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Abstract

The nucleon and the delta are described as solutions of the relativistic Faddeev equation in
the NJL model. We discuss the dependence of the baryon masses on the particular form of
the four-Fermi interaction Lagrangians. Using the quark–diquark wave function, we calculate
some bound state matrix elements such as the axial coupling constants, magnetic moments of
the nucleon, the pion–nucleon sigma term and the proton–neutron mass difference. We also
try to compare two pictures of describing the baryons in the NJL model, i.e. the mean-field
approximation and the relativistic Faddeev approach. As a first step, we discuss how to
improve the mean-field approximation by introducing an effective interaction. We also discuss
the perturbative estimate of the deformation of the ‘vacuum’ in the Faddeev approach.

1. Introduction

The NJL model [1] is nowadays considered as an effective quark field theory
for low energy hadron physics [2], and has been quite successful in the description
of mesons as qq̄ bound states in the Bethe–Salpeter (BS) framework. A direct
extension of this approach to the description of baryons amounts to solving
the relativistic Faddeev equation [3, 4]. In this work, we solve the relativistic
Faddeev equation [5] in the ladder approximation to obtain the baryon masses.
We take into account the qq interactions in the scalar (0+, T = 0) and the
axial vector (1+, T = 1) diquark channels which are expected to dominate in
the non-relativistic limit. We discuss the dependence of the baryon masses on
the strength of the qq interaction. We calculate bound state matrix elements
such as the axial coupling constants, the magnetic moments of the nucleon,
the pion–nucleon sigma term and the proton–neutron mass difference using the
nucleon wave function [6]. Finally, we try to understand the relation between the
mean-field approximation and the Faddeev approach. As a first step, we discuss
how to improve the former by introducing the effective interaction. We explain
the problem of the latter by using an analogy to nuclear structure theory and
discuss how to estimate the deformation of the ‘core’, which is missing in the
Faddeev approach.

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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2. Lagrangians and Effective Coupling Constants

If the four fermionic interaction Lagrangian LI is explicitly specified, we can
apply the Fierz identities to extract the interaction, in the pionic (0−) qq̄-channel,
the scalar and axial vector qq-channels as

LI,π = −gπ
2

(
ψ̄γ5τψ

)2

, (2 ·1)

LI,s = gs

3∑
c=1

(
ψ̄

(
(γ5C)τ2βc

)
ψ̄T
)
·
(
ψT
(

(C−1γ5)τ2βc

)T
ψ

)
, (2 ·2)

LI,a = ga

3∑
c=1

(
ψ̄

(
(γµC)(τ τ2)βc

)
ψ̄T
)
·
(
ψT
(

(C−1γµ)(τ2τ )βc

)T
ψ

)
, (2 ·3)

where in (2 ·1) we assume that the interaction Lagrangian is written in a Fierz
symmetric form. In this way gπ represents both the direct and the exchange
channel interactions. Here C = iγ2γ0 is the charge conjugation matrix and

(βc)ij = i
√

3
2εcij projects onto the colour 3 channel, while gπ, gs, ga are related

to the coupling constants appearing in the original LI. Due to chiral symmetry
there is also an interaction term 1

2 gπ(ψψ)2 in the 0+qq̄ channel, which leads
to the gap equation for the constituent quark mass M . From the interaction
term (2 ·1) we calculate the qq̄ t-matrix in the pionic channel in the ladder
approximation and adjust the strength gπ to reproduce the experimental pion
mass mπ = 140 MeV. Divergent integrals are regularized by introducing a sharp
Euclidean cut-off Λ. For the calculation of the baryons we will treat gs and ga,
or equivalently the ratios rs = gs/gπ and ra = ga/gπ as free parameters. These
ratios reflect different possible forms of the interaction Lagrangian LI, e.g. for
the original NJL type interaction Lagrangian LI = g((ψ̄ψ)2 − (ψ̄γ5~τψ)2) we have

rs = 2/13, ra = 1/13, while for the colour current type LI = −g(ψ̄γµ
λc

2
ψ)2 we get

rs = 1/2, ra = 1/4. From the interaction terms (2 ·2) and (2 ·3) we calculate the
qq t-matrices in the scalar and axial vector channels by solving the BS equation
in the ladder approximation. These t-matrices are then used as inputs in the
relativistic Faddeev equation.

3. Relativistic Faddeev Equation

Generally the (exact) three-quark BS equation contains complicated two-body
and three-body interactions. However, accepting the ladder approximation, only
the separable two-body interactions are involved. In this case, if we apply
the Faddeev [7] prescription, we are left with the following quark–diquark BS
equation:

X = Z + ZGX . (3 ·1)

Here Z describes the quark exchange, and has the form of a product of two-body
vertex functions and the propagator of the exchanged quark. Further G = tS is
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the three-body propagator with t the two-body (diquark) t-matrix in the ladder
approximation and S the quark propagator. The quantities in (3 ·1) depend on
the total momentum (q = (E,~0) in the c.m. frame) and on the relative momenta
between the diquark and the quark, and moreover they are matrices in Dirac,
flavour and colour spaces. The projections onto colour singlet and isospin T = 1

2
or 3

2 channels present no difficulties. We have used the helicity formalism of
Jacob and Wick to carry out the projection onto the total spin J = 1

2 or 3
2 . We

diagonalize the kernels numerically to obtain the eigenvalues λ(E) as a function
of the total energy E and the right (left) eigenfunctions ψE (ψ̄E). The baryon
mass MB is then obtained from λ(MB) = 1, and the corresponding right (left)
eigenfunctions are the quark–diquark wave (vertex) functions, respectively.

Fig. 1. Masses for the nucleon (solid line) and the delta (dashed line) plotted against the
ratio ra = ga/gπ for several values of rs = gs/gπ. (The scalar diquark channel is not involved
in the calculation of the delta, i.e. the mass of the delta is independent of rs.)

Before showing the results, we explain how the parameters are determined.
Since we truncate the qq interactions to the scalar and the axial-vector diquark
channels, we have the following five parameters: the current quark mass m, the
cutoff Λ, the pion channel effective coupling constant gπ and the qq effective
coupling constants measured by gπ: rs = gs/gπ and ra = ga/gπ in the scalar
and the axial-vector diquark channels. We impose on the first three parameters
the following conditions: (1) the pion mass mπ = 140 MeV, (2) the pion decay
constant fπ = 93 MeV and (3) the gap equation is satisfied with the constituent
quark mass M = 400 MeV. The remaining two parameters rs and ra which
reflect different possible forms of the interaction Lagrangian are treated as free
parameters. We investigate how the baryon masses depend on them. The
calculated masses of the nucleon and the delta are plotted in Fig. 1 against ra,
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with rs being fixed to several values.∗ We see that both the scalar and the
axial-vector diquark channels contribute to the nucleon state attractively, and
that the axial-vector diquark channel contributes to the delta state attractively.
If we take the colour current interaction Lagrangian (rs = 1

2 and ra = 1
4 ), the

nucleon mass is 920 MeV, but the delta is not bound. If we take an interaction
Lagrangian which corresponds to rs = 0 ·36 and ra = 0 ·44, then MN = 920
MeV and M∆ = 1190 MeV. We also find that the following linear relations are
approximately valid:

MN ' −1 ·1rs − 0 ·7ra + 1 ·7 GeV, M∆ ' −0 ·76ra + 1 ·52 GeV . (3 ·2)

From the first relation, it follows that the qq interaction in the scalar
diquark channel gives the dominant contribution. However, the interaction in
the axial-vector diquark channel gives a rather large correction to it, and we
should not neglect it for quantitative calculations. The above two relations give
the nucleon-delta mass difference:

M∆ −MN = 1 ·1rs − 0 ·06ra − 0 ·18 GeV , (3 ·3)

and we conclude that the main mechanism for the nucleon–delta mass difference
in the Faddeev approach is the qq interaction in the scalar diquark channel.
Next we show the results of some bound state matrix elements in Table 1
for several values of rs together with the corresponding nucleon mass (here we

neglect the axial-vector diquark channel for simplicity). Here G
(3)
A and G

(0)
A

are the iso-vector and iso-scalar axial coupling constants; G
(3)
A is close to the

observed value, but G
(0)
A is rather large. The values of the magnetic moments

µp and µn are too small in magnitude. In the quark–diquark approximation, it
is reported that the axial-vector diquark channel gives an important correction
[8]. As for the pion–nucleon sigma term ΣπN, we note that the vertex correction
factor ∂M/∂m = 1 ·35 is already included in these values [8]. The result is
rather close to the observed value. The proton–neutron mass difference is
calculated to first order in (md − mu) according to the following equation:
Mn −Mp = 〈n|H|n〉 − 〈p|H|p〉 ' (md −mu)

∫
d3x〈N|ψ̄τ3ψ|N〉, where |N〉 is the

isospin symmetric nucleon state. We note that the results include the contribution
from the electromagnetic interaction (δMelem. = −0 ·76 MeV) [9]. We take
md −mu = 5 MeV, which follows from md/mu < 1 ·76 [9] and our value for
m = (md +mu)/2 = 8 ·99 MeV. The results for δMnp are about twice the observed
value. Note, however, that the single quark vertex correction and the axial-vector
diquark contribution are not yet included.

4. Mean-field Approximation and the Faddeev Approach

There are two methods to describe baryons in the NJL model: (1) the
mean-field approximation [10] and (2) the relativistic Faddeev approach.† In
the mean-field approximation, the results depend mainly on the qq̄ interactions.

∗ The scalar diquark channel is not involved in the case of the delta due to its iso-scalar
nature. Thus M∆ is independent of rs.
† The quark–diquark approximation is another method. However, this can be considered to
be an approximate version of the relativistic Faddeev approach.
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Table 1. Some bound state matrix elements together with the corresponding experimental
values

rs = gs/gπ
1
2

2
3 0 ·8 Experiment

MN (MeV) 1096 934 764 938

G
(3)
A 1 ·17 1 ·20 1 ·20 1 ·25

G
(0)
A 0 ·92 0 ·83 0 ·81 0 ·31

µp 1 ·5 1 ·80 2 ·16 2 ·7
µn −0 ·96 −1 ·38 −1 ·86 −1 ·9
ΣπN (MeV) 35 ·0 35 ·1 34 ·3 45 ± 7
δMnp (MeV) 2 ·74 2 ·74 4 ·84 1 ·3

Under the hedgehog ansatz, which takes account of the interactions in the pion
and the isoscalar scalar meson channels, there seems to be no stable solution
corresponding to a bound state, unless a three-body interaction Hamiltonian is
included [10]. In fact, there exists a critical coupling constant gc such that, if
the coupling g < gc, there is no localized single-particle solution, while if g > gc,
the baryon collapses.

On the other hand, in the Faddeev approach, the results depend on the qq
interactions. The baryons are described as bound states of a quark and a diquark.
It was found that there exist stable baryon states, if the qq interactions are
strong enough. However, the Faddeev approach can be criticized since it does
not properly take into account the effects of the ‘deformed vacuum’. In terms
of the nuclear structure theory, the ‘vacuum’ in the NJL model corresponds to
the closed shell. The mean-field approximation of the baryon corresponds to the
mean-field calculation of deformed nuclei. The relativistic Faddeev approach in
the ladder approximation corresponds to the three-particle RPA on the spherical
core. So the Faddeev approach takes into account the effect of the negative
energy Dirac sea solely in terms of the RPA vacuum. However, if the deformation
of the ‘vacuum’ due to the valence particles becomes very strong, it cannot be
properly taken into account. As a first step, we propose two methods of how to
improve both approaches. Numerical calculations following these two methods
will be presented in future works.

(4a) Improvement of the Mean-field Approximation

As mentioned before, there exists a critical coupling constant gc in the mean-field
calculation of baryons in the NJL model. The Faddeev approach evaluates the
attraction between quarks stronger than the mean-field approach. This is due
to the fact that the qq interaction is iterated infinitely many times in terms of
the diquark t-matrix. Thus it is natural to expect that we may obtain localized
single particle solutions in the mean-field approach if we employ the diquark
t-matrix t(q2) ∗ as an effective interaction in the qq̄ channel instead of the bare
one, i.e. use geff(q2) = t(q2) instead of g.

In Fig. 2 we plot the typical form of the effective interaction geff(q2) against
q2. The vertical dotted line is the diquark pole. We assume that the curve
intersects with the horizontal line geff = gc below the diquark pole. We shall

∗ q is the total momentum of the qq system, or the momentum transfer in the qq̄ system.
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Fig. 2. Effective interaction introduced in Section 4a plotted against the squared total
momentum of the two quark system under consideration. The vertical dotted line indicates
the diquark pole. The line geff = gc corresponds to the critical coupling constant appearing
in the mean-field approximation of the baryon.

refer to the horizontal coordinate of this intersection as the ‘critical energy’. Let
us imagine solving the mean-field equations self-consistently by iteration, starting
from a trial state and a corresponding average qq energy. If this energy is below
the ‘critical energy’, the effective coupling is weaker than gc. Thus there will
be no localized solution. Performing a cycle of the self-consistent procedure, the
effective coupling corresponding to the new state is stronger than the first one ,
since, in the region geff < gc, the wave functions tend to spread and the energy
tends to get larger. On the other hand, if the trial energy is above the ‘critical
energy’, the corresponding typical effective coupling is stronger than the critical
coupling. So we will have a localized solution which would eventually collapse,
if geff were a constant. After performing a cycle of the self-consistent procedure,
the effective coupling corresponding to the new state gets weaker than the first
one, since, in the region geff > gc, the state tends to collapse and the energy
becomes lower.∗ This will prevent the solution from collapsing. In this way, we
conclude that a stable baryon solution may be obtained, if we use the effective
coupling in the mean-field calculation instead of the bare coupling.

(4b) Effects of ‘Meson Exchange’ in the Faddeev Equation

In principle, there exists an exact version of the relativistic Faddeev equation
with very complicated two-body and three-body interactions, which can perfectly

∗ If the baryon collapses, the spatial momenta get larger, and this makes the effective coupling
smaller.
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take into account the deformation of the ‘vacuum’. However, such an equation is
too hard to solve. Thus we propose estimating the deformation by perturbation
theory, i.e. we treat the two-body contact interaction K0 as the unperturbed one,
and the non-separable two-body interaction δK induced by the meson exchange
(qq̄ exchange) diagram, which is considered to be the most important in the
mean-field theory, as the perturbing one (the three-body interaction is neglected
for simplicity). Then one can evaluate the deviation of the eigenvalue δλN of the
Faddeev equation to first order in δK according to δλN = 〈N|δKFad|N〉, where
〈N| and |N〉 refer to our unperturbed nucleon vertex (wave) function, and δKFad

is the first order deviation of the Faddeev kernel induced by the perturbing
two-body interaction δK. We will present numerical results in the near future.
They will help to understand the relation between the mean-field and the Faddeev
approach.

5. Conclusion

We solved numerically the relativistic Faddeev equation for the nucleon and
the delta states in the NJL model in the ladder approximation, truncating
the qq interaction to the scalar (Jπ = 0+) and the axial-vector (Jπ = 1+)
diquark channels which are expected to dominate in the non-relativistic limit.
We found that the qq interactions in both the scalar and the axial-vector
diquark channel contribute to the nucleon state attractively for rs > 0 and
ra > 0. We also found that the interaction in the axial-vector diquark channel
contributes to the delta state attractively for ra > 0. The nucleon solution
with a reasonable mass (' 920 MeV) could be obtained with the colour current
interaction Lagrangian, but a delta with a reasonable mass could not be obtained
simultaneously from this Lagrangian. However, we found that there exists
a certain class of the interaction Lagrangians which simultaneously reproduce
reasonable values of the nucleon and delta masses. The delta–nucleon mass
difference in the Faddeev approach was found to be mainly due to the qq
interaction in the scalar diquark channel. As applications of the nucleon wave
(vertex) function obtained through the diagonalization, we also calculated some
bound state matrix elements such as the iso-scalar and the iso-vector axial
coupling constants, the magnetic moments of the nucleon, the pion–nucleon sigma
term and the proton–neutron mass difference. Finally, we tried to understand
the relation between the mean-field approximation and the relativistic Faddeev
approach. We proposed a method to improve the mean-field calculation by
introducing an effective interaction. We also proposed estimating the effects of
the ‘deformed vacuum’ in the Faddeev equation in the ladder approximation by
treating the two-body interaction induced by the ‘meson exchange’ as a perturbing
interaction. The numerical results will be shown in a future publication. We
hope that these proposals will help us understand the relation between the two
approaches.
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