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Abstract

A set of three computer programs is reported which allow for the deconvolution of overlapping
molecular electronic state structure in electron energy-loss spectra, even in highly perturbed
systems. This procedure enables extraction of absolute differential cross sections for electron-
impact excitation of electronic states of diatomic molecules from electron energy-loss spectra.
The first code in the sequence uses the Rydberg–Klein–Rees procedure to generate potential
energy curves from spectroscopic constants, and the second calculates Franck–Condon factors
by numerical solution of the Schrödinger equation, given the potential energy curves. The
third, given these Franck–Condon factors, the previously calculated relevant energies for
the vibrational levels of the respective electronic states (relative to the ν′′ = 0 level of the
ground electronic state) and the experimental energy-loss spectra, extracts the differential
cross sections for each state. Each program can be run independently, or the three can
run in sequence to determine these cross sections from the spectroscopic constants and the
experimental energy-loss spectra. The application of these programs to the specific case of
electron scattering from nitric oxide (NO) is demonstrated.

1. Introduction

Determination of low-energy (≤100 eV) electron-impact excitation cross sections
of molecules not only provides crucial information required in many natural
phenomena but also provides the basis for developing a more complete understanding
of electron collisions with complex targets (Takayanagi 1983; Kirby 1993). The
energy-loss spectrum for this excitation (the intensity of the features in the
energy-loss spectrum being proportional to the respective differential cross sections)
is a complicated function, consisting of overlapping series of peaks corresponding
to vibrational levels from one or more electronic states, all affected by the
instrumental response function. These peaks (location and magnitude) can be
approximately represented by the energies of the vibrational levels and the
Franck–Condon factor for each level, modified by the instrumental response
function.

As a first step in extracting electron collision parameters from electron
energy-loss spectra, the potential-energy curves and Franck–Condon factors and
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vibrational energies for the electronic states of diatomic molecules are determined.
The differential cross section for each state can then be determined by ‘fitting’
the contribution of the vibrational levels of that state to the observed spectrum.
In practice, this is difficult due to the superposition of many overlapping features
in the spectrum, so that deconvolution is required. This can be done using a
least-squares fitting technique first described by Trajmar et al. (1971). The fit
can converge to an unphysical solution unless reasonable initial estimates are
available. Nickel et al. (1989) found such estimates by identifying isolated features
in the observed spectrum with a particular state and removing the contribution
of that state, repeating these two steps until no recognisable features were left.

Three computer programs are reported here which allow the cross sections to
be determined from spectroscopic data and independently measured energy-loss
spectra. Two of the programs are enhanced versions of codes (Albritton et al. 1976,
1979) that have been used for many years to determine potential curves, energies of
the vibrational levels of the relevant electronic states and Franck–Condon factors.
The third is an independently written program which follows the method of
Nickel et al. (1989) in finding the cross sections by a least-squares multiparameter
fit to the experimental spectrum, but provides a range of methods to allow a
mix of manual and automatic selection of the ab initio estimates. The current
least-squares fitting code also incorporates a procedure, based on Bevington and
Robinson (1992), which enables determination of numerically valid confidence
limits on the parameters derived from the fit.

2. Theory

(2a) Potential Energy Curves

One of the most practical, and accurate, methods for generating potential
energy (PE) curves is the Rydberg–Klein–Rees (RKR) procedure (Rydberg 1931;
Klein 1932; Rees 1947). The RKR code provided here is basically that originally
described by Albritton et al. (1979) which has been used extensively for many
years to treat a very large number of diatomic molecular states. This code
generates PE curves from the customary vibrational and rotational constants (i.e.
Dunham expansion coefficients),

Gν = ωe
(
ν + 1

2

)
− ωexe

(
ν + 1

2

)2 + ωeye
(
ν + 1

2

)3 + ωeze
(
ν + 1

2

)4 + ... , (1)

where Gν is the vibrational energy term (value in cm−1 and related to the energy
Eν for vibrational quantum number ν by Gν = Eν/hc), ωe, ωexe, ωeye and ωeze
are harmonic and anharmonic vibrational spectroscopic constants, and

Bν = Be − αe
(
ν + 1

2

)
+ γe

(
ν + 1

2

)2
... , (2)

where Bν is the rotational constant for vibrational level ν (Herzberg 1950, pp. 92,
106). These spectroscopic constants are defined and collected in the classic works
by Herzberg (1950) and Huber and Herzberg (1979) and are frequently obtained
by weighted least-squares fits (Albritton et al. 1976) to band origin and rotational
constant data obtained from high-resolution optical photoelectron spectroscopy.
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A detailed discussion of the RKR formulation, and its numerical implementation,
was given by Zare (1964). The potential function V is obtained by connecting
the turning points R+ and R− with a smooth curve by interpolation, with the
turning points for a vibrational level of energy Eν being given by

R±(Eν) =
[
f(Eν)
g(Eν)

+ f2(Eν)
] 1

2

± f(Eν) , (3)

where f(Eν) and g(Eν) are found by evaluation of

f(Eν) =
h

2π(2µ) 1
2

∫ I′

0

[Eν − E(I, κ)]−
1
2 dI , (4)

g(Eν) =
h

2π(2µ) 1
2

∫ I′

0

∂hc (GI +BI)
∂κ

[Eν − E(I, κ)]−
1
2 dI , (5)

where E(I, κ) is the sum of vibrational and rotational energies up to Eν (for
which I = I ′),

I = h
(
ν + 1

2

)
, and κ =

J(J + 1)h2

8π2µ
,

where µ is the reduced mass and h is Planck’s constant.
A summary of the numerical techniques used to evaluate these integrals is

given by Zare (1964) and is the one used in the RKR program reported here.

(2b) Franck–Condon Factors

The Franck–Condon factors are obtained from the definition

qν′ν′′ ≡
∫

Ψν′J ′(R)Ψν′′J′′(R)dR , (6)

where Ψν′J ′ (Ψν′′J′′) is the vibrational wavefunction for the final (initial) electronic
state and the integration is over the internuclear distance R. (The customary
notation of double-primes for the initial state, and single-primes for the final
state, is used here). The vibrational wavefunctions are obtained by solving the
radial Schrödinger equation (Zare 1964; Albritton et al. 1976)

d2

dR2 ΨνJ + [EνJ − U(R, J)]ΨνJ = 0 , (7)

where U(R, J) is the ‘effective’ radial potential energy for the initial or final
electronic state, and EνJ , the energy eigenvalues of (7), represent the energies of
the vibrational levels of a given electronic state. Note that length is measured in
Bohr radii a0 and the unit of energy is hN0/8π2ca2

0µ = 0 ·948844 cm−1, where
N0 is Avogadro’s number (physical scale) and µ is the reduced mass in Aston
units (Herzberg 1950).
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The ‘effective’ radial potential energy is defined (Zare 1964) according to

U(R, J) = V (R) +Bν [J(J + 1)] , (8)

where the rotational constant for a specific vibrational level Bν is related to the
rotational spectroscopic constants by (2) above. The spectroscopic ‘term value’
for a (ν, J) rovibrational level is then given by (Herzberg 1950, pp. 106–7)

T (cm−1) = Gν + Fν(J) , (9)

with

Fν(J) = BνJ(J + 1)−DνJ
2(J + 1)2 ,

where Dν is the mean rotational constant representing the influence of centrifugal
force.

Note that the only dependence of the vibrational energies, and associated
wavefunctions, on the rotational quantum number J is contained explicitly in
(8). In those applications for which transitions between specific rotational levels
are not of interest, one can set J = 0 which results in a complete separation of
the rotational and vibrational motion in the diatomic molecule.

(2c) Differential Cross Sections

The differential cross section DCS(E0, θe) relates the scattered intensity dN to
the incident electron beam current I0, the target beam density ρ, an instrumental
factor C and an annular differential increment of solid angle dΩ:

dN = DCS(E0, θe)I0ρCdΩ (10)

for impact energy E0 at scattering angle θe.
Based on the assumptions (Brunger and Teubner 1990) that:
• the contribution of any one vibrational level is spread out (due to the

experimental resolution) as a Gaussian distribution, i.e. the experimental
resolution function F is approximated by:

F (Wn′ν′ −W ) =
1

σ
√

2π
exp

(
−(Wn′ν′ −W )2

2σ2

)
, (11)

where Wn′ν′ is the excitation energy for vibrational level ν′ of electronic state
n′, W is the energy loss and 2 ·35σ is the full width at half maximum of this
resolution function;

• the width of the rotational energy distribution in the ground vibrational level
and final vibrational level can be neglected compared with the width of the
experimental resolution function; and
• the relative vibrational energies are independent of the incident energy and

scattering angle;
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the scattered intensity S(E0, θe,W ) is given by

S(E0, θe,W ) =
N∑

n′=0

Xn′(E0, θe)
M(n′)∑
ν′=0

qν′ν′′F (Wn′ν′ −W ) +B(W ) , (12)

where

Xn′(E0, θe) = I0ρC(E0, θe)DCS(E0, θe)n′

and where qν′ν′′ is the Franck–Condon factor (at excitation energy Wn′ν′), M(n′)
is the number of vibrational bands within state n′, N is the number of electronic
states, B(W ) is any background present, DCS(E0, θe)n′ is the differential cross
section for electronic state n′ and C(E0, θe) incorporates any other instrumental
factors.

3. Computational Form of the Approximations

(3a) Franck–Condon Factors

The eigenvalue equation (7) is solved by iteration using the Cashion–Cooley
(Cashion 1963; Cooley 1961) method which is based on an even-interval Numerov
method of integration (Zare 1964). Since the vibrational wavefunctions have
been determined on an even-interval grid, Simpson’s rule integration is used for
determining the Franck–Condon (FC) factors from equation (6).

The RKR program provides the potential energy curve for a given electronic
state at the classical turning points of each of the vibrational levels (two for
each level). In order to solve (7), the RKR potential is interpolated over the
evenly-spaced mesh provided as input to the FC program and extrapolated (if
required) outside the data range provided according to

V (R) =
a

R12 + b [repulsive wall at small R],

V (R) =
a′

Rb
′ [asymptotic dependence at large R],

where the pairs of constants (a, b) and (a′, b′) are determined by fitting to the
last two pairs of points at both small and large R provided by the RKR program.

Table 1 provides a comparison of the measured and calculated vibrational
energy levels and rotational constants for the ground state of NO. The two
columns labelled ‘poly. fit RKR’ contain the rotationless vibrational levels and
rotational constants calculated in the RKR program from spectroscopic constants
(Huber and Herzberg 1979) using the polynomial expansions given in (1) and
(2), respectively. Comparing these two columns with the corresponding columns
labelled ‘measured’ provides an indication of the ability of the polynomial expansion
to fit the measured vibrational and rotational energy-level data over the range
of vibrational levels from 0 to 19 in the NO ground state. The first of the
two columns labelled ‘calculated FC pgm’ contains the vibrational energy levels
obtained as eigenvalues of the Schrödinger equation (7), using the RKR potential
(J = 0). The accuracy (relative to the column labelled ‘measured’) of these
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Table 1. Comparison of measured and calculated spectral properties for NO [X2Π]

G(ν)[cm−1] B(ν)[cm−1]
ν′′ MeasuredA Poly. fit Calculated Difference MeasuredA Poly. fit Calculated Difference

RKR FC pgm [meas.−calc.] RKR FC pgm [meas.−calc.]

0 948 ·66 948 ·66 948 ·679 −0 ·019 1 ·69562 1 ·69562 1 ·69562 0 ·00000
1 2824 ·76 2824 ·76 2824 ·820 −0 ·060 1 ·6783B 1 ·67827 1 ·67826 0 ·00004
2 4672 ·68 4672 ·68 4672 ·769 −0 ·089 1 ·6608B 1 ·66084 1 ·66083 −0 ·00003
3 6492 ·51 6492 ·52 6492 ·624 −0 ·114 1 ·6433B 1 ·64334 1 ·64333 −0 ·00003
4 8284 ·34 8284 ·34 8284 ·463 −0 ·123 1 ·62624 1 ·62576 1 ·62575 0 ·00049
5 10048 ·21 10048 ·21 10048 ·342 −0 ·132 1 ·60782 1 ·60811 1 ·60810 −0 ·00028
6 11784 ·15 11784 ·16 11784 ·287 −0 ·137 1 ·59040 1 ·59039 1 ·59038 0 ·00002
7 13492 ·19 13492 ·20 13492 ·309 −0 ·119 1 ·57227 1 ·57259 1 ·57259 −0 ·00032
8 15172 ·30 15172 ·32 15172 ·392 −0 ·062 1 ·55452 1 ·55472 1 ·55473 −0 ·00021
9 16824 ·45 16824 ·47 16824 ·502 −0 ·052 1 ·53657 1 ·53677 1 ·53679 −0 ·00022

10 18448 ·58 18448 ·61 18448 ·615 −0 ·035 1 ·51798 1 ·51875 1 ·51879 −0 ·00081
11 20044 ·62 20044 ·66 20044 ·661 −0 ·041 1 ·49987 1 ·50066 1 ·50071 −0 ·00084
12 21612 ·45 21612 ·51 21612 ·514 −0 ·064 1 ·48412 1 ·48249 1 ·48255 −0 ·00157
13 23151 ·97 23152 ·05 23152 ·046 −0 ·076 1 ·4641C 1 ·4642 1 ·46432 −0 ·00022
14 24663 ·02 24663 ·11 24663 ·112 −0 ·092 1 ·4455C 1 ·4459 1 ·44600 −0 ·00050
15 26145 ·43 26145 ·54 26145 ·544 −0 ·114 1 ·4273C 1 ·4275 1 ·42758 −0 ·00028
16 27599 ·01 27599 ·15 27599 ·151 −0 ·141 1 ·4085C 1 ·4091 1 ·40905 −0 ·00055
17 29023 ·55 29023 ·72 29023 ·720 −0 ·170 — 1 ·39054 1 ·39037 —
18 30418 ·81 30419 ·02 30419 ·015 −0 ·205 — 1 ·37193 1 ·37149 —
19 31784 ·54 31784 ·28 31784 ·779 −0 ·239 — 1 ·35324 1 ·35224 —

A Engleman et al. (1970).
B Interpolated.
C Lagerquist and Miescher (1958).

calculated vibrational energies is determined by both the numerical accuracy of
the algorithms used to solve (7) and the validity of the approximations used to
derive (7) itself (e.g. the Born–Oppenheimer separation of nuclear and electronic
motion, see Herzberg 1950; Zare 1964). This is clearly also very important in
determining the accuracy of the calculated Franck–Condon factors, as obtained
from equation (6). The sensitivity of the absolute value of the eigenvalues of
(7) to the mesh size was tested by doubling the number of mesh points (from
2000 to 4000 points) and it was found that 2000 points is generally sufficient
except for the very broad (i.e. Rmax − Rmin ≥ 0 ·6 Å) potential energy curves
occasionally encountered.

The second column labelled ‘calculated FC pgm’ enables a comparison of the
measured and calculated rotational constants for each vibrational level in the NO
ground state. The rotational constant for each vibrational level is proportional to
the reciprocal moment of inertia and is calculated according to (Herzberg 1950,
p. 106)

Bν =
h

8π2

〈
1
R2

〉
, (13)

where the brackets in (13) denote the mean value of 1/R2 for the particular
vibrational level.

Although we have not conducted an exhaustive study of diatomic molecules,
the results in Table 1 suggest that the combination of the RKR and FC programs
can probably be expected to produce results accurate to 0 ·1–0 ·2 cm−1, for
the vibrational energy levels, and to 0 ·0003–0 ·0010 cm−1, for the rotational
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constants, for diatomic molecules (other than H2 and He2) and vibrational levels
which are not strongly perturbed.

(3b) Determination of Differential Cross Sections

Given an experimental energy-loss spectrum y(W ), the coefficients Xn′(E0, θe)
are determined by a multiparameter fit of the predicted intensity S(E0, θe,W ),
as defined in (12), to the observed spectrum. The background is approximated
by the quadratic function

B(W ) =
3∑
i=1

aiW
i−1 . (14)

As I0ρC(E0, θe) is constant for a particular spectrum, relative values of the
differential cross section DCS(E0, θe)n′ are determined by a least squares fit
of S(E0, θe,W ) to the observed spectrum, with the values of Xn′(E0, θe), σ
and ai being varied. To allow for any systematic error in the energy-loss scale
measurement, the position of the ‘zero channel’ which specifies 0 eV energy loss
(i.e. the position of the elastic peak) is also a variable parameter in the fit.

This multiparameter fitting is implemented using the Marquardt method of
least-squares fitting described by Bevington and Robinson (1992). This minimises
the value of χ2 and χ2

ν in

χ2 =
K∑
k=1

[y(Wk)− S(E0, θe,Wk)]2

y(Wk)
and χ2

ν =
χ2

K − kc
, (15)

where kc is the number of variable parameters. This gives a large weighting to
small values of y(Wk), which may result in too much emphasis being placed on
the fitting to insignificant features, so an alternative with equal weighting of data
points is provided by

χ′2 =

K∑
k=1

[y(Wk)− S(E0, θe,Wk)]2

K − kc
.

The errors in each of the fitted parameters are determined by a method of
Bevington and Robinson (1992). One parameter is varied, keeping the other
(kc − 1) parameters fixed, until a case is found where χ2

ν has changed by 1 ·0
from the minimum given by (15). The corresponding change in the parameter
is one standard deviation.

The fitting procedure requires initial estimates of the parameters which are to
be varied, both to allow it to iterate and to ensure that the fit does not converge
to a local minimum. Nickel et al. (1989) found initial estimates by repeatedly
choosing a particular state for which isolated features in the spectrum could be
identified, scaling its contribution to match these features, and subtracting out
its contribution. The scaling factors were then used as the initial estimates.

In this implementation a less rigorous method is used to find the initial
estimates, to accommodate the fit when it is working with data exhibiting more
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scatter. The initial estimate of σ is made from the autocorrelation function of
the data. The initial estimates for the relative cross sections and background
constants are based on the limitation that any one contributor cannot have an
intensity anywhere in the spectrum that is larger than the experimental value,
i.e.

Xn′(E0, θe) = min
{

y(Wk)

ΣM(n′)
ν′=0 qν′ν′′F (Wn′ν′ −Wk)

, k = [1,K]
}
, (16)

ai = min

{
y(Wk)
W i−1
k

, k = [1,K]

}
. (17)

To deal with exceptional cases in which these initial estimates are not sufficiently
close to the actual values, two other facilities are provided:
• A ‘trial-and-error’ fitting procedure can be run to provide initial estimates for

the ‘least-squares’ procedure. For each component in turn, a range of different
values of the fitting parameters are tried to minimise χ2. The trial values have
a random component to avoid the search getting stuck on a local minimum.
This technique is useful if there is substantial noise in the measurements.
• The ability to set particular initial estimates, or to restrict particular coefficients

to a constant value or an allowed range.

4. Program Description

The RKR and FC codes provided here are modified versions of the codes
originally written by Zare (1964) and by Albritton et al . (1979). Both codes
have been extensively edited to incorporate detailed instructions for their use in
comment cards at the beginning of them, which we do not detail further here.
We note that both the RKR and FC codes have also been modified from their
original forms to be compatible with FORTRAN 77.

The RKR code finds the transition energies for a diatomic molecule using
the Rydberg–Klein–Rees method. The user must specify in an input file the
masses of the atoms, and the spectroscopic constants which define Gν and Bν
(as in equations 1 and 2). The FC code reads a potential curve from a file,
interpolates to a desired spacing and computes the intensity distribution of
electronic transitions, using the radial Schrödinger (7) and Simpson’s rule, thus
finding the FC factors.

An additional program ‘rkrfcf ’ is provided to convert output from the RKR
code to input for the FC code. On rare occasions the FC code fails to do
the integration and, under this circumstance, the input file must be edited to
judiciously select a better range of integration. The input file produced by ‘rkrfcf ’
is annotated to make this editing easier.

A program ‘fitcomp’ finds a set of coefficients Xn′(E0, θe), given the FC factors
with the transition energies and the experimental spectrum of intensity against
energy-loss. The absolute excited electronic-state differential cross sections can be
determined from this set if the elastic peak is included in the spectrum (Brunger
and Teubner 1990), by calculating (in turn) the ratio of the coefficients for the
electronic channel of interest to the elastic channel and then multiplying this
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ratio by the known absolute elastic differential cross section. This elastic cross
section is usually determined in a separate series of experiments based on the
relative flow technique (Nickel et al. 1989; Mojarrabi et al. 1995).

Program ‘fitcomp’ is written in FORTRAN 77 with some common extensions.
It takes as input the FC factors and vibrational energy levels (as produced by the
FC code) and an experimental energy-loss spectrum. It computes the coefficients
which give the best fit of the computed spectrum to the observed spectrum. It
allows the user to eliminate particular states or background components, or to
constrain particular coefficients to set values or ranges.

These choices and other parameters must be entered when the program is run.
These are explained in ‘on-line’ documentation. When run interactively, these
parameters are written to a file which can then be used for running in batch
mode.

The program is preloaded with a set of energies and FC factors for a fit to
nitric oxide (Mojarrabi et al. 1996). They can be replaced, for NO or other
molecules, with different electronic states, energies and factors by input files in
the same format as the output of the FC code. Program ‘fitcomp’ produces
output files as described below:
• MoEoBo modl bck.fit This lists the experimental spectrum and the fitted

spectrum, plus a comparison spectrum if requested, for molecule Mo, impact
energy Eo and scattering angle Bo, using model modl with background (none,
constant, linear or quadratic) bak.
• MoEoBo modl bck.com This lists the contribution to the spectrum for each

component state.
• MoEoBo modl bck.cof This lists the coefficients for each state which give

the best least-squares fit, along with the error calculated by the least-squares
procedure.
• MoEoBo modl bck.err This gives a list of the coefficients and true errors,

determined using the method of Bevington and Robinson (1992).
A program ‘plotcomp’ is included to produce Tektronix-4014 or Postscript

plots of these output files. It will plot either or both of the spectra listed in the
‘.fit’ file and the individual components of the fitted spectrum from the ‘.com’
file. For the first option it also plots the difference, y(Wk) − S(E0, θe,Wk) ∀k,
between the experimental and fitted intensities at each value of energy loss,
providing an alternative means to assess the overall quality of the fit and to
identify where, in energy loss, the fit to the data is poorest.

5. Sample Inputs and Corresponding Outputs

A fit produced by this suite of programs is shown in Fig. 1a. The discrete
error bars indicate an energy-loss spectrum measured by Mojarrabi et al. (1996).
The curve indicates the fit determined by running the suite of programs ‘rkr’,
‘rkrfcf ’, ’fcf ’ and ‘fitcomp’ and then plotting the contents of the output
file ‘no3090 fcfv qad.fit’ using program ‘plotcomp’ . The difference between the
experimental and fitted intensities is shown in Fig. 1b.

The fit to the data in Fig. 1 is not perfect, reflecting, amongst other things,
the strong Rydberg-valence perturbations in the NO molecule for states with
energy loss above 6 ·7 eV. Procedures for dealing with this are beyond the scope
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Table 2. Excitation energies (Eν′0) and Franck–Condon factors (qν′0) for transitions from
X2Π(ν ′′ = 0) to the indicated final state of NO, as derived using ‘fcf’

a4Π C2Π(3pπ) B′2 ∆ H2Σ+(3dσ) Q2Π (5pπ)
Eν′0 qν′0 Eν′0 qν′0 Eν′0 qν′0 Eν′0 qν′0 Eν′0 qν′0
4 ·745 0 ·0000 6 ·499 0 ·1444 7 ·442 0 ·0199 7 ·773 0 ·1517 8 ·515 0 ·1342
4 ·868 0 ·0001 6 ·790 0 ·3399 7 ·589 0 ·0630 8 ·063 0 ·3173 8 ·802 0 ·2724
4 ·989 0 ·0004 7 ·078 0 ·3183 7 ·732 0 ·1102 8 ·353 0 ·2924 9 ·088 0 ·2713
5 ·107 0 ·0012 7 ·361 0 ·1519 7 ·871 0 ·1412 8 ·643 0 ·1596 9 ·372 0 ·1793
5 ·222 0 ·0027 7 ·641 0 ·0395 8 ·007 0 ·1484 8 ·933 0 ·0590 9 ·653 0 ·0895
5 ·335 0 ·0051 7 ·917 0 ·0056 8 ·138 0 ·1361 9 ·223 0 ·0161 9 ·932 0 ·0362
5 ·445 0 ·0087 8 ·189 0 ·0004 8 ·266 0 ·1128 10 ·209 0 ·0124
5 ·551 0 ·0132 8 ·390 0 ·0866 H′2Π(3dπ) 10 ·484 0 ·0037
5 ·654 0 ·0183 L′2Φ 8 ·510 0 ·0627 Eν′0 qν′0
5 ·754 0 ·0238 Eν′0 qν′0 8 ·626 0 ·0432 7 ·806 0 ·1351 T2Σ+(6sσ)
5 ·851 0 ·0290 6 ·599 0 ·0000 8 ·738 0 ·0287 8 ·096 0 ·3101 Eν′0 qν′0

6 ·721 0 ·0001 8 ·847 0 ·0184 8 ·382 0 ·3069 8 ·674 0 ·0863
A2Σ+(3sσ) 6 ·840 0 ·0004 8 ·664 0 ·1719 8 ·964 0 ·2189

Eν′0 qν′0 6 ·956 0 ·0010 E2Σ+(4sσ) 8 ·942 0 ·0602 9 ·251 0 ·2806
5 ·473 0 ·1628 7 ·070 0 ·0023 Eν′0 qν′0 9 ·216 0 ·0137
5 ·763 0 ·3349 7 ·181 0 ·0044 7 ·546 0 ·1822 U2∆(5dδ)
6 ·050 0 ·2935 7 ·290 0 ·0074 7 ·837 0 ·3438 K2Π(4pπ) Eν′0 qν′0
6 ·332 0 ·1484 7 ·397 0 ·0113 8 ·123 0 ·2859 Eν′0 qν′0 8 ·705 0 ·0864
6 ·610 0 ·0481 7 ·501 0 ·0158 8 ·405 0 ·1387 7 ·977 0 ·1369 8 ·995 0 ·2193
6 ·884 0 ·0105 7 ·602 0 ·0208 8 ·267 0 ·3842 9 ·281 0 ·2811
7 ·154 0 ·0016 7 ·701 0 ·0258 F2∆ 8 ·545 0 ·3522

7 ·798 0 ·0305 Eν′0 qν′0 8 ·812 0 ·1166 5f
b4Σ− 7 ·892 0 ·0348 7 ·692 0 ·1957 9 ·066 0 ·0100 Eν′0 qν′0

Eν′0 qν′0 7 ·983 0 ·0384 7 ·984 0 ·3613 9 ·308 0 ·0000 8 ·718 0 ·1593
5 ·725 0 ·0361 8 ·072 0 ·0412 8 ·271 0 ·2835 9 ·009 0 ·2957
5 ·877 0 ·0991 8 ·159 0 ·0431 8 ·553 0 ·1225 M2Σ+(4pσ) 9 ·295 0 ·2802
6 ·027 0 ·1502 8 ·243 0 ·0442 8 ·830 0 ·0316 Eν′0 qν′0
6 ·172 0 ·1671 8 ·324 0 ·0446 9 ·102 0 ·0049 8 ·017 0 ·1235 W2Π(6pπ)
6 ·314 0 ·1533 8 ·403 0 ·0443 8 ·304 0 ·2960 Eν′0 qν′0
6 ·453 0 ·1236 8 ·479 0 ·0435 G2Σ− 8 ·586 0 ·3175 8 ·772 0 ·1593
6 ·588 0 ·0910 8 ·553 0 ·0422 Eν′0 qν′0 9 ·062 0 ·2956
6 ·720 0 ·0629 8 ·625 0 ·0405 7 ·750 0 ·0025 S2Σ+(5sσ) 9 ·349 0 ·2800

8 ·694 0 ·0386 7 ·881 0 ·0115 Eν′0 qν′0
B2Πr 8 ·760 0 ·0365 8 ·011 0 ·0281 8 ·324 0 ·1968 Y2Σ+(6pσ)

Eν′0 qν′0 8 ·824 0 ·0342 8 ·137 0 ·0493 8 ·615 0 ·3572 Eν′0 qν′0
5 ·642 0 ·0000 8 ·886 0 ·0319 8 ·901 0 ·2868 8 ·784 0 ·0343
5 ·769 0 ·0001 8 ·944 0 ·0296 L2Π 9 ·074 0 ·1238
5 ·894 0 ·0006 9 ·001 0 ·0273 Eν′0 qν′0 N2∆ 9 ·361 0 ·2258
6 ·018 0 ·0017 9 ·055 0 ·0252 7 ·751 0 ·0000 Eν′0 qν′0
6 ·139 0 ·0039 9 ·106 0 ·0235 7 ·866 0 ·0002 8 ·383 0 ·2287 Z2Σ+(7sσ)
6 ·259 0 ·0075 9 ·155 0 ·0229 7 ·979 0 ·0006 8 ·673 0 ·3836 Eν′0 qν′0
6 ·376 0 ·0129 8 ·088 0 ·0014 8 ·960 0 ·2656 8 ·860 0 ·2693
6 ·491 0 ·0198 D2Σ+(3pσ) 8 ·195 0 ·0027 9 ·244 0 ·0983 9 ·151 0 ·3490
6 ·605 0 ·0280 Eν′0 qν′0 8 ·299 0 ·0046 9 ·523 0 ·0211 9 ·437 0 ·2363
6 ·715 0 ·0368 6 ·607 0 ·1600 8 ·400 0 ·0068
6 ·824 0 ·0456 6 ·890 0 ·3398 8 ·499 0 ·0093 O′2Π+O2Σ+ 6dδ
6 ·930 0 ·0538 7 ·167 0 ·3035 8 ·595 0 ·0119 Eν′0 qν′0 Eν′0 qν′0
7 ·033 0 ·0607 7 ·438 0 ·1474 8 ·687 0 ·0143 8 ·430 0 ·1625 8 ·876 0 ·5247
7 ·134 0 ·0660 7 ·703 0 ·0419 8 ·777 0 ·0164 8 ·720 0 ·3321 9 ·167 0 ·3225
7 ·231 0 ·0695 7 ·963 0 ·0069 8 ·865 0 ·0182 9 ·006 0 ·3029 9 ·453 0 ·1164
7 ·326 0 ·0711 8 ·949 0 ·0197
7 ·418 0 ·0708 6f
7 ·506 0 ·0688 Eν′0 qν′0
7 ·590 0 ·0653 8 ·885 0 ·0862
7 ·671 0 ·0606 9 ·176 0 ·2186
7 ·748 0 ·0548 9 ·462 0 ·2805
7 ·820 0 ·0482
7 ·888 0 ·0410
7 ·951 0 ·0336
8 ·010 0 ·0262
8 ·063 0 ·0191
8 ·110 0 ·0129
8 ·152 0 ·0079
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of this paper but have been discussed previously by Nickel et al. (1989) and
more recently by Brunger and Buckman (1997).

To enable the fit embodied in Fig. 1a to be reproduced, spectroscopic
components are given in file ‘rkr.input’ , dissociation energies in ‘rkrfcf.dat’ , the
experimental energy-loss spectrum in ‘no3090.dat’ and the input parameters for
‘fitcomp’ in ‘fitcomp.bat’ . A Unix script file ‘test no3090’ runs ‘rkr’, ‘rkrfcf ’,
‘fcf ’ and ‘fitcomp’ in sequence. For non-Unix users, the sequence of operations
which it performs is:
• Copy the file ‘rkr.input’ to ‘tape5’
• Compile and execute ‘rkr.f ’
• Compile and execute ‘rkrfcf.f ’
• Compile and execute ‘fcf.f ’
• Rename file ‘tape7’ to ‘no.fcfv’
• Compile and execute ‘fitcomp.f ’ , choosing the ‘fcfv’ model.

The vibrational energy levels and associated FC factors produced by the RKR
and FC procedures (in ‘tape7’ ) are reproduced in Table 2. The validity of all
the output files produced by ‘fitcomp’ may be checked by comparing the files
‘no ·3090 fcfv qad.*’ with those labelled ‘sample.*’ that are supplied with the
programs.

6. Summary

A suite of programs is described which, given spectroscopic constants and
experimental energy-loss spectra for electron-impact excitation of a given molecule,
allows the determination of absolute differential cross sections for each electronic
state of that molecule. The RKR code calculates potential curves from spectroscopic
components. The FC code then calculates the vibrational energy levels and
Franck–Condon factors. Given these levels and factors, ‘fitcomp’ fits a predicted
spectrum to an experimental one, finding relative electronic state differential
cross sections. The absolute differential cross sections can then be determined,
if the elastic peak is included in the spectrum, by calculating (in turn) the ratio
of the coefficients for the electronic channel of interest to the elastic channel
and then multiplying this ratio by the known absolute elastic differential cross
section. This elastic cross section is usually determined in a separate series of
experiments based on the relative flow technique (Nickel et al. 1989; Mojarrabi
et al. 1995).

The suite of programs and sample files can be obtained by electronic mail by
contacting phmjb@cc.flinders.edu.au. As delivered, the programs should run and
provide a fit for the E0 = 30 eV and θe = 900 energy-loss spectrum of NO.
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