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Abstract

The structure function of 4He is calculated based on a realistic spectral function which is
consistent with the momentum sum rule. The calculation reproduces the empirical suppression
of the EMC ratio R(x) = F2(4He)/F2(D) at x < 1. At x ∼ 1 the quasielastic contribution
produces a sizable effect in the ratio, but it becomes negligible around Q2 ∼ 20 (GeV/c)2.

1. Introduction

Deep inelastic lepton–nucleus scattering (DIS) provides information on quark
distributions in nuclei. The deviation of nuclear structure functions measured
in DIS from the nucleon structure function in the region x < 1 of the Bjorken
variable (EMC effect [1]) has been studied in detail in a number of publications
[2]. It is not clear yet, however, whether this is a genuine subhadronic effect
which requires a drastic change in the nucleon structure inside nuclei or can be
absorbed into the nuclear many-body scheme, e.g. the nuclear binding effect or
the nucleon–nucleon correlation effect. The correlation effect at short distances,
in particular, is a notoriously difficult but still important subject which has a
long history of research. Nuclear structure functions in the region beyond x = 1
are expected to provide a clue to unravel the complicated correlation effect. A
detailed study of this region will soon become available thanks to high-intensity
continuous electron beams at several facilities.

A direct calculation of quark distributions in nuclei including nuclear correlations
will be a desirable framework to study nuclear structure functions [3]. At the
moment the quark correlations among nucleons inside nuclei seem highly model-
dependent, and it would require detailed studies of nucleon correlations to give a
constraint on the model building. It seems therefore worth while to investigate
closely the nuclear structure functions based on the nuclear viewpoint as precisely
as possible. The nucleus 4He provides a suitable testing ground for this purpose,
since a detailed wave function is available on the one hand, while on the other
the nucleon density is high enough that the nuclear effect becomes apparent.

∗ Refereed paper based on a contribution to the Japan–Australia Workshop on Quarks,
Hadrons and Nuclei held at the Institute for Theoretical Physics, University of Adelaide, in
November 1995.
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It is the purpose of the present contribution to calculate the structure function
of 4He at low as well as the larger-x region using a spectral function based on
the sophisticated nuclear wave function.

2. Spectral Function of 4He

Lepton–nucleus scattering cross section at high energy is closely related to the
nucleon spectral function in nuclei. For 4He it is defined as follows:

S(k, E) =
∑
f

|φfi(k)|2δ(E − (E3N
f − E4N

i )) , (1)

where the overlap function φfi is defined by

φfi(k) =
√

4〈Ψ3N
f Φk|Ψ4N

i 〉, Φk(R) = (2π)−3/2 exp(ik ·R) . (2)

Here Ψ3N
f and Ψ4N

i denote the final three-body and the initial 4He wave functions,

while E3N
f and E4N

i are the corresponding internal energies. According to the
number of fragments, the final four-nucleon wave function given by the product
Ψ3N
f Φk is classified into the two-body (p+ t or n+3He), three-body (p+ n+ d),

and four-body (p+ p+n+n) breakup channels which are denoted as 2B, 3B and
4B, respectively. For the ground state wave functions of the three-nucleon system
and of 4He we applied the ATMS method [4] with the Reid soft-core V8 model
potential which is known to produce a realistic description of few-body systems.
As for the wave function Ψ3N

f in the 3B and 4B channels where the three-nucleons
are in the continuum, we basically use the plane-wave (PW) approximation. This
approximation is expected to become good at high momentum region where the
NN -correlation effect is important. Fig. 1 shows the three-dimensional view of the
spectral function S(k, E) calculated in the PW approximation. If one compares
the result with that of a simple (1s)4 oscillator wave function, it becomes clear
that the nucleon correlation effect produces a large enhancement of the spectral
function at high momentum (k = |k| > 2 fm−1) as well as at large removal energy
(E > 150 MeV).

Fig. 1. Spectral function
S(k, E) plotted in the
k(=|k|) − E plane. The
part S2B(k, E) which gives a
delta-function contribution at
small E is not shown.

The simple PW approximation, however, does not satisfy the momentum sum
rule for the spectral function, i.e.
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1
4

∫
dES(k, E) = W2B(k) +W3B(k) +W4B(k) = WSN (k) , (3)

where WnB denotes an n-body contribution to the momentum distribution function
of the 4He ground state calculated from the spectral function, while WSN is the
momentum distribution calculated directly from the ground state wave function.
(The function WSN is normalized in such a way that the momentum integral
of W gives unity.) The discrepancy in the PW approximation comes from the
non-orthogonality among three-nucleon final states Ψ3N

f . To remedy this we make
a projection on the three-nucleon continuum states so that they become orthogonal
to the three-nucleon ground state [5]. We then are left with a discrepancy of
∼14%, which is used to uniformly renormalize the spectral function. The sum-rule
consistent spectral function thus obtained reproduces nicely the k-dependence of
the momentum distribution function WSN (k). Fig. 2 shows the n-body breakup
contribution to the momentum distribution function. One may notice that the
2B-contribution accounts for most of the momentum distribution at low k, while
the 4B contribution becomes dominant at high momentum (k > 2 fm−1) region.

Fig. 2. The n-body breakup
contributions to the momentum
distribution functions WnB(k)
shown together with the momentum
distribution WSN (k) calculated
directly from the 4He ground
state wave function. The sum
W2B + W3B + W4B (not shown)
is almost identical to WSN up to
k ∼ 3 fm−1.

3. Structure Function of 4He

To construct a nuclear structure function we adopt the (single) nucleon convolution
model, assuming that the nucleon cluster contribution is not important except
close to the kinematical limit x ' N for an N -body cluster. The effect of virtual
mesons is not included, although it may be important in the small x region.
Under this assumption the nuclear structure function WA

2 can be obtained (see
e.g. [6]) as

WA
2 (x,Q2) =

∑
p,n

∫
dk

∫
dES(k, E)[C1(k,q)WN

1 + C2(k,q)WN
2 ] , (4)
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where C1, C2 denote kinematical factors and WN
1 ,WN

2 are nucleon structure
functions. Empirical structure function data at x sufficiently smaller than 1
have been measured at large four-momentum transfer squared Q2 = −q2. In this
region one may take the large Q2 limit of the C and obtain a simpler form

FA2 (x,Q2) =

∫
z≤x

dz

{
Z

A
fpA(z)F p2

(
x

z
,Q2

)
+
N

A
fnA(z)Fn2

(
x

z
,Q2

)}
, (5)

where Z (N) is the proton (neutron) number and F
p(n)
2 is the nucleon structure

function. The light-cone momentum distribution functions are defined by

f
p(n)
A (z) =

∫
d4k PA(k) zδ

(
z − MA

M
· kq
Pq

)
, (6)

where MA and M are respectively the masses of the nucleus and of the nucleon,
P is the nuclear four momentum, and PA(k) is the four momentum distribution
of the nucleon in the nucleus. The delta-function implies that z ∼ (k0 − k//)/M
in the Bjorken limit, where k// is the component of k in the direction of q.
The flux factor z has been included in order to ensure relativistic normalization
of fA. In the nonrelativistic limit the four momentum distribution function is
expressed in terms of the nuclear spectral function S(k, E) as

PA(k) = S(k, E)[1 +O(k2/M2)] . (7)

In the calculation below we retained terms up to order k 2/M2 [7]. As shown in
the previous section the spectral function consists of three components according
to the number of fragments in the final states, i.e. S = S2B + S3B + S4B .

Fig. 3. Structure function ratio R(x) of F2(x; 4He) to F2(x; D)
at x ≤ 1 and Q2 = 4 (GeV/c)2. Data are taken from refs [1, 8].
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Fig. 4. Light-cone momentum distribution function f(z) for
4He (solid line) and for the deuteron (dotted curve).

Fig. 3 shows the calculated structure function ratio

R(x) = F2(x; 4He)/F2(x; D) (8)

for x < 1 at Q2 = 4 (GeV/c)2. The structure function for the deuteron is
obtained also from eq. (5) using a realistic wave function based on the same
NN interaction. The experimental data have been taken from refs [1, 8]. The
nucleon structure functions were obtained from the parametrization in ref. [9].
Calculations at Q2 = 20 (GeV/c)2 give similar results.

Fig. 3 shows that the experimental ratio R(x) is reproduced rather well in the
region 0 ·3 ≤ x ≤ 0 ·8. The difference in the structure functions of 4He and of the
deuteron comes from the difference in the momentum distribution function f(z)
shown in Fig. 4. One can see that the distribution function for 4He is broader
than that for the deuteron reflecting a more compact structure of the former.
In particular, the shoulder at |z − 1| ≥ 0 ·3 reflects the effect of short-range
correlations in nuclei. This effect is known to enhance the high-momentum and
high removal energy components of the spectral function [5]. Thus the correlation
effect (including binding effect) is sufficient to explain the degrading of the quark
light-cone momentum distribution in 4He.

We now consider the region around x ' 1. It is now important to take the
quasielastic contribution into account. Here the term quasi-elastic means that the
incident lepton scatters off nucleons elastically in the nucleus. Since the process
involves elastic form factors of the nucleon, it is expected that this contribution
would drop rapidly as Q2 becomes larger. For this reason we use the expression
(4) in order to retain all the Q2 dependence in the convoluted structure function.
It should be noted here that the integrand of the right-hand side of eq. (4)
is actually dependent on the off-shell prescription of the nucleon contributions.
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We take the extrapolation suggested by de Forest [10]. Fig. 5 shows the Q2

dependence of the 4He structure function. The quasielastic contribution shown
by dashed curves is seen to drop rapidly with increasing Q2, which is in contrast
to the inelastic contribution. At Q2 = 15 (GeV/c)2 one can safely neglect
the quasi-elastic contribution. We made a similar calculation for the deuteron
structure function to obtain the ratio R(x). Here the quasi-elastic contribution is
still visible at Q2 = 15 (GeV/c)2 around x = 1. This is due to the rapid fall-off
of the inelastic contribution of the structure function around x = 1, because of
the small high momentum component in the deuteron. Our calculation suggests
that the quasi-elastic contribution can be neglected at around Q2 = 20 (GeV/c)2

even for the deuteron.

Fig. 5. Structure function F2 of 4He at four values of Q2 calculated from the expression
(4) where the full Q2 dependence is included. The quasi-elastic contribution is shown by
dashed curves, and the inelastic one by dotted curves. Solid curves show the sum of the two
contributions.

Fig. 6 shows the ratio R(x) = F2(4He)/F2(D) up to x = 1 ·5 at Q2 = 20
(GeV/c)2. The ratio shows a rapid rise around x ' 1. This behaviour originates
from the strong x-dependence of different subprocesses of the spectral function
as shown in the same figure. Here the denominator of the ratio is always fixed
(total structure function F2 of the deuteron) for these subprocess contributions.
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Fig. 6. Ratio R(x) of the
structure function up to x = 1 ·5
(solid curve) at Q2 = 20
(GeV/c)2. Contributions
from different subprocesses for
4He (SnB for final n-body
breakup) are also shown: 2B
(dotted), 3B (short-dashed)
and 4B (long-dashed). In each
contribution, the denominator
of the ratio is fixed to be
F2(x; D).

The sharp drop of the two-body contributions (S2B) at x ≥ 1 is explained by
the fact that there is only an S-wave between the final t and p of the 2B part
of the spectral function of 4He, while in the deuteron the D-wave contribution
becomes dominant. The four-body contribution in 4He however dominates the
latter giving rise to the large value of the ratio. The transient pattern from
2B to 4B dominance in the ratio R(x) is sensitively dependent on the spectral
function, however. If one uses a model spectral function employed in ref. [6], for
instance, one obtains a different behaviour of the ratio against x. Dependence
on Q2 around x ∼ 1 is more complicated because of the quasielastic contribution
which is important at lower Q2. This in turn suggests that the measurement
of the structure function in this region may provide a sensitive probe of the
correlation effects in nuclei.

4. Summary

We performed a calculation of the structure function of 4He using the nucleon
convolution model together with realistic spectral function which is consistent with
the momentum sum rule. The spectral function is dominated by the four-body
breakup (p + p + n + n) contribution at high momentum (k > 2 fm−1) as well
as at large removal energy (E > 150 MeV). We studied the ratio R(x) of the
4He structure function to that of the deuteron. In the x < 1 region the nucleon
correlation effect contained in the spectral function accounts for the suppression
of R(x) seen in the empirical data. At larger values of the Bjorken variable, i.e.
around x ∼ 1, the ratio may show a rather complicated behaviour as a function
of x because the high momentum/energy contribution becomes dominant. The
Q2 dependence is not simple because of the quasielastic contributions in 4He as
well as in the deuteron. Our calculation suggests that at Q2 = 20 (GeV/c)2 one
may safely neglect the quasielastic contribution to the structure function.
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