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Abstract

Nucleon structure functions, as measured in deep-inelastic lepton scattering, are studied within
a covariant scalar diquark spectator model. Regarding the nucleon as an approximate two-body
bound state of a quark and diquark, the Bethe–Salpeter equation (BSE) for the bound state
vertex function is solved in the ladder approximation. The valence quark distribution is
discussed in terms of the solutions of the BSE.

1. Introduction

In recent years many attempts have been made to understand nucleon
structure functions as measured in lepton deep-inelastic scattering (DIS). Although
perturbative QCD is successful in describing the dependence of structure functions
on the squared momentum transfer, their magnitude is governed by the non-
perturbative physics of composite particles, and is up to now not calculable
directly from QCD.

A variety of models has been invoked to describe nucleon structure functions.
The so called ‘spectator model’ is a typical covariant approach amongst them [1].
In this approach the leading twist, non-singlet quark distributions are calculated
from the process in which the target nucleon splits into a valence quark, which is
scattered by the virtual photon, and a spectator system carrying baryon number
2
3 . Furthermore, the spectrum of spectator states is assumed to be saturated
through single scalar and vector diquarks. Thus, the main ingredient of these
models is covariant quark–diquark vertex functions.

Until now vertex functions have been merely parametrized such that the
measured quark distributions are reproduced, and no attempts have been made to
connect them to some dynamical models of the nucleon. In this work we construct
the vertex functions from a model Lagrangian by solving the Bethe–Salpeter

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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equation (BSE). However, we do not aim at a detailed, quantitative description
of nucleon structure functions in the present work. Rather we outline how to
extract quark–diquark vertex functions from Euclidean solutions of the BSE. In
this context several simplifications are made. We consider only scalar diquarks as
spectators and restrict ourselves to the SU(2) flavour group. The inclusion of vector
diquarks and the generalization to SU(3) flavour are relatively straightforward
extensions and will be left for future work.

The cross section for DIS of leptons from a nucleon is characterized by the
hadronic tensor Wµν(P, q) where P and q are the four-momenta of the target
and exchanged virtual photon respectively. For unpolarized DIS, the hadronic
tensor Wµν is conventionally parametrized by two scalar functions F1 and F2. In
the Bjorken limit [−q2, P · q →∞; but finite x ≡ −q2/(2P · q)] in which we work
throughout, both structure functions depend (up to logarithmic corrections) on
x only, and are related via the Callan–Gross relation: F2 = 2xF1.

Fig. 1. Diquark spectator process.

In the scalar diquark spectator model within SU(2) flavour, the valence quark
distributions are extracted from the hadronic tensor (Fig. 1):

Wµν(q, P ) =

(
5
6 +

〈
τ3

2

〉
N

)
1

π

∫
d4k

(2π)4i
u(P, s)ΓS(k)γµIm(S(k + q))γνS(k)

× Im(D(P − k))Γu(P, s) , (1)

where the isospin matrix element τ3 has to be evaluated in the nucleon isospin
space. We define u(P, s) as the target nucleon spinor and we use S(k) = 1/(mq− 6k)
and D(k) = 1/(m2

D − k2) to denote the propagators of the quark and scalar
diquark, respectively. The integration runs over the quark momentum k, subject
to on-mass-shell conditions for the diquark and the struck quark. Note that the
vertex function Γ and its PT conjugate Γ consist of two Lorentz scalar functions
which depend on k2 only because the diquark is on-shell. In the next section
we shall determine the vertex functions using a ladder BSE.

2. Scalar Diquark Model for Nucleons

We consider the following model Lagrangian:
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L = ψa(i 6∂ −mq)ψa + ∂µφ
∗
a∂

µφa −m2
Dφ
∗
aφa (2)

+ i
g

2
√

2
εabcψ

T
b C
−1γ5τ2ψc φ

∗
a − i

g

2
√

2
εabcψbγ5Cτ2ψ

T

c φa ,

where we have explicitly indicated colour SU(3) indices only. The symmetric
generator τ2 of the flavour SU(2) group acts on the iso-doublet field ψ for the
constituent quark carrying an invariant mass mq. The charged scalar field φ
denotes the flavour-singlet scalar diquark with invariant mass mD.

Fig. 2. The Bethe–Salpeter vertex
function.

In this model the nucleon with the momentum P and spin s = ±1
2 is described

by the BS vertex function Γ (Fig. 2):

δabS(ηqP + q)D(ηDP − q)iΓ(q, P )u(P, s)

=

∫
d4x

(2π)
3
2

eik·x〈0|Tψa(ηqx)φb(−ηDx)|P, s〉 , (3)

where we set the weight factors to the classical values: ηq = mq/(mq +mD) and
ηD = mD/(mq +mD). Then the vertex function Γ in the ladder approximation
obeys the following BSE (Fig. 3):

Fig. 3. The Bethe–Salpeter equation in the ladder approximation.

Γ(q, P ) = g2

∫
d4k

(2π)4i
S(−k − q − (ηq − ηD)P )S(ηqP + k)D(ηDP − k)Γ(k, P ) .

(4)

To solve the BSE for positive energy nucleon states we are free to choose the
following Dirac matrix structure:

Γ(q, P ) =

[
f1(q, P ) +

(
− P · q

P 2 +
6q√
P 2

)
f2(q, P )

]
Λ(+)(P ) , (5)
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with Λ+(P ) = 1
2 (1+ 6P/

√
P 2), the projector onto positive energy nucleon states.

We assume that the diquark and the nucleon are stable, namely mD < 2mq

and
√
P 2 < mq + mD. We then perform the Wick rotation of the relative

energy variable and choose the nucleon rest frame: Pµ = P
(0)
µ ≡ (P0,~0). The

‘Euclidean’ functions fα(q̃, P (0)) in terms of the momentum q̃µ = (iq4, ~q) for a real
q4 ∈ (−∞,∞) are then functions of qE ≡

√
−q̃2 ∈ [0,∞) and z ≡ q4/qE ∈ [−1, 1].

We expand each of these functions (α = 1, 2) as follows:

fα(q̃, P ) =
∞∑
n=0

in fnα (qE)C1
n(z) , (6)

where C1
n(z) are Gegenbauer polynomials and the phase in is introduced for

convenience since then the radial functions fnα (qE) are real.
The BSE in Eq. (4) then reduces to the following system of one–dimensional

equations:

1

λ
fnα (qE) =

2∑
β=1

∞∑
m=0

∫ ∞
0

dkE Knmαβ (qE , kE) fmβ (kE), (7)

where we have introduced the ‘eigenvalue’ λ = (g/4π)2 for the quark–diquark
coupling constant. The kernel function Knmαβ (qE , kE) is a matrix whose elements
are real and regular functions of qE and kE . By terminating the infinite series
in Eq. (6) at sufficiently high order, we can easily solve Eq. (7) numerically as
an ‘eigenvalue’ problem for a fixed bound state mass,

√
P 2. To compare the

magnitude of the radial functions, let us introduce the normalized O(4) radial
functions Fn(qE) and Gn(qE) together with the O(4) spherical spinor harmonics
[2]. In the conventional gamma matrix representation we can write the nucleon
solution at rest as

Γ(q̃, P (0))u(P (0), s) =
π√
2

( ∑∞
n=0 i

n Fn(qE)Zn 1
2

0 s(q̂)∑∞
n=1 i

n−1Gn(qE)Zn 1
2

1 s(q̂)

)
, (8)

where q̂ denotes angles for the q̃ vector in the four–dimentional polar coordinate
system. The factor π/

√
2 is introduced such that Fn(qE) = fn1 (qE), while Gn(qE)

is expressed as a linear combination of fn−1
2 (qE) and fn+1

2 (qE). Thus f1(q, P (0))
and f2(q, P (0)) correspond to the ‘upper’ and ‘lower’ components of the nucleon
Dirac field, respectively.

Now, let us consider the analytic continuation of fα(q, P (0)). Since we are
interested in applying the BS vertex function to the DIS process, we need to rotate
the relative energy variable from the imaginary axis back to the real one. Recall
that the sum over n in Eq. (6) converges even for a complex z, if |z| < 1. We can
then analytically continue the Gegenbauer polynomials rewriting the argument
z → ζ ≡ P · q/

√
q2 P 2 for the momenta satisfying |ζ| < 1. For the radial functions

we introduce new functions F̃n(q2
E) ≡ Fn(qE)/ qnE and G̃n(q2

E) ≡ Gn(qE)/ qnE .
The fact that F̃n and G̃n are functions of q2

E was confirmed numerically. We
analytically continue these functions by changing the argument q2

E → −q2. We
obtain the physical scalar functions fα(q2, P · q):
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f1(q2, P ·q) =
∞∑
n=0

F̃n(−q2)

(P 2)n/2

(√
q2 P 2

)n
C1
n(ζ) , (9)

f2(q2, P · q) = −
∞∑
n=1

2P 2√
n(n+ 2)

G̃n(−q2)

(P 2)n/2

(√
q2 P 2

)n−1

C2
n−1(ζ) . (10)

Note that the Gegenbauer polynomials together with the square root factors are
polynomials of q2, P 2 and P · q, so that each term in the series (9) and (10)
is regular and real as far as F̃n(−q2) and G̃n(−q2) are regular. We may then
impose the on-mass-shell condition for the diquark and evaluate the sum over n.
The resulting f1 and f2 are then functions of the squared quark momentum k2

and can be applied to the DIS process.
However, the expressions (9) and (10) are valid only for momenta satisfying

P 2 |q2| > (P · q)2. Also we found that a naive numerical sum over n, based on
Eqs. (9) and (10) does not converge. Nevertheless, it can be shown that the
vertex function Γ for any kinematically allowed k2 is regular when the diquark is
on-mass-shell. This suggests that one may be able to continue some appropriate
linear combinations of f1 and f2 outside of this kinematical range. Indeed, we
found such a combination which we denote by fon

α (k2). In terms of this on-shell
scalar function and the quark momentum k, the vertex function Γ together with
the diquark on-mass-shell condition is given by

Γ|(P−k)2=m2
D

=

(
fon

1 (k2)− 2 6k√
P 2

fon
2 (k2)

)
Λ+(P ) . (11)

With this on–shell vertex function the valence contribution to the structure
function F1(x) can now be calculated from Eq. (1).

3. Numerical Results

In this section we present our numerical results. For simplicity we considered
an equal mass system; mq = mD = m, and we shall use m as a unit for
dimensionful quantities. To solve the BSE we used a u-channel form factor. We
replaced the quark–diquark coupling constant such that g2 → g2Λ2/(Λ2−u) with
Λ = 2m and u is the usual Mandelstam variable. This form factor weakens the
short range interaction between the constituents and ensures the existence of a
discrete bound state spectrum for a large range of P 2.

We solved Eq. (7) as follows. First we terminated the infinite series in Eq. (6)
at some fixed value, nmax. Next we discretized the Euclidean momentum qE and
kE and performed the integration over kE numerically together with some initially
assumed radial functions fnα (kE). This integral generated new radial functions
and an ‘eigenvalue’ λ associated with them. We then used these functions as
an input and repeated the above procedure until the radial functions and λ
converged.

In Fig. 4 we plot the normalized O(4) radial functions, Fn(qE) and Gn(qE),
for the bound state mass

√
P 2 = 1 ·8m as functions of qE . It is clear that

the magnitude of the radial functions with higher O(4) angular momentum are
strongly suppressed compared with the lowest ones. This justifies the truncation
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of the series in Eq. (6). It also confirms that the contribution to the ‘eigenvalue’
λ from the O(4) radial functions with n > 4 is less than 1%. The dominance
of the lowest O(4) radial function has also been observed in the scalar–scalar
ladder model [3].

Fig. 4. Normalized O(4) radial functions Fn and Gn for the
bound state with the mass

√
P 2 = 1 ·8 m as functions of the

Euclidean momentum qE .

In Fig. 5 we plot the physical, on–shell scalar functions fon
α (k2) for the bound

state mass
√
P 2 = 1 ·8m as functions of the squared quark momentum, k2. These

functions are calculated with the maximum O(4) angular momentum nmax = 4.
We found that the magnitude of fon

1 (k2) and fon
2 (k2) are almost the same even

for weakly bound states. This result suggests that so-called ‘non-relativistic’
approximations, in which one neglects the non-leading components of the vertex
function (f2 in our model) are valid only for extremely weakly bound states:√
P 2 ∼ 2m. We have also confirmed that for weakly bound states (

√
P 2 > 1 ·8m)

the dependence of fon
α (k2) on nmax is negligible for a small spacelike k2, e.g.

−k2 < 5 m2. However, for large spacelike k2, the convergence of the sum over n
becomes slow for any value of P 2 and numerical results for fixed nmax become
less accurate.
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Fig. 5. On-shell scalar functions fon
1 (k2) (solid) and fon

2 (k2) (dashed) as
functions of the quark momentum k2. The mass of the bound state is√
P 2 = 1 ·8m and the O(4) angular momentum is truncated at nmax = 4.

Fig. 6. Valence quark contributions to the structure function F 1(x ). The
solid (dashed) line denotes the weakly (strongly) bound state with the mass√
P 2 = 1 ·8 m (1 ·2 m).

In Fig. 6 we plot the valence quark distribution F1(x) for a weakly (
√
P 2 = 1 ·8 m,

solid line) and for a strongly bound state (
√
P 2 = 1 ·2 m, dashed line). We have

used nmax = 4 and the distributions are normalized such that the area below
the curve is unity. For the weakly bound system, the valence quark distribution
has a peak∗ around x ∼ 1/2. On the other hand, the distribution becomes flat
for the strongly bound system. This behaviour however turns out to be mainly
of kinematic origin, since the distribution function is given by an integral over
the squared momentum k2 carried by the struck quark with integration bounds
from −∞ to k2

max, where

∗ This peak will shift to x ∼ 1
3 , if quark and diquark masses such as mD ∼ 2mq are used.
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k2
max = x

(
P 2 − m2

D

1− x

)
. (12)

This kinematical bound determines the global shape of F1(x) to a large extent.

4. Summary

We have solved a Bethe–Salpeter equation for a nucleon, described as a bound
state of a quark and diquark within a covariant quark–scalar-diquark model. We
have extracted the physical quark–diquark vertex function when the diquark is
on-mass-shell from the Euclidean solution. The vertex function obtained was
applied to a diquark spectator model for DIS, and the valence quark contribution
to the structure function F1(x) was calculated. We found that the shape of
the unpolarized valence quark distribution is mainly determined by relativistic
kinematics and is independent of the detailed structure of the vertex function.
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