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Abstract

We examine the nuclear transparency for the (e, e′p) reaction, applying a relativistic quark
model to incorporate the internal dynamics of the struck proton. We find that the relativistic
covariance plays an important role for so-called ‘colour transparency’.

1. Introduction

Colour transparency reflects internal dynamics of hadrons, as was proposed
by Brodsky and Mueller on the basis of perturbative quantum chromodynamics
(QCD) [1]. They suggested that in the high-energy quasi-elastic process, such
as (e, e′p) or (p, 2p), there is a possibility that the target nucleus becomes
transparent. That the nucleus becomes transparent implies that the final-state
interactions (FSI) of the struck proton become much weaker than those obtained
from the conventional multiple-scattering theory. When this happens, we say
‘colour transparency’ occurs.

Experimental results on the nuclear transparency in (e, e′p) have been reported
recently [2, 3]. The results of Ref. [2] indicate a weak energy dependence and
a slow onset of colour transparency. Most recently the occurrence of colour
transparency has been reported in ρ-meson production on the nucleus [4].

In order to study how the nucleus becomes transparent, we should construct
a quantum mechanical model for the struck proton. In our previous work [1]
we formulated a model for the breathing mode of the proton (we call it the
‘b-model’). The b-model gave a good description for the internal dynamics of the
proton and brought about energy-dependent transparencies in the intermediate
energy region.

Recently, however, we have realized that the struck proton in our b-model
appeared to be too stiff. That is, the nucleus does not become transparent
completely for the struck proton in the model even if the momentum transfer
is very large. We believe that this is because the transverse motion breaks the
causality. That is, since the b-model is based on the non-relativistic quark model
(NRQM), i.e. the quark cluster model, it does not preserve the causality. One
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can easily see that the transverse velocity of the harmonic oscillator increases to
infinity for the very highly excited states. The description in terms of NRQM
will break down at least for the higher excited states.

In this work, we incorporate the Lorentz covariance into our formulation for
the transparency. In the rest of this paper we explain how to describe the
nuclear transparency in terms of the relativistic harmonic oscillator model. First
we explain our basic formulation in Section 2, and second introduce the model
in Section 3. In Section 4 the survival amplitude is given, and the numerical
results are presented. Finally we summarize the results in Section 5.

2. Formulation

We confine ourselves to the (e, e′p) reaction in this work, while we emphasize that
our considerations are equally applicable to other more complicated, semi-exclusive
reactions, such as (p, 2p). Following the terms used in Ref. [1], we call the proton
dynamical (inert) when its internal structure is (not) taken into account.

One should be extremely careful to choose the quantity that would serve as
a signature of the colour transparency. As described with great care in our
previous work [5], we define the nuclear transparency T (q) as a function of the
momentum transfer q as

T (q) =
1

Z

1

A(q)

dσeA

dΩk′

/
dσep

dΩk′
, (2 ·1)

where Z is the atomic number of the target nucleus, and A(q) ' 1 ·05 is the
Fermi-motion averaging factor, almost independent of q = k− k′ [5]. Here k is
the momentum of the incident electron, and k′ is that of the outgoing electron.
Note that the quasi-elastic cross sections in eq. (2 ·1) are results of integration
over the struck-proton momentum p′, and over the magnitude of the momentum
of the outgoing electron k′.

We refer the reader to Refs [5] for detailed discussions leading to the preceding
definition of the nuclear transparency as well as the kinematical considerations
involved. Note that we use relativistic kinematics for the electrons and struck
proton throughout.

To set the reference frame for the colour transparency, we carried out the
calculations of the nuclear transparency in the framework of the Glauber multiple
scattering theory, the Glauber impulse approximation (GIA) [5]. The GIA is
applied under the zero-range-no-recoil (ZRNR) approximation, which neglects
the target nuclear recoil, and the finite NN -interaction range in the final-state
interaction. In this framework, the nuclear transparency is expressed as

T (q) =

∫
drρ(r)P (−)(r), P (−)(r) = exp{−(A− 1)σrNN

∫ ∞
z

dz′ρ(b, z′)} , (2 ·2)

if nuclear correlations are neglected. Here r = (b, z), ρ(r) is the nuclear density,
normalized to unity, and the path of the integral in eq. (2 ·2) is taken to be
along the classical path of the struck proton. Also σrNN is the proton–nucleon
reaction cross section, σrNN = σtotalNN −σelasticNN , and is about 70% of the total cross
section if the struck proton momentum is in the region 2− 15 GeV/c where the
reaction cross section is practically constant. In Ref. [5], we proposed to use the
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mean-free path determined by the proton–nucleon reaction cross section, not by
the total cross section in this energy region.

We then proceed with a QCD-motivated calculation using a dynamical model
associated with the internal structure of the proton [1]. A general description of
the following discussion can be found in Ref. [6].

First we introduce the electromagnetic form factor of the proton, which is a
key quantity, and is written as

Fep(q
2) = 〈N ; Pf |Ô(q)|N ; Pi〉 , (2 ·3)

where |N ; P〉 is the lowest eigenfunction of M̂2 of eq. (3 ·1) below, corresponding
to a nucleon state with a 3-momentum P, while Ô(q) is an operator which causes
a hard scattering and brings a 4-momentum, qµ = Pf,µ − Pi,µ, into the system.

In order to consider the transparency, we are interested in the amplitude for
the propagation through the nuclear medium for a hard struck proton, which is
observed as a proton after a certain time t. The time evolution operator is e−iĤt.
Here the full Hamiltonian, Ĥ is assumed to consist of two parts, Ĥ = Ĥ0 + ĤI ,
where Ĥ0 describes the internal dynamics of a free proton and HI describes an
interaction with the nuclear medium. We introduce a proton survival amplitude
defined by

M
(D)
eA (q2; t) = 〈N ; Pf |e−iĤt Ô(q)|N ; Pi〉 . (2 ·4)

Here our initial condition at t = 0, when the proton is hit by a photon, is that
the proton wave function is Ô(q)|N ; Pi〉. In (2 ·4) t is the time taken by the

proton to exit the nucleus. At t = 0, M
(D)
eA (q2; t) corresponds to the form factor

(2 ·3).
To obtain the nuclear transparency including the internal dynamics of the

proton, we substitute

P (−)(r) = |MeA(q2; t(r))|2/|Fep(q2)|2 , (2 ·5)

in eq. (2 ·1). This gives a measure of FSI. How to convert the t-dependence to
the r-dependence is explained in detail in Ref. [1].

3. Relativistic Quark Model

We use a relativistic quark model to preserve the Lorentz covariance for the
internal dynamics of the struck proton. We follow the formulation of Fujimura
[7] and briefly explain it here.

In this formulation the internal dynamics of the quarks is included in a mass
operator M̂2, which has a 4-dimensional harmonic oscillator form, and the proton
is governed by the wave equation

M̂2|φn; P〉 = M2
n|φn; P〉, where − M̂2 = p̂2

r + p̂2
s + α2(r̂2 + ŝ2) + C , (3 ·1)

and where α and C are parameters. C is determined in order to reproduce the
observed proton mass. r̂µ and ŝµ in eq. (3 ·1) are relative coordinate 4-vectors
defined by r̂µ = (x̂2,µ − x̂3,µ)/

√
6 and ŝµ = (−2x̂1,µ + x̂2,µ + x̂3,µ)/(3

√
2), where

xi,µ (i = 1, 2, 3) are coordinates of each quarks. The p̂r,µ and p̂s,µ are the
corresponding relative momentum 4-vectors.
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The excitations in the time-direction are prohibited due to the following
physical constraints, as discussed by Takabayashi [8];

P · (−ip̂r,µ + αr̂µ)|φn; P〉 = P · (−ip̂s,µ + αŝµ)|φn; P〉 = 0, Pµ = (En,P) . (3 ·2)

The wave function of eq. (3 ·1) is nothing but a harmonic oscillator. The ground
state, for example, is easily obtained as

φ0(r, s; P) =

(
α

π

)2

exp

{
α

2

(
r2 + s2 − 2

M2
0

(P · r)2 − 2

M2
0

(P · s)2

)}
, (3 ·3)

where Pµ = (M0,P). The mass eigenvalues are

M2
n = − (2nr,0 + 1)α+ (2(n1 + n2 + n3) + 3)α

− (2ns,0 + 1)α+ (2(n4 + n5 + n6) + 3)α+ C , (3 ·4)

where ni (i = 1, · · · , 6) are non-negative integers. Here M0 is the proton mass. Due
to the physical constraints mentioned above, in eq. (3 ·2), we put nr,0 = ns,0 = 0.
The normalization is

∫
d4rd4s |φn(r, s;Pµ)|2 = 1. We can easily calculate the

transverse velocity in this model. It has an upper limit even if we consider the
highly excited states. The transverse motion preserves the causality.

The electromagnetic form factor of this model is

Fep(q
2) ≡

∫
d4rd4s φ∗0(r, s; Pf ) eiq·(ar+bs) φ0(r, s; Pi) (3 ·5)

=

(
1 +

(−q2)

2M2
0

)−2

× exp

{
− (−q2)

2α

/(
1 +

(−q2)

2M2
0

)}
, (3 ·6)

where qµ = Pf,µ−Pi,µ. We use a combination, (a, b) = (0,−
√

2), which corresponds
to the case where a photon couples to the quark-1, ⇔ −

√
2q · s = (x1 −X) · q.

This implies that we take Ô(q2) = e−i
√

2q·s. As one can see from eq. (3 ·6), the
form factor reproduces the well-known power-law behaviour for −q2 large. This
is an advantage of this model. We determine α to reproduce the behaviour of
the observed form factor (see Fig. 1).

Since we have prepared the proton in free space, we now put the proton into
the nuclear medium and let it run. We assume that the struck proton feels a
size-dependent interaction, and use the Low–Nussinov model [9]. The interaction
is purely absorptive, and depends only on the transverse size of the proton.
Then HI becomes ĤI = −ic0 (r̂2

⊥ + ŝ2
⊥), where c0 is a parameter, and expresses

a strength of the absorption, which is determined by the mean-free path of the
proton in the nuclear medium.

The Hamiltonian of the proton in free space H0 satisfies the usual relativistic

energy–momentum relation, Ĥ0 =

√
|P|2 + M̂2. If we take the ultra-relativistic

limit for it, then Ĥ0 becomes Ĥ0 = |P|+(M̂2/2|P|). Since the full Hamiltonian has
the form Ĥ = Ĥ0 +ĤI , the absorption effect is absorbed into a new mass operator
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M̂I under the ultra-relativistic approximation, such as Ĥ = |P| + (M̂2
I /2|P|),

where −M̂2
I = p̂2

r + p̂2
s + α2(r̂2

0 − r̂2
3 + ŝ2

0 − ŝ2
3)− α2

⊥(r̂2
⊥ + ŝ2

⊥) +C. Here α⊥ is the
transverse frequency which is a measure of an absorption effect. It is defined by
α2
⊥ ≡ α2{1 − i(2|P|c0/α2)}. Here we assume that the proton is moving in the
z-direction.

Fig. 1. A comparison of the electromagnetic form factors. The solid curve is the form factor
for the original harmonic oscillator model (ν = 0). The dotted curve, the dot–dash curve and
the dashed curve are those of the modified harmonic oscillator model with ν = 0 ·25, 0 ·05
0 ·02 respectively. The crosses indicate the experimental data from Ref. [11].

The wave function for the full Hamiltonian Ĥ satisfies the same form of the
wave equation as that for the non-interacting case, eq. (3 ·1); M̂2

I |φI,n; P〉 =
M2
I,n |φI,n; P〉. The wave function and the mass eigenvalues are

φI,n(r, s; P) = N0Nn1

′Nn2

′ · · ·Nn6

× exp

{
α

2

(
r2
0 − r2

3 + s2
0 − s2

3 −
2

M2
n

(P · r)2 − 2

M2
n

(P ·s)2

)}

× exp

{
− α⊥

2
(r2
⊥ + s2

⊥)

}
×Hn1

(
√

2α⊥ r1) Hn2
(
√

2α⊥ r2) Hn3

×
(√

2α

√
1

M2
n

(P ·r)2 − (r2
0 − r2

3)

)
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×Hn4
(
√

2α⊥ s1) Hn5
(
√

2α⊥ s2) Hn6

×
(√

2α

√
1

M2
n

(P ·s)2 − (s2
0 − s2

3)

)
,

where N0 =
√
α/
√
π, N2

n =
√
α/(
√
πn!), N ′2n =

√
α⊥/(

√
πn!), and

M2
I,n = − (2nr,0 + 1)α+ (2(n1 + n2) + 2)α⊥ + (2n3 + 1)α

− (2ns,0 + 1)α+ (2(n4 + n5) + 2)α⊥ + (2n6 + 1)α+ C . (3 ·8)

Here ni (i = 1, · · · , 6) are non-negative integers, and nr,0 = ns,0 = 0. Here also
the proton is assumed to move in the z-direction.

4. Proton Survival Amplitude

Now we are in a position to calculate the survival amplitude of the struck
proton in nuclear matter. For the dynamical proton it is written as

M
(D)
eA (q2, t) = 〈φ0; Pf |e−iĤt Ôν(q2) |φ0; Pi〉

=

∞∑
n=0

〈φ0; Pf |e−iĤt|φI,n; Pf 〉 × 〈φI,n; Pf | Ôν(q2) |φ0; Pi〉 , (4 ·1)

where we introduce an operator Ôν(q2) ≡ e−i
√

2q·s eνq
2 (r2
⊥+s2

⊥), instead of the
hard scattering operator Ô(q) in eq. (2 ·3). Here qµ = Pf,µ − Pi,µ. The new
operator Ôν(q2) with finite ν introduces a longitudinal–transverse correlation into
the system. The internal motion in the direction of the 3-momentum transfer
q and that perpendicular to it decouple each other in the harmonic oscillator
model. The new hard scattering operator couples both directions, and suppresses
the components of the large transverse size when −q2 is large. The strong ground
state correlation was suggested in Ref. [10].

Since the hard scattering operator is changed, the form factor should be
modified. The modified form factor becomes

F νep(q
2) =

(
1 +

ν(−q2)

α

)−2 (
1 +

(−q2)

2M2
0

)−2

exp

{
− (−q2)

2α

/(
1 +

(−q2)

2M2
0

)}
.

(4 ·2)

We take Pi,µ = (M0,Pi), Pi = 0 and qµ = (q0, 0⊥, q3). The parameter α is
determined in order to reproduce the experimental data for each fixed ν.

For the inert proton, the survival amplitude is written as

M
(I)
eA (q2, t) = 〈φ0; Pf |e−i(Ĥ0+〈φ0;Pf |ĤI |φ0;Pf 〉)t Ôν(q2) |φ0; Pi〉 . (4 ·3)

Here ĤI is replaced by its ground state expectation value, because the inert
proton always stays in its ground state during propagation. The absorption
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Fig. 2. Time development of the survival amplitude squared divided by the form factor
squared, eq. (2 ·5), for −q2 = 10 (GeV/c)2. The solid curve is the case of the inert proton.
The dotted curve, the dot–dash curve and the dashed curve are for the dynamical proton
with ν = 0 ·25, 0 ·05 and 0 ·02 respectively.

Fig. 3. Time development of the survival amplitude squared divided by the form factor
squared for −q2 = 100 (GeV/c)2. The curves are the same as in Fig. 2.



       

138 A. Kohama et al.

strength c0 is determined by 2c0〈φ0; Pf |(r2
⊥ + s2

⊥)|φ0; Pf 〉 = vq/λ, where vq is
the velocity of the struck proton. Here λ = 1/σrNN ρNM is the mean-free path of
the proton in nuclear matter, and we get λ = 2 ·1 fm when we use σrNN = 28
mb, and ρNM = 0 ·17 fm−3. The use of σrNN is a result from GIA.

The numerical results are shown in the Figs 1–3. Fig. 1 shows a comparison of
the electromagnetic form factor of the original version of the harmonic oscillator
model and that of the modified version. We could determine α to reproduce the
RMS radius of the proton, but here we fix α to reproduce the behaviour of the
observed form factor for each fixed ν. We choose α by requiring that the form
factors pass through the same selected data point. We should require that ν is
small enough to maintain the power-law behaviour as much as possible.

Figs 2 and 3 show the time development of the survival amplitude squared
divided by the form factor squared. By comparing the two figures, we can
conclude that the colour transparency occurs for large −q2 in the modified
harmonic oscillator model. This is a reflection of the longitudinal–transverse
correlation, and of the Lorentz covariance. Once we take a finite ν, we obtain
the colour transparency.

5. Summary and Conclusion

We have applied a relativistic quark model to calculate the nuclear transparency
in order to preserve the causality. Unfortunately the original version of the
harmonic oscillator model does not cause the colour transparency, because the
model has no longitudinal–transverse correlation, and the correlation plays a
crucial role in exciting the transverse modes.

We have put the correlation into the model by hand. The modified model
causes a non-exponential t-dependence of the survival amplitude, which is a
signature of the colour transparency. The modification violates the counting rule
for the form factor, but does not affect the form factor in the relevant region.

We will further study the nuclear transparency for finite nuclei and the target
mass number dependence (A-dependence). The numerical calculations are in
progress.
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