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Abstract

The topic of ρ−ω mixing has received renewed interest in recent years and has been studied
using a variety of modern techniques. A brief history of the subject is presented before
summarising recent developments in the field. The present status of our understanding is
discussed.

No discussion of ρ−ω mixing can be self-contained without a brief mention of
the Vector Meson Dominance (VMD) model, within which it is studied [1, 2]. A
simple example to introduce VMD is the electromagnetic (EM) pion form factor
Fπ(q2). This quantity represents the multiplicative deviation from the amplitude
for the reaction e+e− → π+π− for the coupling of photons to purely point-like
pions. A resonance peak is observed in the cross section (see Fig. 1 showing data
from [3]). While this arises from low-energy, non-perturbative QCD processes [4],
it can be modelled by assuming the photon couples to pions via vector mesons,
the dominant one here being the rho-meson. VMD assumes the photon interacts
with hadrons through vector mesons and mathematically, the enhancement seen
in the cross section is provided by the pole in the meson propagator at the
ρ mass-point. The broadness of the peak seen in the reaction is explained by
attributing a ‘width’ Γρ to the rho-meson corresponding to shifting the pole off
the real axis, so that it becomes complex and we have

m2
ρ = m̂2

ρ + im̂ρΓρ, (1)

where m̂ρ (the ‘mass’ of the rho) and Γρ are real.
The π+π− final state has isospin 1, so in order that G parity be conserved the ρ

meson must have isospin 1. The photon can also couple to the three pion system
(as the electromagnetic current has isospin 1 and isospin 0 components). Once
again, a similar enhancement is seen in the reaction e+e− → π+π0π− attributed
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to the isospin zero ω, though with a much narrower peak [5] (and a mass
m̂ω > m̂ρ).

Fig. 1. Cross section for the reaction e+e− → π+π− from the
data of Ref. [3] in the ρ−ω resonance region.

As more data was collected on e+e− → π+π− and the resolution of the plot
of the cross section improved (see Fig. 1), the interference of the ω meson
in the reaction was observed [6]. One was now faced with a G symmetry
violating interaction, ω → π+π−. This could not be explained by the EM
process ω → γ → ρ → 2π as this is far too small to account for what is seen
experimentally. Thus, this interference needs to be incorporated into the VMD
picture. This can be done by writing the ρ and ω meson propagators in matrix
form and generating the mixing by dressing the bare (isospin pure) matrix
elements. We thus have the bare matrix D0

µν = −gµνD0, where

D0 =

(
(q2 −m2

ρ)
−1 0

0 (q2 −m2
ω)−1

)
. (2)

We then dress this to form the full (or physical) propagator given by
Dµν = D0

µν+D0
µαΠαβDβν where the polarisation function, Πµν = (gµν−qµqν/q2)Π,

has off-diagonal elements Πρω which generate the mixing between the isospin
pure ρI and ωI .

Thus we introduce the decay mode γ → ωI → ρI → 2π to model what is seen
in experiment. However, we should also consider the intrinsic decay ωI → 2π.
An argument by Renard, though, claimed this effect will be suppressed and
hence can be ignored [2, 9] (this will be discussed further below). The dressed
propagator D(q2) will then have off-diagonal elements, but the propagator could be
diagonalised by transforming to the physical basis, ρ = ρI − εωI and ω = ωI + ερI .
The isospin violating mixing angle, ε is given by [2]

ε =
Πρω

m2
ω −m2

ρ

, (3)
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where we use the complex masses of Eq. (1). A model for the pion form factor
could now be written down as

Fπ(q2) =
m̂2
ρ

gρ(q
2 −m2

ρ)
+ ε

m̂2
ω

gω(q2 −m2
ω)

(4)

which produced a remarkably good fit to the experimental data from only a few
parameters. In the absence, though, of any theoretical model, Πρω has to be
fitted to the data [10].

The mixing of elementary particles due to symmetry breaking had been
considered by Coleman and Schnitzer for the vector case [11]. They discussed
two kinds of mixing, mass (or particle) mixing, which was constant and current
(or vector) mixing which was momentum dependent. The conclusion reached was
that although mass mixing is perfectly adequate for spinless particles, current
mixing is better for spin one particles, because it does not violate the conservation
of electric charge (and hence Πρω should be proportional to q2). Although the
specific example they addressed was ω−φ mixing, they mentioned that off-diagonal
(see above) current mixing was suitable for the study of ρ−ω mixing which, at
the time, had been examined by Glashow [12]. It was a number of years before
this suggestion was followed up [8], prompted by the direct experimental evidence
for ρ−ω mixing in the pion form factor [6].

Coon [13] studied ρ−ω mixing in the one boson exchange model of the
short-distance nuclear force as a contributing mechanism for the generation of
the charge symmetry violation (CSV) seen experimentally [14]. The resulting
potential is proportional to Πρω and, as it turns out, the value of Πρω extracted
in the measurement of the pion form factor (Eq. (4)) has the right sign and
magnitude to produce a reasonable fit to the data.

Although Coon et al. realised that the mixing function would in general be
momentum dependent, it was claimed that its value at the ρ or ω mass point
was all that was needed. Nevertheless, its extraction in the pion form factor is
for time-like q2, while the vector mesons in the boson exchange model of the NN
force have space-like momentum. Therefore, any momentum dependence could
have significant implications for the standard treatment of CSV using ρ−ω mixing.
This was first realised by Goldman et al. [15] who constructed a simple model in
which Πρω is generated by a quark loop. The amplitude for the mixing is given
by the difference between the ūu loop and the d̄d loop. In the limit of isospin
invariance (mu = md) the mixing would vanish. The prediction of a significant
momentum dependence for ρ−ω mixing forced Goldman et al. to conclude that
it would strongly reduce the standard class III and IV CSV NN potential. So
can ρ−ω mixing be simply assumed to be independent of momentum, and if not,
what does this say about nuclear models?

A lot of model calculations were performed following this [16] which all
produced similar results. At a more formal level, it was shown that for any
model in which the vector mesons coupled to a conserved current, the mixing
must vanish at q2 = 0 [7], precisely the constraint on vector mixing expected by
Coleman and Schnitzer [11]. In light of this, alternative mechanisms for nuclear
CSV were proposed, involving isospin violation at the meson-nucleon vertex [17],
rather than in the propagator. As both the vertex and propagator parts of the
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NN interaction are off-shell, they are dependent on the choice of interpolating
field for the vector mesons. It was thus argued that one could find fields so that
the sum of vertex and propagator contributions is equivalent to a configuration
in which all CSV occurs through a momentum independent mixed propagator
[18]. This argument, though, has been disputed on the grounds of unitarity and
analyticity [19].

However, the success of NN models in which the CSV is generated by
a fixed-valued ρ−ω mixing provided considerable incentive to argue against
momentum dependence. Miller [21] considered the mixing of the photon and the
rho. Traditional VMD has a fixed coupling between the photon and the rho, but
if this coupling were also generated by the kind of momentum dependent loop
processes used for ρ–ω mixing [16] then the photon–rho coupling would be strongly
momentum dependent, hence destroying the successful VMD phenomenology.
However, an equivalent momentum dependent version of VMD exists (which we
shall refer to as VMD1; the traditional version we shall call VMD2 [2]), which
was described by Sakurai thirty years ago [1]. VMD1 differs from VMD2 by
having a linear-in-q2 photon–rho coupling and a direct coupling of the photon
to the hadronic field, unlike in VMD2 where photon–hadron interactions take
place exclusively through a vector meson. As an example, the pion form factor
was plotted using VMD1 [10] and the results are indistinguishable from the
usual VMD2. Thus Miller’s worry could be addressed by comparing the loop
models [16] not to VMD2, but to VMD1 [22]. This makes sense not only
because the photon–ρ mixings will be momentum dependent, but also because
if the photon is now allowed to couple to quarks (say) to form the loop, then
we would expect it to be able to couple to the quarks in hadrons, hence
introducing a direct photon–hadron coupling not found in VMD2, but appearing
in VMD1.

We might like, though, to make some model-independent statement about ρ−ω .
This is difficult because the underlying theory, QCD, is presently inaccessible
at the relevant energies. In the past 20 years we have developed some model
independent treatments of low energy strong interactions, and two of these have
been used to look at ρ−ω mixing. The first is the technique of QCD sum-rules
(QCDSR) [23]. The basic idea is that one examines two-point functions of various
hadronic currents, expanding them out in powers of 1/q2. At high q2 QCD can
be treated perturbatively due to asymptotic freedom, but cannot be handled in
this manner for low q2 (for example, around the ρ mass). So to work with the
current correlators at low q2 we have to appeal to phenomenology (importantly
the resonances which are related to the vacuum structure). In this sense QCD
sum rules are a bit of an art, because there is no set method for using them.

Interestingly, one of the first examples of the use of QCDSR by the original
authors was ρ−ω mixing. The problem is set up by considering the two-point
function

Cµνρω (q) = i

∫
d4xeiq·x〈0|T(Jµρ (x)Jνω(0))|0〉, (5)

where Jµρ = (ūγµu− d̄γµd)/2 and Jµω = (ūγµu+ d̄γµd)/6. This current correlator
(Eq. (5)) was then used by Hatsuda et al. [24] to examine the momentum
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dependence of ρ−ω mixing by equating it with the mixed propagator (after
extracting the transverse tensor gµν − qµqν/q2)

Dρω(q2) =
Πρω(q2)

(q2 − m̂2
ρ)(q

2 − m̂2
ω)
. (6)

As pointed out by Maltman [25] though, the association of the correlator with
the off-diagonal propagator is only relevant if one uses interpolating fields for the
ρ and ω mesons proportional to the currents Jµρ and Jµω , otherwise the correlator
cannot be used to provide information about the off-shell behaviour of the mixing
element of the vector meson propagator. Hatsuda et al. concentrated on the
effect of the ρ and ω in this correlator, which as the most nearby resonances
might be expected to play the dominant role. However, Maltman found that the
ρ and ω contributions actually partially cancel. Because of this, the φ, although
quite far away and hence contributing with a much lesser strength than the
individual ρ and ω, becomes important for the isospin-breaking correlator (an
effect not considered in the previous two analyses).

In all analyses the sum-rule result is ultimately compared to the data for the
G-parity violation seen in e+e− → π+π− . The correlator, though, is only relevant
to the contribution from the mixing of the isospin pure states, ρI−ωI , to the isospin
breaking seen in the process. The competing process, ωI → π+π−, is overlooked
(as mentioned earlier), but Maltman found the ρI−ωI contribution (as determined
by the current correlator in QDCSR) under-estimates the isospin-violation seen
experimentally. We shall discuss the matter of intrinsic decay further below.

Leinweber et al . in two recent paper [26] examined the effects of including the
widths of the ρ and ω mesons in the QCDSR calculation performed by Hatsuda
et al . They replaced the real parts of the mass in Eq. (6) by the complex pole
positions given in Eq. (1). Following Maltman [25], they included the φ mesons,
but found that its contribution was negligible. Perhaps of most interest, following
the nuclear CSV debate, was their claim that for certain values of λ, Πρω has the
same sign and similar magnitude in the space-like region to the on-shell value.

Because the reaction e+e− → π+π− is the only place ρ−ω is actually seen, it
was decided that a new and general analysis should be performed [20]. The two
effects normally ignored, momentum dependence of Πρω and the intrinsic decay
ωI → π+π−, were included. As two recent fits to data had been performed [30]
all that needed to be done was to construct a precise theoretical expression for
the form factor, which could be compared to the numbers extracted from these
analyses for the expression

Fπ(q2) ∝ Pρ +AeiφPω , (7)

where Pρ,ω are the poles of the ρ and ω propagators. The starting point was the
mixed matrix formalism. In the data one sees two resonance peaks—a broad one
associated with the physical (as opposed to isospin-pure) rho and a narrow one
associated with the physical ω. Thus, the mixed propagator should only contain
two poles in the physical basis. We choose this basis to be ρ = ρI − ε1ωI and
ω = ωI + ε2ρI and write the propagator in the new, physical basis. This allows
us to fix ε1,2 by demanding that there are no poles in the off-diagonal pieces, i.e.
that all resonant behaviour is associated with the physical mesons. This gives
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expressions for ε1,2 similar to Eq. (3) but with arguments for Πρω at m2
ω and m2

ρ

respectively, as noted by Harte and Sachs [31]. Thus, in general the bases are
not related by a simple rotation, and the pure and real bases are not equivalent
(as the transformation between them is not orthogonal). For the case that Πρω
is either fixed or linear in q2, the off-diagonal terms can be made to disappear
completely, but in general they survive and contribute to the non-resonant (i.e.
no singular piece) background (although this is only a minor effect). The second
part of the analysis centres on the decay ωI → π+π−. A closer examination of
the Renard argument shows that the cancellation is not exact, and a reasonable
fraction of the intrinsic decay survives, which adds to the total interaction and
this turns out to be crucial to the analysis. In a world of exact experimental
precision the pre-factor Aeiφ of the ω pole in the expression for the form factor
(Eq. (7)) would enable us to pin down the values of the two unknowns, Πρω

and the strength of ωI → π+π−. Unfortunately this is not the case, and the
considerable uncertainty in the Orsay phase φ and the lesser uncertainty in A
allows a whole spread of values for the two unknowns; Πρω can take values
in the set (−840,−6240) MeV2. Naturally if there were no contribution from
ωI → π+π− we would recover the usual analysis and obtain Πρω = −3960 MeV2

(cf. the value −4520 ±600 MeV2 [32]). In light of this Maltman’s QCDSR analysis
is quite interesting, as it seems to provide theoretical evidence for a non-zero
contribution from intrinsic decay, leading us to re-think the present status of the
traditional extraction of Πρω. It also brings into question the value of Πρω used
in nuclear models.

Another model-independent method for treating the strong interaction at
low energies is chiral perturbation theory (ChPT). It is the subject of many
recent reviews [27], and essentially it sets up an effective model involving the
pseudo-scalar octet and admitting all terms allowed by the symmetry of the
original QCD Lagrangian, organised as a perturbative series in q2. However,
the symmetries of QCD in question (chiral symmetry, isospin symmetry) are not
exact; the main feature of ChPT is that it breaks these symmetries, for a meson
theory, exactly as QCD breaks them. The various free parameters of the theory
are then fixed by comparison to experiment.

As a perturbative series in q2, ChPT is only reliable in the low momentum
region. The relatively heavy vector mesons, therefore, do not fit naturally into
it. As resonances of QCD processes (which is really what they represent), they
play a very important role in strong physics, but unfortunately ChPT breaks
down well before the q2 of the poles we associate with vector mesons. Thus, it
is usually with an assumption such as VMD that the vectors mesons are fitted
into ChPT, to create an effective model incorporating ChPT. One such model,
in which the vector mesons appear in the Lagragian as antisymmetric tensors
has been used by Urech to study ρ–ω mixing [28].

The hadronic currents, as appearing in the correlator, have no such difficulty
and appear quite naturally in ChPT. Maltman [25] thus used ChPT as a
complement to his QCDSR calculation of the mixed correlator. He examined
the correlator to one-loop order O(q4) in ChPT obtaining a result dependent on
both q2 and the mass difference of the neutral and charged kaon (vanishing when
these masses are equal, which in ChPT occurs when mu = md). The result was
much smaller than the corresponding QCDSR result, indicating that the next
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order contribution [two-loops, O(q6)] needed to be included as well. The two-loop
calculation [29] seems to show that the chiral series is not convergent enough to
allow one to truncate even at O(q6) (which is the present-day limit of ChPT).

The study of ρ−ω mixing has pushed VMD and available data to its limit.
So far we have established, within the matrix approach to VMD, that we expect
the mixing of the pure isospin states to satisfy Πρω(0) = 0 (for models in
which the mesons couple to conserved currents), and that, due to experimental
uncertainty in the pion form–factor, we cannot distinguish between ρI − ωI
mixing and the intrinsic decay ωI → π+π−. As we have seen, QCD sum rules
and ChPT are providing new insights to this old problem, but their results are
open to interpretation. Physical processes in total, rather than their individual
contributions are what we actually observe and so our studies need to reflect this.
It remains for a completely consistent field theory based description of isospin
violation in both the time-like (ρ−ω mixing) and space-like (nuclear CSV) to be
constructed. We look forward to future developments in this field.
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