleon spin
g

(0)
A becomes less than unity for a finite number of pions Nπ 6= 0, where a part of

the nucleon spin is carried by the angular momentum of pions. When Nπ = 0,
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Eq. (21) reduces to the quark model result, where the entire nucleon spin is

carried by the quark spin. The Skyrme model result of vanishing g
(0)
A [15] is now

obtained when Nπ →∞, where the nucleon spin is entirely carried by the pion
cloud [16]. The same thing holds also for the second term of gA in (22). In
particular, the Skyrme model limit when Nπ →∞, rather than when Nc →∞,
is interesting. This result may be understood by interpreting the Skyrme soliton
as a coherent superposition of infinitely many pions in the classical limit.

(4c) Simple Estimates

Let us make a rough estimate for g
(0)
A and gA including both the relativistic

and pion effects. The importance of the latter two effects have been also discussed
in Ref. [17]. The result in the algebraic method here is simply multiplying the
same reduction factor due to the relativistic effects to (21) and (22). A reasonable
estimate for that would be ∼ 0 ·7. For Nc = 3, gA then becomes

gA ∼ 0 ·7
(

1 +
2

3 +Nπ

)
. (23)

The one pion pole contribution as depicted in Fig. 3 must be added to this result.
This is entirely related to the chiral symmetry aspect of the theory and cannot
be included in the present algebraic framework. In the chiral limit the pole
contribution is calculated exactly: it is precisely 50% of the quark contribution
[14]. So we get the total value of gA to be

gA ∼ 1 ·5× 0 ·7
(

1 +
2

3 +Nπ

)
∼
(

1 +
2

3 + 2Nπ

)
. (24)

Fig. 3. Two components of the axial vector coupling constant
gA: one is the quark (or short range) part and the other is the
asymptotic one pion contribution. The second term, which is
precisely 50% of the first term in the chiral limit, cannot be
included in the present algebraic method.

The experimental value of gA ∼ 1 ·3 is then reproduced when Nπ ∼ 2. Note that
the 1/Nc correction term in (24) is about 30%, which is in good agreement with
the numbers in various chiral models . Using the same parameters, the nucleon
spin g

(0)
A turns out to be

g
(0)
A ∼ 0 ·7 3

3 + 2Nπ
∼ 0 ·3 .
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It is remarkable that such a simple algebraic method can be used to describe
both gA and g

(0)
A simultaneously in good agreement with experiments.

5. Summary

In this contribution we have investigated algebraic models that contain a spin
and isospin subgroup SU(4) whose contraction reduces to the large-Nc algebra
for QCD. We have explicitly constructed a realization which interpolates the
Skyrmion and the quark model results for g

(0)
A and gA by combining a possible

pionic effect with the familiar quark representation. We have calculated axial
vector coupling constants and shown that they are nicely reproduced in the present
method. Those two quantities are in fact matrix elements of the generators of
the SU(4) algebra, which is the primary reason that we could make a reliable
prediction without referring to detailed dynamical information. It would be
interesting to extend the algebraic method further to other quantities such as
mass and magnetic moment.
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