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Abstract

We study the structure functions of hadrons with the low energy effective theory of QCD. We
try to clarify a link between the low energy effective theory, where non-perturbative dynamics
is essential, and the high energy deep inelastic scattering experiment. We calculate the leading
twist matrix elements of the structure function at the low energy model scale within the
effective theory. Calculated structure functions are taken to the high momentum scale with
the help of the perturbative QCD, and compared with the experimental data. Through a
comparison of the model calculations with the experiment, we discuss how the non-perturbative
dynamics of the effective theory is reflected in the deep inelastic phenomena. We first evaluate
the structure functions of the pseudoscalar mesons using the NJL model. The resulting
structure functions show reasonable agreement with experiments. We then study the quark
distribution functions of the nucleon using a covariant quark–diquark model. We calculate
three leading twist distribution functions, the spin-independent f1(x), the longitudinal spin
distribution g1(x), and the chiral-odd transversity spin distribution h1(x). The results for
f1(x) and g1(x) turn out to be consistent with available experiments because of the strong
spin-0 diquark correlation.

1. Introduction

In the last several decades, the structure functions of hadrons have been
extensively studied, and have provided us with detailed information on the
internal structures of hadrons. The experiment in the high energy region, e.g.
deep inelastic scattering of hadrons (DIS), is one of the most powerful tools to
investigate the internal quark and gluon structure. Progress in the experimental
technique makes it possible to investigate the details of the structure functions
of hadrons, and to produce a large amount of data.

It is now generally accepted that the hadron is composed of quarks and gluons.
Quantum chromodynamics (QCD) is believed to be a fundamental theory of the
strong interaction, which describes hadrons and nuclei in terms of quarks and
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gluons. We can in principle obtain the properties of hadrons from QCD. However,
QCD becomes non-perturbative at the low energy scale, because the coupling
constant is very large and the perturbative treatment is not valid. Hence, it is
very difficult to extract the low energy hadron properties from QCD. A simple
and useful approach for the treatment of non-perturbative QCD is to construct
a low energy effective model which contains the essential aspects of QCD. On
the other hand, the coupling constant of QCD becomes small at the high energy
scale, and hence the perturbative QCD (pQCD) becomes reliable. This behaviour
is called asymptotic freedom, which is the most important aspect of QCD as a
non-abelian gauge theory. In fact, the observed scaling violations of the structure
functions are consistent with the perturbative QCD predictions. QCD, however,
is not able to predict the structure function itself at the present.

It is of great interest to clarify a connection between the high energy experiments,
especially DIS phenomena, and the low energy quark models. At the experimental
large momentum scale, a virtual photon sees a hadron as a complicated object,
which consists of valence quarks, sea quarks, and gluons. As the momentum
scale becomes smaller, sea quarks and gluons are absorbed into valence quarks,
and their degrees of freedom are substituted by the ‘constituent quarks’, whose
dynamics is subject to the low energy QCD. If we relate the DIS data with the
effective models, we can learn how the non-perturbative aspects of QCD reflect
the behaviour of the quark distributions at the DIS energy scale. In fact, recent
DIS experiments provide surprising discoveries which are beyond the scope of the
perturbative QCD and may be due to the non-perturbative dynamics. Hence, it
is crucial to study the connection between the deep inelastic phenomena and the
non-perturbative low energy hadron physics by using the quark models. Such a
connection would enable us to use the high energy experimental data to constrain
the models of low energy QCD.

Indeed, theoretical studies for the structure functions of hadrons are made
in terms of several effective quark models, which are supposed to work at the
low energy scale. Those works are based on the assumption that the structure
functions at the low energy model scale, Q2 = Q2

0, are obtained by calculating
the twist-2 matrix elements within the effective models. In the formalism of the
operator product expansion (OPE), the nth moment of the structure function
F2(x) at the scale Q2 is expanded as∫

dxxn−2F2(x,Q2) =
∑
τ

Cnτ (Q2, Q2
0)〈h|Onτ (Q2

0)|h〉 , (1–1)

where Cnτ (Q2, Q2
0) are the Wilson coefficients calculated by the perturbative QCD,

and 〈h|Onτ (Q2
0)|h〉 are the expectation values of the local operators which are

evaluated at the arbitrary scale Q2
0. Note that the Wilson coefficients are simple

c-numbers, and the expectation values of the local operators depend only on Q2
0.

The perturbative QCD provides the Wilson coefficients, and thus predicts the
momentum Q2-dependence of the structure function. In order to get the matrix
elements of local operators, however, it is necessary to construct the hadron state
|h〉, which is governed by the non-perturbative QCD. Therefore, most of the works
on DIS have been devoted to the calculation of the perturbative part (Wilson
coefficients). The focus of this paper is, on the contrary, to make use of the
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matrix elements which appear in the deep inelastic process to get information on
the detailed hadron structure. In the Bjorken limit (Q2 →∞), only the twist-2
(τ = 2) term survives in eq. (1–1) and the higher twist terms become negligible
[∼ O(1/Q2)]. Hence, once we calculate the twist-2 operators within the quark
model at the low momentum scale Q2

0, where the phenomenological model makes
sense, we can get the structure function at the experimental scale Q2 using the
QCD evolution equation. Thus, a comparison with experiments can be made.

In this talk, we first focus on the structure functions of mesons in terms
of the Nambu and Jona–Lasinio (NJL) model. We next extend our study to
the quark distribution functions of the nucleon using a covariant quark–diquark
model. We calculate three leading twist distribution functions, which are the
spin independent distribution f1(x), the longitudinal spin distribution g1(x), and
the chiral-odd transversity spin distribution h1(x).

2. Meson Structure Function

(2a) Calculation of Meson Structure Function

We first evaluate the structure functions of mesons, π and K, in terms of the
Nambu and Jona–Lasinio (NJL) model, as done in ref. [1]. Although the available
experimental data on the meson structure function are much fewer than that of
the nucleon, the meson structure functions are also important in studying the
quark structure of hadrons. Comparing with the nucleon case, one may extract
more directly the information on the quark–quark interaction from the structure
function, since we can avoid solving the complicated three body problem as the
nucleon case.

In the NJL model, the gluon degrees of freedom are assumed to be frozen
into a chiral invariant effective 4-point interaction in the low energy region.
The NJL model demonstrates the spontaneous breakdown of chiral symmetry
and the emergence of the Goldstone bosons. The generalized SU(3)f NJL
model reproduces the meson properties remarkably well, in spite of the lack of
confinement. This model is also applied to the chiral phase transition at finite
temperature and density. All these results indicate that the NJL model possesses
the essential features of QCD.

The hadronic tensor is related to the forward scattering amplitude Tµν through

the optical theorem Wµν = 1
2π

ImTµν . Thus, we calculate Tµν in the NJL model

to get the structure functions. We compute the forward scattering amplitude Tµν
in the impulse approximation of the pseudoscalar meson case, which is illustrated
as ‘handbag diagrams’. After calculations in the Bjorken limit [3, 1], we can
obtain

Tµν = 8
9

i

(2π)3Ncg
2
pqq

∫
dµ2

[(
1

(µ2 −M2
1 )

)
− x
(

2M1M2 − (M2
1 +M2

2 ) + p2

(µ2 −M2
1 )2

)]
× θ(x(1− x)m2

ps − xM2
2 − (1− x)µ2)

×
[
− gµν +

2z

mpsν
pµpν +

1

mpsν
(pµqν + pνqµ)

]
, (2–1)
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Here x is the so-called Bjorken x, and mps the pseudoscalar meson mass. Also
M1 is the constituent mass of the struck quark, and M2 the mass of the spectator
antiquark, which are solutions of the gap equation due to the dynamical chiral
symmetry breaking. In the case of the pion, we set M1 = M2 = Mu(d). For
the K+ meson, M1 = Mu and M2 = MS . It is easily seen from (2–1) that the
calculated structure functions exhibit Bjorken scaling [4].

Taking the imaginary part in (2–1), we get the valence quark distribution of
the pseudoscalar meson by the use of the optical theorem:

q(x) ∝− g2
pqq

∫ 0

−∞
dµ2

[
1

µ2 −M2
1

− x2M1M2 − (M2
1 +M2

2 ) + p2

(µ2 −M2
1 )2

]
× θ(p2x(1− x)− xM2

2 − (1− x)µ2) (2–2)

where p2 = m2
ps. We use the Euclidean variable µ2

E = −µ2 for the integration
of (2–2) with the momentum cutoff. We introduce the Fermi-distribution type
momentum cutoff function∫

d4k → i

∫
d4kE

1

1 + exp[(k2
E − Λ2)/a]

. (2–3)

Here k2
E is the Euclidean four momentum squared, and Λ is identified with the

typical scale of the chiral symmetry breaking ∼ 1 GeV. We use a ∼ 0 ·1 GeV2

to reproduce the meson properties.
Note that the resulting distribution shows the correct behaviour q(x)→ 0 as

x→ 1, since the lower limit of the integral µ2
Emin(= −µ2

max) = x
1− xM

2
2−xp2 →∞

as x [4]. We also note that the contribution of the second term of (2–2) to
the distribution function is small. This smallness is due to the spontaneous
breakdown of chiral symmetry. In fact, the second term disappears in the chiral
limit; mu = md = ms = 0. This form ensures the behaviour xqval(x) ∝ x at
small x. If chiral symmetry were not spontaneously broken, the second term
would be as large as the first term and the pionic quark distribution would
behave xq(x)val ∝ x2 around small x.

(2b) Numerical Results

We show numerical results for the quark distribution functions with the use
of the parameters which are used in ref. [1]. We first show in Fig. 1 the quark
distribution in the pion expressed as (2–2) by the dotted curve at the low energy
model scale, Q = Q2

0. The peak of the resulting distribution appears at x ∼ 0 ·6,
which indicates asymmetric momentum distributions in the pion; the struck quark
carries a larger part of the pion momentum. This is due to the large binding
energy of the valence quark in the pion. This result is a consequence of the
highly non-perturbative structure of the pion.

We note that this low energy scale structure function has no physical meaning
at this scale, since the ‘real’ structure function at the low energy scale receives
non-negligible contributions from all twist operators. The contribution from
leading twist, however, can survive at the high energy scale. The calculated
results represented by the dotted curve in Fig. 1 do not depend on Q2 explicitly,
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as they receive the logarithmic QCD radiative corrections. We use the first order
Altarelli–Parisi equation [5] for the Q2 evolution of valence distributions with
ΛQCD = 250 MeV to compare our results with experiment. We take the low
energy hadronic scale at Q2

0 = (0 ·5 GeV)2, which is used in ref. [6].

Fig. 1. Valence quark distribution of the pion at Q2 = 20 GeV2 (solid curve) as a function
of the Bjorken x, in which we use the model scale Q2

0 = 0 ·25 GeV2. The experimental fit [7]
is depicted by the dashed curve.

We show the pionic quark distribution at Q2 = 20 GeV2 by the solid curve in
Fig. 1 with experimental data (the dashed curve) extracted from the Drell–Yan
process [7]. We find reasonable agreement with experiment. The second moment
of the valence quark, which is identified with a momentum fraction carried by
the valence quark, turns out to be, 〈xu〉π = 0 ·22 at Q2 = 20 GeV2, where

〈xq〉 =
∫ 1

0
dxxq(x). This value is remarkably consistent with the experimental

0 ·21 [7]. However, the calculated distribution function is almost zero at x ∼ 1,
and different from the experimental fit [7] or the counting rule prediction [2].
This shortcoming comes from the cutoff procedure of the model. Around x ∼ 1,
the struck quark has a very large momentum > 1 GeV, and the quarks with very
large momenta are excluded in the NJL model by the cutoff. At the moment,
such a high momentum quark cannot exist in the hadron wave function within
the low energy quark model, and we need to develop a model to include the
high momentum correlations consistently with the low energy theory.
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Fig. 2. Ratio of kaon to pion valence u quark distributions uK(x)/uπ(x) at Q2 = 20 GeV2.
The theoretical result is depicted by the solid curve. The closed circles with error bars are
taken from the Drell–Yan experiment [8].

The valence quark distribution of the kaon is also interesting. The
corresponding second moments of the valence quarks in the kaon are given
by 〈xu〉K = 0 ·20, 〈xs〉K = 0 ·24 at Q2 = 20 GeV2. The result indicates that
the heavy strange quark has a larger momentum in the kaon than the light
u(d) quark. The total momentum carried by the valence quarks in the kaon is
〈xu〉K + 〈xs〉K = 0 ·44, and is almost the same as that in the pion 2〈xu〉π = 0 ·43.
We also show in Fig. 2 the ratio of kaon to pion valence u-quark distributions
uK/uπ at Q2 = 20 GeV2. The experimental values are taken from the Drell–Yan
experiment [8]. The result is consistent with available experiments.

3. Nucleon Structure Function

In this section we study the quark distribution functions of the nucleon. Recent
measurements of deep inelastic scattering show clear flavour dependence of the
nucleon structure functions. One example is the ratio of the neutron to proton
structure functions Fn2 (x)/F p2 (x) which shows a large deviation from the naive
quark–parton model prediction, which is 2/3. On the other hand, the polarized
structure function Gp,n1 (x) shows some deviation from the result of the naive
quark–parton model, Ap1 = Gp1(x)/F p1 (x) = 5/9 [9, 10, 11]. These results indicate
that the parton model neglects correlations among partons. Hence, we shall
discuss these problems within an effective model, which takes into account the
quark correlations in the nucleon.
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The quark distribution function of the nucleon in QCD can be defined by
the light-cone Fourier transformation of products of operators between hadron
states as discussed in [12]. We shall discuss the usual spin-independent quark
distribution f1(x), the quark helicity distribution function in the longitudinally
polarized nucleon g1(x) and the transversity spin distribution function h1(x).
We use the relativistic quark–diquark model for the nucleon for the calculation of
these nucleon distribution functions. The idea of diquarks, i.e. correlated states of
two quarks, is first introduced phenomenologically to explain the scaling violation
of the nucleon structure functions, which may be caused by the non-perturbative
diquark correlations [13].

The nucleon properties such as the mass and the wave function within the
NJL model should be obtained by solving the relativistic three body problem,
and such an effort is being made with the relativistic Faddeev method [14]. It
seems, however, necessary to incorporate confinement for a successful description
of baryons, which is absent in the NJL model. Therefore, we simply take the
quark–diquark model for the nucleon, and assume the case of the diquark–quark
vertex being scalar [15];

ΓDq(p
2) ∝ 1 · φ(p2) , (3–1)

where 1 is the unit matrix in the Dirac space.
First, we evaluate contributions of the diagram where a quark is struck out

by the virtual photon with the residual diquark being a spectator. This part can
be calculated following the work of Meyer and Mulders [15]. We use the impulse
approximation, and thus the hadronic tensor is represented by an incoherent sum
of various processes. We define the constituent quark mass m and the diquark
mass mD inside the nucleon, though the diquark and the quark are not the
eigenstates of QCD. Their values are obtained within the NJL model.

The calculation of the hadronic tensor in the Bjorken limit yields the spin
independent and dependent distribution functions [15]

qD(x) =

∫ ∞
p2
Emin

dp2
E

8π2

φ2(p2
E)

(p2
E +m2)2 [x(M2 + 2 mM −m2

D) +m2 + (1− x)p2
E ] , (3–2)

δD(x) =

∫ ∞
p2
Emin

dp2
E

8π2

φ2(p2
E)

(p2
E +m2)2 [2x2M2 − xM2

+ 2 mMx+m2
Dx+m2 − (1− x)p2

E ] , (3–3)

where

p2
Emin =

x

1− x
m2
D − xM2 ,

and M is the nucleon mass. Here P is the proton momentum, and p and p2 are
the momenta of the struck quark and the spectator diquark, respectively.

To avoid divergence in (3–2) and (3–3), we introduce the regularization
function φ(p2

E) in Euclidean space, which is used in our calculation of the meson
structure functions in the NJL model. We present here the calculated result
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on the structure function. We use the NJL model parameters, which are fixed
by the pion properties. For the diquark part, we treat the diquark masses
as free parameters. By analysis of the N–∆ mass splitting in the one-gluon
exchange picture, the scalar diquark mass mS was assumed to be 585 MeV
[16], and the axial-vector diquark mass mA to be 200 MeV higher than the
scalar diquark mass, mA = 785 MeV [17, 15]. The quark correlation affects the
quark distributions through the diquark masses. The structure functions of the
nucleon are written in terms of quark distribution functions, (3–2) and (3–3),
e.g. F p2 (x) = 2

3xq
S(x) + 1

3xq
A(x) and Fn2 (x) = 1

6xq
S(x) + 1

2xq
A(x), where qS(x)

and qA(x) are the quark distributions with the residual diquarks being the scalar
and the axial-vector diquarks, respectively. We can write the spin dependent
structure functions in terms of δS(x) and δA(x).

Fig. 3. Proton and neutron structure functions at Q2 = 15 GeV2. The solid curve represents
F p2 (x), and the dashed curve Fn2 (x). Here, we use the low energy model scale Q2

o = 0 ·1 GeV2.
The experimental data are taken from the EMC experiment [18].

We take the low energy model scale Q2
0 = 0 ·1 GeV2, which is smaller than

the one used in ref. [6]. Here, we use the first order Altarelli–Parisi equation [5]
with ΛQCD = 250 MeV, in order to compare our result with experiment. The
proton and the neutron structure functions F p2 (x) and Fn2 (x) thus obtained at
Q2 = 15 GeV2 are shown in Fig. 3 with experimental data [18], where we use
mA−mS = 200 MeV. Our result shows a reasonable agreement with experimental
data. The second moments of the valence quarks are obtained as 〈xuval〉 = 0 ·273,
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〈xdval〉 = 0 ·106 at Q2 = 15 GeV2, and are consistent with experimental values;
0 ·275 and 0 ·116 [18]. Comparing our calculated results with the ones of the MIT
bag model [19, 20] or the diquark spectator model [15], our structure functions
are distributed over a much wider range of the Bjorken x . This result is the
consequence of the strong diquark correlation.

We discuss here how the flavour structure of the structure function depends on
the diquark correlation. The ratio Fn2 (x)/F p2 (x) is shown in Fig. 4. Our result
is in good agreement with experiment [18, 21, 22] with mA −mS = 200 MeV.
This is due to the dominance of u-quark distributions, namely qS(x), at large
x , which is caused by the asymmetric momentum distributions of quarks and
diquarks. In the middle x range, x ∼ 0 ·4, the resulting ratio is close to 2/3. We
find that our calculated result is somewhat smaller than experiment at small x .
The inclusion of sea quarks at the low energy scale enhances this ratio in the
small x region, and may resolve this discrepancy. If we take the same values for
the scalar and the axial-vector diquark masses, the ratio is close to 2/3.

Fig. 4. Ratio of the nucleon structure functions Fn2 (x)/F p2 (x) at Q2 = 15 GeV2 with
mA −mS = 0 (dotted), 200 MeV (solid) (Q2

0 = 0 ·1 GeV2). The experimental data are taken
from ref. [18].

We next pay attention to the spin dependent structure function Gp1(x) at
Q2 = 10 GeV2. The resulting structure functions yield a reasonable value for the
Bjorken sum rule:
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∫ 1

0

dx[Gp1(x)−Gn1 (x)] = 1
6gA(1− αs/π) .

We get 1 ·17 for the value of gA, which is consistent with the experimental
value 1 ·28. Further, we get the following value for the integral of G1(x),

Γp =
∫ 1

0
dxGp1(x) = 0 ·1249, which compares well with the recent data, 0 ·126 ±

0 ·006 (SMC [11]). Ratios Ap1 = Gp1(x)/F p1 (x) and An1 are presented in Fig. 5.
The result with the spin-0 quark correlation is depicted by the solid curve, and
the dashed curve denotes the case without the correlation, which corresponds
to the parton limit. The Ap1 calculated with the diquark correlation seems to
provide a better result as the intermediate x, though it is not so apparent due
to the experimental errors as compared with the spin independent case.

Fig. 5. Ratio of spin dependent to independent proton structure functions at Q2 = 10 GeV2

with SLAC E142 data. We use the model scale Q2
0 = 0 ·1 GeV2. The solid curve depicts the

result with the diquark correlation, and the dotted curve without the correlation.

Finally, we shall estimate the remaining distribution function h1(x) in the
study of the nucleon structure function. The steps in the calculation are the
same as the one for f1(x) and g1(x) in the quark–diquark model. After some
calculation, we find the following expression with the spectator diquark mass mD

[15]:
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hD1 (x) =

∫ ∞
p2
Emin

dp2
E

8π2

|φE |2

(p2
E +m2)2 [(pE +m)2

+ 2(pE⊥ · s)2 − x(p2
E −M2 − 2 mM +m2

D)] , (3–4)

where

p2
⊥ = −(1− x)p2 + x(1− x)M2 − xm2

D .

We show the Q2 dependence of the chiral-odd distribution functions in
Fig. 6. For simplicity, we use the first order Altarelli–Parisi equation [5] with
ΛQCD = 250 MeV and the low energy model scale Q2

0 = 0 ·1 GeV2. As Q2

increases, the peak of the distribution function shifts to small x, and its absolute
magnitude becomes small. Note that the absolute magnitude of the u quark
distribution is considerably larger than the d quark, because the scalar diquark
is dominant in the proton.

Fig. 6. Chiral-odd distribution functions of the valence quark at the low energy scaleQ2 = Q2
0,

and Q2 = 5 and 15 GeV2. The u quark distributions are depicted by thick curves and d
quark distributions by thin curves, respectively. The solid curves are at Q2 = Q2

0, the dotted
curves at Q2 = 5 GeV2 and the dashed curves at Q2 = 15 GeV2.

We calculate also the integrated values for the distributions. The tensor charge
δq and axial charge ∆Σ are expressed in terms of hq1(x) and gq1(x), respectively.
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The tensor charge corresponds to the transversity, which represents the fraction
of the transverse spin of the quarks. The expression for the tensor charge in
terms of hq1(x) and hq̄1(x) is δq ≡

∫ 1

0
dx[hq1(x)− hq̄1(x)]. Our result for the tensor

charge is δq = 0 ·90. This result is reasonably consistent with recent estimates of
the tensor charge with the MIT bag model [23] of δq = 0 ·88. On the other hand,

the axial charge, ∆Σ ≡
∫ 1

0
dx[gq1(x)− gq̄1(x)], which corresponds to the fraction of

the spin of the nucleon carried by the quarks comes out to be ∆Σ = 0 ·299. This
is smaller than the recent estimates with the MIT bag model of ∆Σ = 0 ·38.

4. Summary and Conclusion

We have studied the structure functions of hadrons with the low energy
effective theory of QCD. We have tried to clarify a link between the low energy
effective theory, where non-perturbative dynamics is essential, and the high energy
deep inelastic experiment, where the perturbative description is possible for its
momentum dependence.

We have used the NJL model to obtain the meson structure functions. Our
results are in reasonable agreement with experimental data, except for the large x
region. In this region, the struck quark carries a large momentum > 1 GeV, and
the NJL model is not designed for the momentum p2 > Λ2 ∼ 1 GeV2. Generally,
the phenomenological quark wave functions, e.g. the Isgur–Karl model (harmonic
oscillator type) or the MIT bag model, do not include such high momentum
components. We have to improve the behaviour of the structure function at
large x, by taking into account the quark correlation in the high momentum
region. Higher twist contributions are also expected to change the shape of the
distribution function at large x. On the other hand, the kaon structure function
provides valuable data on the strange sector. As we have discussed for the kaon,
the valence strange quark may carry a larger momentum fraction than the up or
down quark in the kaon. Comparing the u-quark distribution in the kaon uK(x)
with that in the pion uπ(x), the NJL model calculation indicates the dominance
of uπ(x) at the large x, and is consistent with the available data. This is due
to the strong quark correlation in the pion, namely, the binding energy of the
u-quark in the pion is larger than that in the kaon.

We have studied the distribution functions of the nucleon based on the
phenomenological quark–diquark model. This model reproduces the asymmetric
momentum distributions in the nucleon. The non-perturbative effects in this model
are found in the quark distribution function. We have paid special attention to the
ratio of the structure function, in which we can see clearly the non-perturbative
effect on the structure function. The neutron to proton structure function ratio,
Fn2 (x)/F p2 (x), shows good agreement with the available DIS data. Our result
indicates that the quark correlation, especially in the scalar channel, is important
to understand the DIS data. We have also calculated the spin dependent structure
function, and our calculation reproduces the experimental data of Gp1(x)/F p1 (x).

In our studies of the structure functions of hadrons, the meson and the nucleon,
within the QCD effective model, we have compared the model calculations with
the experiments. We can see how the non-perturbative dynamics of the effective
theory is reflected in the deep inelastic scattering phenomena. It is very important
to recognize that non-perturbative dynamics at the low energy scale affect the
high energy phenomena.
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