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Abstract

Relaxation in a kaon condensate proceeds through nonequilibrium weak reactions, which
includes the kaon-induced Urca and the modified Urca reactions. The kinetics of a K−

condensate is considered semiclassically starting from a small seed of a condensate with the
assumption that the system is in thermal equilibrium. It is shown that the temporal evolution
to the K−-condensed phase in the kinetic regime is divided into several characteristic time
intervals as a result of the interplay between the two major weak processes. The implications
for the dynamical evolution of newly-born neutron stars are briefly discussed.

1. Introduction

The possible existence of kaon condensation in dense matter has been studied
extensively, and its implications for astrophysical phenomena and heavy-ion
collisions have been widely discussed [1]. It has been shown that the S-wave
kaon condensation can be considered almost model-independently on the basis
of SU(3)L × SU(3)R current algebra and PCAC [2, 3]. In this framework, the
classical K− field is written as 〈K−|K̂−|K−〉 = f/

√
2 · sin θ exp(−iµKt) with the

meson decay constant f ('93 MeV), the kaon chemical potential µK , and the
chiral angle θ, which represents the order parameter of the condensate.

In the kaon condensed phase realized inside a neutron star, the weak reactions
play an essential role in both the ground-state properties and its thermal evolution:
In stable neutron star matter, net strangeness is produced through the weak
reaction (K), n+ n ⇀↽ n+ p+K−, and the K−-condensed phase is realized by
satisfying the chemical equilibrium for this weak process [4]. Weak reactions are
also responsible for some nonequilibrium processes to the K−-condensed neutron
stars. One of the relevant weak reactions is the kaon-induced Urca reaction (KU),
n(p) → n(p) + e− + ν̄e, n(p) + e− → n(p) + νe [2], and another is the modified
Urca process (MU), n + n → n + p + e− + ν̄e, n + p + e− → n + n + νe [5, 6].
For example, in newly born neutron stars just after supernova explosions, the

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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K−-condensed phase may develop from normal neutron-star matter through the
relaxation process due to these weak reactions: When the baryon number density
of the matter nB exceeds the onset density of the K− condensed phase ncB , it takes
some time to reach equilibrium because the characteristic time scales for the weak
reactions are longer than those for the strong and electromagnetic interactions
and the gravitational collapse (∼ 10−3 s). In contrast, as the classical K− field is
controlled by the strong kaon–nucleon (KN) and kaon–kaon (KK) interactions,
it responds instantaneously to the change in the chemical composition driven by
the weak reactions. Hence the equation of state (EOS) of the K−-condensed
phase may be considered adiabatically.

The weak reactions, KU and MU, are also important in connection with the
thermal evolution of neutron stars. Especially, the reaction KU has been studied
as an exotic cooling mechanism associated with the K− condensate [2, 3].∗

The situation for the nonequilibrium processes in the kaon condensation is
similar to that for strange quark matter, where the strangeness production occurs
via the nonleptonic weak reactions, u+ d ⇀↽ s+u, together with the semileptonic
reactions, d(s)→ u+ e−+ ν̄e, u+ e− → d(s) + νe, leading to chemical equilibrium
[7]. The nonequilibrium processes in kaon condensation also has some relevance to
the recent studies of the growth of a Bose condensate in condensed-matter physics
[8]. Here we investigate how normal matter is converted to the K−-condensed
phase through these nonequilibrium processes.

2. Formulation

(2a) Kinetics of the Condensate

Consider uniform normal neutron-star matter (θ = 0) with a baryon number
density nB ( > ncB) which is out of chemical equilibrium. The dynamical evolution
of the system toward the equilibrium K−-condensed phase then follows through
the nonequilibrium weak processes, K, KU and MU.

In general, the relaxation process in a Bose condensate can be divided into
three sequential regimes [8]: (I) the kinetic regime, where the Bose distribution
function is restructured; (II) the coherent regime, where the Bose condensate is
formed through fully quantum effects such as nucleation; and (III) the kinetic
regime, where the growth of the Bose condensate proceeds, finally reaching
chemical equilibrium. In the second regime (II), the thermal kaons, produced
via the weak process (K) and other weak processes are converted into condensed
kaons. However, the time required for the nucleation of the condensate in
regime (II) may be negligible as compared with those for (I) and (III), where
the relevant time scale is determined by the weak reactions. In the following
formulation, therefore, we do not pursue the detailed dynamics of conversion of
thermal kaons into a condensate in regime (II). Instead, we assume, throughout
the relaxation process, that the system stays in thermal equilibrium via the

∗ It has been shown that the direct Urca process (D), n→ p+ e− + ν̄e, p+ e− → n+ νe in
the K−-condensed phase would be another unique process in the K− condensate [3]. In the
case where the process D is operative, the process MU should be replaced by D for cooling
of neutron stars. However, whether the direct Urca process is allowed or not is determined
by the symmetry energy, whose density dependence is not well known. Here we consider the
case where the process MU is responsible for the neutrino emission.
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strong and electromagnetic interactions. Then, the distribution function for the
kaon, for example, is written as

fK(k, t) = (2π)3ζK(t)δ(3)(k) +
1

e(ω−−µK)/T − 1
− 1

e(ω++µK)/T − 1
, (1)

where the first term is the condensed part, and the second and third terms are
the Bose–Einstein distribution functions of the K− and K+ mesons, respectively.
With this form, one can see that the condensate appears automatically when the
number of the thermal kaons [corresponding to the second and third terms of
Eq. (1)] are saturated. Thus, we concentrate on the growth of the K− condensate
in the kinetic regime.

Fig. 1. Lowest-order diagrams for the kaon-induced Urca
reaction (KU), n(p)→ n(p) + e− + ν̄e, n(p) + e− → n(p) + νe,
and the modified Urca one (MU), n + n → n + p + e− + ν̄e,
n+p+e− → n+n+νe. In both figures, only forward processes
are shown.

(2b) Rate Equations

The temporal changes of the number densities of the particle species are
determined by the rate equations, which can be derived from the semi-classical
transport equation. For the electrons, we get

dne(t)/dt = Γ(KU)(ξ(KU)(t))− Γ(KU)(−ξ(KU)(t))

+ Γ(MU)(ξ(MU)(t))− Γ(MU)(−ξ(MU)(t)) (2)

with ne(t) = µe(t)
3/3π2. In Eq. (2), Γ(α)(u) and Γ(α)(−u) (for α = KU, MU)

are the forward and backward reaction rates, respectively, for the processes
KU and MU in the kaon-condensed phase, and ξ(KU)(t) ≡ [µe(t) − µK(t)]/T
and ξ(MU)(t) ≡ [µp(t) + µe(t) − µn(t)]/T are the chemical potential differences
normalized by the temperature T , which are the measures of the deviations from
chemical equilibrium. In the case ξ(α)(t) = 0, the forward and backward reaction
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rates are equal, and the system is in chemical equilibrium. The deviations from
the equilibrium number densities for other particles are related via

δ(KU)nK(t) = − δ(KU)ne(t), δ
(KU)np(t) = δ(KU)nn(t) = 0,

δ(MU)nK(t) = 0, δ(MU)np(t) = −δ(MU)nn(t) = δ(MU)ne(t), (3)

where δ(α)ni(t) is the deviation of the number density of the particle species
i (= p, n,K−, e−) due to process α (cf. Fig. 1). The number density of the
kaons nK(t) is identified with the negative strangeness density, or equivalently,
the electromagnetic charge density of the kaons: nK(t) = ζK(t) +nTK(t), with the
condensed part

ζK(t) ≡ 〈K−|Ŝ|K−〉 = µK(t)f2 sin2 θ(t) + [1− cos θ(t)][np(t) + 1
2nn(t)] (4)

and the thermal part nTK(t). With this identification for nK(t), the charge
neutrality condition is written as np(t) = nK(t) + ne(t), which is guaranteed
during the nonequilibrium processes via Eq. (3).

The Γ(α)(u) are obtained from the matrix elements and the phase-space

integrals. The relevant weak Hamiltonian is given by H̃W = GW√
2
J̃µh lµ +h.c., with

the effective hadronic current

J̃µh = Û−1
K Jµh ÛK

= cos θc
{

(V µ1+i2 −A
µ
1+i2) cos(θ/2) + i(V µ6−i7 −A

µ
6−i7) sin(θ/2)

}
(5)

+ sin θc
{

(V µ4 −A
µ
4 ) + i cos θ(V µ5 −A

µ
5 )− i

2
sin θ(V µ3 −A

µ
3 +
√

3(V µ8 −A
µ
8 ))
}
,

where ÛK is the unitary operator which generates the kaon-condensed state
|K−〉 from the normal state |x〉 by a chiral rotation: |K−〉 = ÛK |x〉. In
Eq. (5), θc (' 0 ·24) is the Cabibbo angle, and V µa (Aµa) is the vector (axial
vector) current [2]. Process KU is mediated by the last term (the ‘commutator’
contribution) in Eq. (5), and process MU by the first term proportional to cos θc.

For the KU reaction, we get

Γ(KU)(ξ(KU)(t)) = (6 ·6× 1029)

(
m∗N
mN

)2
µe(t)

mπ

sin2 θ(t)T 5
9 I2(ξ(KU)(t)) (cm−3 · s−1)

(6)

wherem∗N/mN is the effective to the free nucleon mass ratio,mπ the pion mass, T9 the
temperature in units of 109 K, and I2(u) ≡

∫∞
0
dxx2[π2 +(x+u)2]/[1+exp(x+u)].

For the MU reaction, we refer to Friman and Maxwell’s result [5, 6]. Noting
that the matrix elements are slightly modified in the presence of a K−-condensate
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by an additional factor of cos2(θ/2) coming from the first term of Eq. (5), we get

Γ(MU)(ξ(MU)(t)) = (5 ·9× 1023)

(
ne(t)

n0

) 1
3

cos2(θ(t)/2)T 7
9 J2(ξ(MU)(t)) (cm−3 · s−1)

(7)

with J2(u) ≡
∫∞

0
dxx2[9π4+10π2(x+u)2+(x+u)4]/[1+exp(x+u)], and n0 (=0 ·17

fm−3) is the standard nuclear density.
The dynamics of the K−-condensate is implemented by the classical field

equation for the order parameter (chiral angle) θ. Accordingly, θ(t) may change
adiabatically from zero to the equilibrium value θeq, following the extremum
condition of the energy density of the K−-condensed phase E with respect to θ;
∂E/∂θ = 0. It reads

µK(t)2 cos θ(t)−m2
K +

1

f2 {nBΣKN + µK(t)[np(t) + 1
2nn(t)]} = 0 . (8)

The first and second terms in the curly bracket of Eq. (8) stem from the S wave
K−N interactions given by theKN sigma term, ΣKN, and the Tomozawa–Weinberg
term, respectively [3].

3. Numerical Results and Discussion

In the actual calculation, we make some further simplifications: (i) The
temperature T is assumed to be sufficiently low and is taken to be constant during
the relaxation process. Thermal effects are assumed to be insignificant except
for the initial stage of the relaxation process, where a small K− condensate may
be formed in the normal phase due to thermal fluctuations. Thus, we neglect
the thermal part nTK(t) in the strangeness number density, and a small seed of
a condensate, θ0 ≡ θ(t = 0) = 10−4 ∼ 10−3, is put in by hand initially.∗ (ii)
For the equation of state (EOS), we start with the uniform normal neutron-star
matter in beta equilibrium with the fixed baryon number density nB ( > ncB).
For this EOS, we take into account the potential contribution to the symmetry
energy Vsym(nB), for which we use the results in Ref. [9]. In this case, the initial
proton mixing ratio x0 ≡ n0

p/nB = 0 ·062 (≡ xeq
N ) for nB = 0 ·50fm−3, and the

onset density for the K− condensation is given as ncB = 0 ·48fm −3 for ΣKN = 400
MeV. We take the initial kaon chemical potential µ0

K as the lowest excitation
energy of K−, which is obtained from Eq. (8) by taking the limit of θ → 0.

Figs 2, 3 and 4 show, respectively, the time dependences of the chiral angle θ,
the normalized chemical potential difference ξ(α)(t), and the forward and backward
reaction rates, Γ(α)(ξ(α)(t)) and Γ(α)(−ξ(α)(t)). The temporal behaviour in the
number density of each constituent particle species is shown in Fig. 5. The
parameters used are nB = 0 ·50 fm−3, T = 1×1010 K and ΣKN = 400 MeV. One
observes that θ takes on a small value (∼ θ0) until τ1 (several tens of a millisecond),
after which it increases rapidly. Therefore, for t ≤ τ1, the reaction rate for KU is
small, because it is proportional to sin2 θ (Eq. (6)). This is so even though the
deviation from chemical equilibrium due to the reaction KU is large (ξ(KU)(t) ∼ 30

∗ Hereafter, the superscript ‘0’ denotes the value at t = 0.
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from Fig. 3). The reaction rate for MU is also small because we start with beta
equilibrium in the normal phase i.e. ξ(MU)(0) ' 0 (cf. Figs 3 and 4). The time
scale τ1 is estimated as follows: For |u| À 1, the function I2(u)− I2(−u) has an
asymptotic form, ' −u5/30. For |ξKU (t)| À 1, the total reaction rate for KU is

then written as Γ(KU)(ξ(KU)(t))−Γ(KU)(−ξ(KU)(t)) ∼ −α(t)
30

sin2 θ(t)[Tξ(KU)(t)]5,

where α(t) is a factor defined as Γ(KU)(u) = α(t) sin2 θ(t)T 5I2(u) in Eq. (6).
On the other hand, for θ(t) ¿ 1, the strangeness density is approximated as
nK(t) = {µ0

Kf
2 + nB(1 + x0)/4}θ2(t) +O(θ(t)4). The rate equation for nK(t) is

thus expressed in terms of θ(t) as dθ2(t)/dt ∼ Aθ2(t) with

A ≡ α0(µ0
e − µ0

K)5/{30[µ0
Kf

2 + nB(1 + x0)/4]} . (9)

Fig. 2. Chiral angle θ as a function of time for nB = 0 ·50 fm−3,
T = 1×1010 K and ΣKN = 400 MeV.

Taking θ(t) = 0 ·01 where the reaction rate for KU becomes significantly large,
we can estimate the characteristic time τ1 as τ1 ∼ 2/A · ln(1/102θ0), after which
θ(t) grows rapidly. It is to be noted that τ1 depends on the initial chiral angle of
the condensate θ0, which introduces an ambiguity in these results. Nevertheless,
the dependence of τ1 on θ0 is logarithmic, so that this time scale does not
change much within the range of our choice, θ0 = 10−4 ∼ 10−3. However, it is
necessary to justify the value for θ0 by taking into account the thermal part of
the strangeness number density nTK(t) explicitly. The timescale τ1 is independent
of temperature, provided the initial deviation for KU is large, i.e. |ξ(KU)(t)| À 1.
This feature stems from the characteristic form of the total reaction rate for
|ξ(KU)(t)| À 1. The magnitude of τ1 depends rather sensitively on density through
the initial chemical potential difference due to reaction KU: τ1 ∝ (µ0

e − µ0
K)−5.

For example, µ0
e − µ0

K = 0 ·14 fm−1 (1 ·35 fm−1) for nB = 3n0 (4n0), and one
gets τ1(4n0)/τ1(3n0) ∼ 1 ·2× 10−5.



     

Nonequilibrium Processes 19

Fig. 3. Normalized chemical potential differences ξ(KU)(t)
(dotted curve) and ξ(MU)(t) (dashed curve) as a function of
time.

Fig. 4. Temporal behaviour of the reaction rates in units of
cm−3 s−1. KU-F and KU-B, shown by the dotted curves, denote
the forward and the backward processes of the kaon-induced
Urca reaction; MU-F and MU-B, shown by the dashed curves,
denote the forward and the backward processes of the modified
Urca reaction, respectively.

Immediately after t ∼ τ1, the reaction rate for the backward KU reaction
(denoted by KU-B in Fig. 4) becomes dominant, such that the K−-condensate
grows significantly to reach a value θ(t) ∼ 0 ·1. This occurs within t = 0 ·1 s
(≡ τ2), as seen in Figs 2 and 4. One can also see in Fig. 5 that the strangeness
density nK(t) begins to increase at t = τ1.
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In the time interval τ1 ≤ t ≤ τ2, when the condensate develops via the reaction
n(p) + e− → n(p) + 〈K−〉 + νe, the electron number density, or its chemical
potential decreases (cf. Fig. 5). As a result, ξ(KU)(t) decreases toward equilibrium
due to reaction KU, as seen in Fig. 3. While ξ(MU)(t), which starts from almost
zero initially, takes on a negative value (∼ −20) due to the decrease in µe (cf.
Fig. 3). For τ2 ≤ t ≤ τ3 (∼10 s), this deviation induces the MU reaction. In this
time interval, the two processes KU and MU compete. Especially, the forward
reaction rate MU, n+n→ n+ p+ e−+ ν̄e, (denoted by MU-F in Fig. 4) becomes
as large as that for the backward reaction KU-B, which tends to counterbalance
the change in the electron number density. As a result, the magnitude of ξ(MU)(t)
decreases monotonically toward equilibrium as well as ξ(KU)(t). There is a
gradual net decrease in the electron number density, while the proton number
density increases gradually due to the process MU-F (see Fig. 5).

Fig. 5. Temporal behaviour of the proton, neutron, kaon
(strangeness) and electron number densities in units of fm−3.

At the end of this competition period t ∼ τ3, the values of ξ(KU)(t) and ξ(MU)(t)
are not large any more. In such a case, the reaction rates have a complicated
temperature dependence through the functions I2(ξ(KU)(t)) and J2(ξ(MU)(t)), so
that the relaxation in this region will proceed in a temperature-dependent manner.

From Fig. 4, one sees that, at around τ3, the reaction rates of the processes
KU-F and KU-B become equal, i.e. the system has reached chemical equilibrium
due to reaction KU. Furthermore, one finds that ξ(KU)(t) tends to almost zero
(cf. Fig. 3). At the same time, θ reaches the equilibrium value, θeq = 0 ·40. The
EOS is determined mainly by the strength of the condensate, i.e. the magnitude
of θ. Hence the EOS is mostly settled to an equilibrium value at t ∼ τ3.

In the last stage of the relaxation process (t ≥ τ3), both ξ(KU)(t) and ξ(MU)(t)
become small. When |ξ(KU)(t)| < 1 and |ξ(MU)(t)| < 1, the total reaction rates,
Γ(α)(ξ(α)(t))− Γ(α)(−ξ(α)(t)), may be expanded up to the first order in ξ(α)(t).
Then the rate equations (2) can be linearized and an analytic treatment is
possible.
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4. Summary and Concluding Remarks

We have investigated the relaxation process in a kaon condensate through
the nonequilibrium weak reactions—the kaon-induced Urca reaction and the
modified Urca reaction. The kinetics of the K− condensate has been considered
semiclassically starting from a small seed of a condensate, under the assumption
that the system is in thermal equilibrium. Dynamical evolution of the K−-
condensate in the kinetic regime is divided into the following characteristic time
intervals: (1) Stagnation of the condensate, where a small seed of a condensate
grows very slowly to a non-negligible value, due to a small reaction rate for
the process KU. (2) A rapid rise of the condensate, where the process KU
dominates in the relaxation process. (3) Competition of the two processes KU
and MU, where the change in the electron number density due to the reaction KU
induces the reaction MU. Hereafter, the system gradually approaches chemical
equilibrium, and (4) the asymptotic region, where the system is near equilibrium.
The relaxation time in this asymptotic region is obtained analytically.

We have not considered the coherent regime explicitly and assumed that the
system is in thermal equilibrium throughout the relaxation process. The dynamics
in the coherent regime, where full quantum effects should be taken into account,
is another interesting issue, where the conversion mechanisms of thermal kaons
into a condensate must be studied. As a substitute for the dynamics in this
regime, we began with a small seed of a condensate, θ0. On the assumption of
thermal equilibrium, however, the strangeness number density is given by the
use of Eq. (1), so that we can take into account implicitly the conversion of the
thermal part of the strangeness number density to that of a condensate together
with the kinetic equations.

As for the kaon-condensed EOS, we have adopted the zero-temperature form.
We have also used the reaction rates in the low temperature limit, where the
fermions are fully degenerate. For T ≤ several tens of MeV, these approximations
are valid. However, for a neutron star just born in a supernova, the initial
temperature may be as high as T ≥ several tens of MeV. Hence, if we pursue the
dynamical evolution of a neutron star beginning with such a high temperature,
we need to use the kaon-condensed EOS at finite temperatures, and treat the
thermal effects in a more realistic manner. Specifically, the proto-neutron star
matter at T ∼ several tens of MeV will not be transparent to neutrinos. In such
a case, the trapping of neutrinos in matter and the neutrino degeneracy must
be taken into account [7].

During the relaxation process, the temperature is assumed to be constant. In
reality, however, the energy release through various nonequilibrium processes may
occur, which could heat up the system. Therefore, the effects such as the change
in the temperature of the system due to energy release may play a crucial role
in the thermal and dynamical evolution of neutron stars [7].

Recently, a scenario for the production of low-mass black holes was presented
by taking advantage of the very soft equation of state of the kaon condensate
[10]. According to this scenario, the maximum neutron star mass is at most
∼ 1 ·5M¯, and a larger mass leads to a black hole. It should be mentioned that
their argument is based on the static EOS for kaon condensation. However, the
dynamical processes discussed here might have crucial effects. For example, a
neutron star, which would finally collapse into a black hole, may evolve as a
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stable configuration in the course of the relaxation process. In addition, how the
time scale for such a relaxation process affects the stability of a kaon-condensed
neutron star presents an interesting issue in supernova/neutron star physics.
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