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Abstract

We study the η→ γγ and η→π0γγ decays using an extended three-flavour Nambu–Jona-Lasinio
model that includes the ’t Hooft instanton induced interaction. We find that the η-meson
mass, the η→ γγ decay width and the η→π0γγ decay width are in good agreement with the
experimental values when the UA(1) breaking is strong and the flavour SU(3) singlet-octet
mixing angle θ is about zero. The effects of the UA(1) breaking on the baryon number one
and two systems are also studied.

1. Introduction

It is well known that the QCD action has an approximate UL(3) × UR(3)
chiral symmetry and its subsymmetry, UA(1) symmetry, is explicitly broken by
the anomaly. The UA(1) symmetry breaking is manifested in the heavy mass of
the η′ meson.

The physics of the η and η′ mesons have been extensively studied in the 1/NC
expansion approach [1]. In the NC → ∞ limit, the UA(1) anomaly is turned
off and then the η meson becomes degenerate with the pion and the η′ meson
becomes a pure ss state with m2

η′(NC → ∞) = 2m2
K −m [2]. So the UA(1)

anomaly pushes up mη by about 400 MeV and mη′ by about 300 MeV. It means
that not only the η′ meson but also the η meson is largely affected by the UA(1)
anomaly.

In order to understand the role of the UA(1) anomaly in low-energy QCD, it
may be important to study the η-meson decays as well as its mass and decay
constant. Among the η-meson decays, η→ γγ and η→π0γγ decays are interesting.
They have no final state interactions and involve only neutral mesons so that the
electromagnetic transitions are induced only by the internal (quark) structure
of the mesons. The η→ γγ decay is related to the Adler–Bell–Jackiw triangle
anomaly [3] through partial conservation of the axial-vector current hypothesis.
For the η→π0γγ decay, it is known that the chiral perturbation theory (ChPT)
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gives too small a prediction in the leading order and higher order terms are
expected to be dominant.

The purpose of this paper is to study the η→ γγ and η→π0γγ decays in
the framework of the three-flavour Nambu–Jona-Lasinio (NJL) model as a chiral
effective quark Lagrangian of low-energy QCD. The three-flavour NJL model which
involves the UL(3) × UR(3) symmetric four-quark interaction and the six-quark
flavour-determinant interaction [4] incorporating effects of the UA(1) anomaly has
been used widely in recent years to study such topics as the quark condensates
in vacuum, the spectrum of low-lying mesons, the flavour-mixing properties of
low-energy hadrons, etc. [5]. In this approach the effects of explicit breaking of
the chiral symmetry by the current quark mass term and the UA(1) anomaly on
the η→ γγ and η→π0γγ decay amplitudes can be calculated consistently with
those on the η-meson mass, η decay constant and mixing angle within the model
applicability.

2. Three-flavour Nambu–Jona-Lasinio model

We work with the following NJL model Lagrangian density:

L = L0 + L4 + L6 , (1)

L0 = ψ (i∂µγ
µ − m̂) ψ , (2)

L4 =
GS

2

8∑
a=0

[ (ψλaψ)2 + (ψλaiγ5ψ)2 ] , (3)

L6 = GD{ det[ψi(1− γ5)ψj ] + det[ψi(1 + γ5)ψj ] } . (4)

Here the quark field ψ is a column vector in colour, flavour and Dirac spaces and
λa(a = 0 . . . 8) is the U(3) generator in flavour space. The free Dirac Lagrangian
L0 incorporates the current quark mass matrix m̂ = diag(mu,md,ms) which
breaks the chiral UL(3)×UR(3) invariance explicitly. The L4 is a QCD motivated
four-fermion interaction, which is chiral UL(3) × UR(3) invariant. The ’t Hooft
determinant L6 represents the UA(1) anomaly. It is a 3 × 3 determinant with
respect to flavour with i, j = u, d, s.

Quark condensates and constituent quark masses are self-consistently determined
by the gap equations in the mean field approximation. The covariant cutoff Λ is
introduced to regularize the divergent integrals. The pseudoscalar channel quark–
antiquark scattering amplitudes are then calculated in the ladder approximation.
From the pole positions of the scattering amplitudes, the pseudoscalar meson
masses are determined. We define the effective meson–quark coupling constants
gηqq and gπqq by introducing additional vertex Lagrangians,

Lηqq = gηqqψiγ5λ
ηψφη , (5)

Lπqq = gπqqψiγ5λ
3ψφπ0 , (6)
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with λη = cos θλ8 − sin θλ0. Here φ is an auxiliary meson field introduced for
convenience and the effective meson–quark coupling constants are calculated
from the residues of the qq-scattering amplitudes at the corresponding meson
poles. Because of the SU(3) symmetry breaking, the flavour λ8−λ0 components
mix with each other. Thus we solve the coupled-channel qq scattering problem
for the η meson. The mixing angle θ is obtained by diagonalization of the
qq-scattering amplitude. It should be noted that θ depends on q2. At q2 = m2

η,
θ represents the mixing angle of the λ8 and λ0 components in the η-meson state.
In the usual effective pseudoscalar meson Lagrangian approaches, the η and η′

mesons are analysed using the q2-independent η-η′ mixing angle. Because of the
q2-dependence, θ cannot be interpreted as the η–η′ mixing angle. The origin of
the q2-dependence is that the η and η′ mesons have internal quark structures.
The meson decay constant fM (M = π,K, η) is determined by calculating the
quark–antiquark one-loop graph. The explicit expressions are found in [6].

3. The η→γγ Decay Amplitude

The π0, η → γγ decay amplitudes are given by

〈γ(k1)γ(k2)|M(q)〉 = i(2π)4δ4(k1 + k2 − q)εµνρσεµ1 εν2k
ρ
1k
σ
2 T̃M→γγ(q2) , (7)

where ε1 and ε2 are the polarization vectors of the photon. By calculating the
pseudoscalar–vector–vector type quark triangle diagrams, we get the following
results:

T̃π0→γγ =
α

π
gπqqF (u, π0) , (8)

T̃η→γγ =
α

π
gηqq

1

3
√

3

[
cos θ{5F (u, η)− 2F (s, η)}

− sin θ
√

2{5F (u, η) + F (s, η)}
]
. (9)

Here α is the fine structure constant of QED and F (a,M) (a = u, s and M = π0, η)
is defined as

F (a,M) =

∫ 1

0

dx

∫ 1

0

dy
2(1− x)Ma

M2
a −m2

Mx(1− x)(1− y)
. (10)

Then the M → γγ decay width is given by Γ(M → γγ) = |T̃M→γγ |2m3
M/(64π).

In the chiral limit, the pion mass vanishes and F (u, π0) becomes 1/Mu. In
this limit, the Goldberger–Treiman (GT) relation at the quark level, Mu = gπfπ,
holds in the NJL model and this leads to T̃π0→γγ = α/πfπ which is same as
the tree-level results in the Wess–Zumino–Witten Lagrangian approach [7]. It
should be mentioned that we have to integrate out the triangle diagrams without
introducing a cutoff Λ in order to get the above result, though the cutoff is
introduced in the gap equations in the NJL model. In the U(3)L×U(3)R version
of the NJL model, the WZW term has been derived using the bosonization
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method with the heat-kernel expansion [8, 9]. In their approach, the O(1/Λ)
term has been neglected and it is equivalent to taking the Λ→∞ limit.

4. The η→π0γγ Decay Amplitude

The η→π0γγ decay amplitude is given by

〈π0(pπ)γ(k1, ε1)γ(k2, ε2)|η(p)〉 = i(2π)4δ4(pπ + k1 + k2 − p)εµ1 εν2Tµν . (11)

The dominant contributions to this process in this model are the quark-box
diagrams. Following the evaluation of the quark-box diagrams performed in [10],
we obtain

Tµν = − i 1√
3

(cos θ −
√

2 sin θ)e2gηqqgπqq

∫
d4q

(2π)4

6∑
i=1

U iµν , (12)

U1
µν = tr

{
γ5

1

6q −M + iε
γ5

1

6q+ 6p− 6k1− 6k2 −M + iε
.

× γν
1

6q+ 6p− 6k1 −M + iε
γµ

1

6q+ 6p−M + iε

}
, (13)

U2
µν = tr

{
γ5

1

6q −M + iε
γ5

1

6q+ 6k2 −M + iε

× γν
1

6q+ 6p− 6k1 −M + iε
γµ

1

6q+ 6p−M + iε

}
, (14)

U3
µν = tr

{
γ5

1

6q −M + iε
γν

1

6q+ 6k2 −M + iε

× γµ
1

6q+ 6k1+ 6k2 −M + iε
γ5

1

6q+ 6p−M + iε

}
, (15)

U4
µν = U1

νµ(k1 ↔ k2) , (16)

U5
µν = U2

νµ(k1 ↔ k2) , (17)

U6
µν = U3

νµ(k1 ↔ k2) . (18)

Here M is the constituent u,d quark mass. Because the loop integration in (12)
is not divergent, we again do not use the UV cutoff. Then the gauge invariance
is preserved. The inclusion of the cutoff that is consistent with the gap equation
will break the gauge invariance and make the present calculation too complicated.
Note that the strange quark does not contribute to the loop.

On the other hand the amplitude Tµν has a general form required by the
gauge invariance [11]
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Tµν = A(x1, x2)(kν1k
µ
2 − k1 · k2g

µν)

+B(x1, x2)

[
−m2

ηx1x2g
µν − k1 · k2

m2
η

pµpν + x1k
µ
2 p

ν + x2p
µkν1

]
, (19)

with xi = p · ki/m2
η. With A and B, the differential decay rate with respect to

the energies of the two photons is given by

d2Γ

dx1dx2

=
m5
η

256π2

{
|A+ 1

2B|
2

[
2(x1 + x2) +

m2
π

m2
η

− 1

]2

+ 1
4 |B|

2

[
4x1x2 −

[
2(x1 + x2) +

m2
π

m2
η

− 1

]]2}
. (20)

Though the mass of η as a qq bound state depends on Geff
D , we use the experimental

value mη = 547 MeV in evaluating (20). The Dalitz boundary is given by two
conditions:

1
2

(
1− m2

π

m2
η

)
≤ x1 + x2 ≤ 1− mπ

mη

, (21)

x1 + x2 − 2x1x2 ≤ 1
2

(
1− m2

π

m2
η

)
. (22)

In evaluating (13)–(18), one only has to identify the coefficients of pµpν and gµν .
Details of the calculation are given in [10]. Defining A and B by

∫
d4q

(2π)4

6∑
i=1

Uµνi = −i
(
Agµν + B p

µpν

m2
η

+ · · ·
)
, (23)

we find A and B as

A =
1√
3

(cos θ −
√

2 sin θ)e2gπqqgηqq
2

m2
ησ

[
A− 2x1x2

B
σ

]
, (24)

B =
1√
3

(cos θ −
√

2 sin θ)e2gπqqgηqq
2

m2
η

B
σ
, (25)

with

σ =
(k1 + k2)2

m2
η

= 2(x1 + x2) +
m2
π

m2
η

− 1 . (26)

We evaluate A and B numerically and further integrate (20) to obtain the
η→π0γγ decay rate.
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5. Numerical Results

The recent experimental results for the π0, η → γγ decay widths are
Γ(π0 → γγ) = 7 ·7± 0 ·6 eV and [12] and the reduced amplitudes are

|T̃π0→γγ | = (2 ·5± 0 ·1)× 10−11 [eV]−1 , (27)

|T̃η→γγ | = (2 ·5± 0 ·06)× 10−11 [eV]−1 . (28)

From Eqs (8) and (9), we get T̃η→γγ = 5
3 T̃π0→γγ in the UA(1) limit. Therefore

in order to reproduce the experimental value of T̃η→γγ , the effect of the UA(1)

anomaly should reduce T̃η→γγ by a factor 3
5 . On the other hand, the experimental

value of the η→π0γγ decay width is [12]

Γexp(η → π0γγ) = 0 ·85± 0 ·19 eV . (29)

In our theoretical calculations, the parameters of the NJL model are the current
quark masses mu = md,ms, the four-quark coupling constant GS , the six-quark
determinant coupling constant GD and the covariant cutoff Λ. We take GD as a
free parameter and study η meson properties as functions of GD. We use the light
current quark masses mu = md = 8 ·0 MeV to reproduce Mu = Md ' 330 MeV
(' 1

3MN ) which is the value usually used in the nonrelativistic quark model.
Other parameters, ms, GD, and Λ, are determined so as to reproduce the isospin
averaged observed masses, mπ,mK , and the pion decay constant fπ.

We obtain ms = 193 MeV, Λ = 783 MeV, Mu,d = 325 MeV and gπqq = 3 ·44,
which are almost independent of GD. The ratio of the current s-quark mass
to the current u,d quark mass is ms/mu = 24 ·1, which agrees well with
ms/m̂ = 25± 2 ·5 [m̂ = 1

2 (mu +md)] derived from ChPT [13]. The kaon decay
constant fK is the prediction and is almost independent of GD. We have obtained
fK = 97 MeV which is about 14% smaller than the observed value. We consider
this is the typical predictive power of the NJL model in the strangeness sector.

Table 1 summarizes the fitted results of the model parameters and the
quantities necessary for calculating the η→ γγ and η→π0γγ decay widths which
depend on GD. We define dimensionless parameters Geff

D ≡ −GD(Λ/2π)4ΛN2
c

and Geff
S ≡ GS(Λ/2π)2Nc. When Geff

D is zero, our Lagrangian does not cause the
flavour mixing and therefore ideal mixing is achieved. The ‘η’ is purely uu+ dd
and is degenerate to the pion in this limit.

We next discuss the π0 → γγ decay. The calculated result is T̃π0→γγ =
2 ·50× 10−11 eV−1 which agrees well with the observed value given in Eq. (27).
The current algebra result is T̃π0→γγ = α/πfπ = 2 ·514 × 10−11 eV−1, and thus
the soft pion limit is a good approximation for π0 → γγ decay. The chiral
symmetry breaking affects T̃π0→γγ in two ways. One is the deviation from the
GT relation and another is the matrix element of the triangle diagram F (u, π0).
Our numerical results are gπ = 3 ·44, Mu/fπ = 3 ·52 and F (u, π0)Mu = 1 ·015,
therefore the deviations from the soft pion limit are very small both in the GT
relation and the matrix element of the triangle diagram.

Let us now turn to the discussion of the η→ γγ decay. The calculated results
of the η→ γγ decay amplitude T̃η→γγ are given in Table 1 and shown in Fig. 1.
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The experimental value of the η→ γγ decay amplitude is reproduced at about
Geff
D = 0 ·7. The calculated η-meson mass at Geff

D = 0 ·7 is mη = 510 MeV which
is 7% smaller than the observed mass. The value Geff

D = 0 ·7 corresponds to
GD〈ss〉/GS = 0 ·44, suggesting that the contribution from L6 to the dynamical
mass of the up and down quarks is 44% of that from L4.

Table 1. Parameters of the model, the η→γγ decay amplitude T̃η→γγ and η→π0γγ decay
width Γ(η → π0γγ) for each Geff

D

Geff
D Geff

S Ms [MeV] mη [MeV] θ [deg] gηqq T̃η→γγ [eV−1] Γ(η → π0γγ) [eV]

0 ·00 0 ·73 556 138 ·1 −54 ·74 3 ·44 4 ·17×10−11 2 ·88
0 ·10 0 ·70 552 285 ·3 −44 ·61 3 ·23 3 ·95×10−11 2 ·46
0 ·20 0 ·66 549 366 ·1 −33 ·52 3 ·12 3 ·68×10−11 2 ·06
0 ·30 0 ·63 545 419 ·1 −23 ·24 3 ·11 3 ·39×10−11 1 ·71
0 ·40 0 ·60 541 455 ·0 −14 ·98 3 ·15 3 ·10×10−11 1 ·42
0 ·50 0 ·57 537 479 ·7 −8 ·86 3 ·20 2 ·86×10−11 1 ·20
0 ·60 0 ·54 533 497 ·3 −4 ·44 3 ·25 2 ·65×10−11 1 ·04
0 ·70 0 ·51 529 510 ·0 −1 ·25 3 ·28 2 ·48×10−11 0 ·92
0 ·80 0 ·47 525 519 ·6 1 ·09 3 ·30 2 ·35×10−11 0 ·84
0 ·90 0 ·44 522 527 ·0 2 ·84 3 ·31 2 ·23×10−11 0 ·77
1 ·00 0 ·41 518 532 ·8 4 ·17 3 ·32 2 ·14×10−11 0 ·71
1 ·10 0 ·40 514 537 ·5 5 ·21 3 ·32 2 ·07×10−11 0 ·67
1 ·20 0 ·35 511 541 ·3 6 ·02 3 ·31 2 ·00×10−11 0 ·63
1 ·30 0 ·32 507 544 ·5 6 ·66 3 ·30 1 ·95×10−11 0 ·61
1 ·40 0 ·29 504 547 ·2 7 ·17 3 ·29 1 ·91×10−11 0 ·58
1 ·50 0 ·25 500 549 ·4 7 ·57 3 ·28 1 ·86×10−11 0 ·56
1 ·60 0 ·22 497 551 ·4 7 ·90 3 ·26 1 ·83×10−11 0 ·55

Fig. 1. Dependence of the η → γγ decay amplitude on the
dimensionless coupling constant Geff

D . The horizontal dashed line
indicates the experimental value.

The mixing angle at Geff
D = 0 ·7 is θ = −1 ·3◦ and that indicates a strong OZI

violation and a large (u,d)–s mixing. This disagrees with the ‘standard’ value
θ ' −20◦ obtained in ChPT [14]. This is due to the stronger UA(1) breaking
in the present calculation. The difference mainly comes from the fact that the
mixing angle in the NJL model depends on q2 of the qq state and thus reflects
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the internal structure of the η meson. On the contrary the analyses of ChPT
[14] assume an energy-independent mixing angle, i.e. θ(q2=m2

η) = θ(q2=m2
η′).

Fig. 2. Dependence of the η → π0γγ decay width on the dimensionless
coupling constant Geff

D . The horizontal solid line indicates the
experimental value and the dashed lines indicate its error widths.

The η decay constant is almost independent of GD: fη = 91 ·2 MeV (' fπ)
at Geff

D = 0 ·7. Therefore it seems that the η meson does not lose the Nambu–
Goldstone boson nature though its mass and mixing angle are strongly affected
by the UA(1) breaking interaction.

The η→π0γγ decay gives us independent information on the structure of
the η meson. The calculated η→π0γγ decay widths are also given in Table 1
and shown in Fig. 2. At Geff

D = 0 ·70, we obtain Γ(η → π0γγ) = 0 ·92, which
is in good agreement with the experimental data shown in (29). This process
was studied in ChPT [15] and in the extended NJL model [16]. The difference
between these approaches and ours is discussed in [17].

6. Effects of the UA(1) Anomaly in Baryons

Since the effects of the UA(1) anomaly are rather large in the pseudoscalar
sector, it is natural to ask if one can see some effects in the baryon sector. It
was pointed out in [18] that the instanton can play an important role in the
description of spin–spin forces, particularly for light baryons. The pattern of these
effects can be very hard to disentangle from one-gluon exchange. The effects of
the instanton induced interaction in baryon number B = 2 systems were studied
in [19]. It was shown that an attraction between two nucleons is obtained by
the two-body instanton induced interaction, while the three-body interaction is
strongly repulsive in the H-dibaryon channel and makes the H-dibaryon almost
unbound.

We estimate the effects of the UA(1) anomaly on the B = 1 and B = 2
systems by employing the six-quark determinant interaction given in Eq. (3)
whose strength was determined so as to reproduce the observed η-meson mass,
the η→ γγ decay width and the η→π0γγ decay width, namely Geff

D = 0 ·7. It is
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done by calculating the matrix elements of the the UA(1) breaking interaction
Hamiltonian with respect to unperturbed states of the MIT bag model and the
nonrelativistic quark model (NRQM). For B = 2 systems, we only consider the
(0S)6 configuration of the six valence quark states. Therefore, the matrix element
with respect to such a state gives a measure of the contribution of the UA(1)
breaking interaction either to the dibaryon or to the short-range part of the
interaction between two baryons. The determinant interaction induces not only
three-body but also two-body interactions of valence quarks when the vacuum
has a nonvanishing quark condensate. The details of the calculation are described
in [20].

Table 2 shows the contribution of the two-body term forB = 1. The contribution
to the decuplet baryons vanishes in the SU(3) limit and therefore comes only
from the SU(3) asymmetry of the quark wave function. The three-body term
does not contribute to the B = 1 states. Thus the N∆ mass difference due to
the UA(1) breaking interaction is about 15% of the observed one.

Table 2. Contribution of the two-body term to octet and decuplet baryons

All the entries are in units of MeV

Wave function N Σ Ξ Λ ∆ Σ∗ Ξ∗ Ω

MIT −43 ·9 −41 ·2 −41 ·2 −42 ·9 0 0 ·12 0 ·12 0
NRQM −40 ·88 −36 ·6 −36 ·6 −39 ·4 0 0 ·07 0 ·07 0

Table 3. Baryon component, SU (3) multiplet, spin, isospin and strangeness of the eight
channels of two octet baryons

Channel Baryon component SU(3) multiplet Spin Isospin Strangeness

I NN 10∗ 1 0 0
II NN 27 0 1 0

III NΣ 27 0 3/2 −1
IV NΣ−NΛ 27 0 1/2 −1
V NΣ−NΛ 10∗ 1 1/2 −1
VI NΣ 10 1 3/2 −1
VII NΣ−NΛ 8 1 1/2 −1

VIII H 1 0 0 −2

We next discuss the case of B = 2. We consider all the possible channels which
are made of two octet baryons listed in Table 3. Table 4 shows the contribution
of the two-body term. The channel VIII has the strongest attraction, about
170 MeV, and channel VII has the second strongest attraction. The contributions
of the three-body term to the H-dibaryon and strangeness −1 channels are given
in Table 5. It should be noted that the three-body term has no effect on the NN
channels, and that the contributions to the channels III, IV and V reflect the
SU(3) breaking in the quark wave function. The contributions of the three-body
term in channels VI, VII and VIII are remarkable and one will be able to observe
some effects experimentally.
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Table 4. Contributions of the two-body term to the eight channels of the two octet baryons
listed in Table 3

All entries are in units of MeV

Wave function I II III IV V VI VII VIII

MIT −89 ·9 −85 ·1 −88 ·9 −86 ·3 −93 ·9 −96 ·5 −121 ·5 −162 ·6
NRQM −120 ·2 −105 ·3 −102 ·3 −103 ·9 −118 ·3 −116 ·7 −148 ·0 −182 ·6

Table 5. Contributions of the three-body term to the H-dibaryon (VIII) and strangeness −1
two octet baryon channels (III–VII)

All entries are in units of MeV

Wave function III IV V VI VII VIII

MIT −6× 10−2 −6× 10−2 −7× 10−2 20 ·7 25 ·1 40 ·7
NRQM −5× 10−2 −5× 10−2 −5× 10−2 28 ·3 34 ·9 56 ·1

We should comment on the difference between the determinant interaction
used here and the instanton-induced interaction used in ref. [19]. The relative
contributions of the UA(1) breaking interaction within the baryonic sector or
within the mesonic sector are similar for the two interactions. However, the ratio
of those in the baryonic sector to those in the mesonic sector is about 4

7 . Namely,
if one fixes the strength of the interaction so as to give the same mass difference
of η and η′, the effects of the instanton-induced interaction in the baryonic sector
would be about 7

4 stronger than those of the determinant interaction. After this
correction the strength of the present UA(1) breaking interaction is consistent
with that used in the calculation of the baryon–baryon interaction in ref. [19].

7. Summary

We have studied the η→π0γγ decay in a three-flavour NJL model that includes
the UA(1) breaking six-quark determinant interaction. The η-meson mass, the
η → γγ decay width and the η→π0γγ decay width are reproduced well with a
rather strong UA(1) breaking interaction that makes the η1 − η8 mixing angle
θ ' 0◦. The effects of the UA(1) breaking on the baryon number one and two
systems have been also studied.

Finally, we should note that the NJL model does not confine quarks. Since
the NG bosons π, K and η are strongly bound, the NJL model can describe
their properties fairly well. However, the η′ meson state in the NJL model has
an unphysical decay of the η′ → qq. Therefore we do not apply our model to
the η′ meson. Further study of the UA(1) breaking will require the construction
of a framework which can be applied to the η′ meson.
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