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Abstract

A pseudopotential approach is used to analyse the propagation of ion-acoustic waves in a
plasma bounded by a cylindrical domain. The effect of the finite geometry is displayed both
analytically and numerically. The phase velocity of the wave is determined and its variation is
studied with respect to the plasma parameters. It is observed that the pseudopotential shows
a wide variation of shape due to the imposition of a finite boundary condition. It is shown
that if the other parameters are kept within a certain range of values, then the trapping of
particles is favoured when the presence of the boundary is taken into account.

1. Introduction

Analysis of nonlinear wave propagation in plasmas is one of the most important
aspects of theoretical research in plasma physics. At present there exists more
than one method for such a study. The reductive perturbation theory is one of
the most common techniques to analyse wave propagation (Washimi and Taniuti
1966), but such an approach always assumes that the amplitude of the propagating
wave is small. An independent method is that of the pseudopotential (Schamel
1982; Sagdeev 1966) which has the capability of treating nonlinear waves of
arbitrary amplitude. This method was initially used by Sagdeev (1966) and later
extensively used by Schamel (1972) and others. An important aspect which is
usually overlooked in these theoretical studies of plasma waves is the effect of
finite boundaries which is an essential ingredient of all laboratory plasmas (Das
and Ghosh 1988; Mukherjee and Roy Chowdhury 1995). These effects have been
introduced in the reductive perturbation framework and it was observed that this
finite geometry does substantially affect the predictions. So we study here the
case of a plasma consisting of electrons and ions confined in a cylindrical wave
guide. The ions are assumed to be nonrelativistic due to their relative mass. We
also assume that a hydrodynamic description is possible. In the the first part
of our work we analyse the effect of electron inertia and finite geometry on the
phase velocity of the acoustic wave generated inside. It may be mentioned that
some discussion already exists regarding the effect of a boundary, but the result
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is not exhaustive (Sayal and Sarma 1989). In the second part of our paper we
consider the shape of the Sagdeev potential and its variation with the boundary
and also with electron inertia. It is observed that the dimension of the cylindrical
system containing the plasma does have a positive influence on the shape of the
Sagdeev potential and, for a particular range of values of the radius, it may help
in the trapping of electrons, thereby supporting the formation of a solitary wave.

2. Formulation

We consider a plasma consisting of nonrelativistic ions and electrons in a
cylindrical wave guide with its axis along the x -axis. With the assumption of a
hydrodynamic description we can write the basis equations as (Schamel 1982)

∂ni

∂t
+

∂

∂x
(ni ui) = 0,

∂ui

∂t
+ ui

∂ui

∂x
= − ∂φ

∂x
,

∂ne

∂t
+

∂

∂x
(ne ue) = 0,

me
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∂ue
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+ ue
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∂x
+

1
ne

∂ne

∂x
=
∂φ

∂x
,

∂φ2

∂x2 +∇2
⊥φ = ne − ni . (1)

In these equations ne, ni represent respectively the electron and ion density,
ue, ui their velocities, and φ the electrostatic potential. In the last equation
∇2
⊥ = ∂2/∂y2 + ∂2/∂z2 is the transverse Laplacian operator. In all equations

the velocities are normalised by
√
kTe/mi, the densities by n0 (the equilibrium

value of the density), the lengths by the Debye length (kTe/4πn0 e
2)1/2, and

the potential by kTe/e. To start the analysis we consider the deviation of the
quantities ni, ne, ui, ue, φ from their equilibrium value, set

ni = n0i + n′i, ne = n0e + n′e, ui = u′i, etc.,

and substitute in equation (1). Here we have neglected the streaming of electrons
and ions. We also assume that at equilibrium, n0i = n0e = n0, along with the
following form of the variations:

n′i = f(r) exp[i(kx− ωt)], n′e = j(r) exp[i(kx− ωt)],

u′i = h(r) exp[i(kx− ωt)], u′e = l(r) exp[i(kx− ωt)],

φ′ = m(r) exp[i(kx− ωt)] . (2)
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The linearised form of (1) then reads as
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1
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where we have used the fact that the equilibrium value of φ is zero and

∇2
⊥φ =

∂2φ

∂y2 +
∂2φ

∂z2 =
∂2φ

∂r2 +
1
r

∂φ

∂r
+

1
r2

∂2φ
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Using now the forms (2) in (3) and eliminating in favour of m(r), we obtain

d2m(r)
dr2 +

1
r

dm(r)
dr

+ α2 m(r) = 0 , (4)

where α is given as

α2 = k2

(
n0

ω2 +
n0

ω2q − k2 − 1
)
, (5)

and q = me/mi. Now equation (4) is a zero order Bessel equation whose solution
can be written as

m(r) = J0(αr) .

If R is the radius of the cylindrical wave guide then we must have on the
surface of the wave guide

J0(αR) = 0 . (6)
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Thus, if p0n is a root of equation (6), then αR = p0n, or α = P0n/R.
Substituting in equation (5) we get

p2
0n = (kR)2

(
n0

ω2 +
n0

ω2q − k2 − 1
)
, (7)

which is the required equation for the phase velocity. This equation is fourth
order in k and can be solved analytically. The detailed variation of this phase
velocity with frequency, the ratio of masses q, and the radius R are shown in
Figs 1–5. In fact J0(r) has many zeros, but we have chosen only the nearest ones,
p0n = 5 ·5, 11 ·8, 14 ·9 and hence considered different values of R, the radius of
the wave guide. These values are to be used in solving the dispersion relation
(7).

In Fig. 1 we depict the variation of the phase velocity with respect to ω for
R = 1, 10 and 100 and for different q values, corresponding to the zero p0n = 5 ·5
of the Bessel function in equation (7). In Fig. 2 the same variation is displayed
for p0n = 11 ·8, another mode of the Bessel function. The third zero of the Bessel
function, p0n = 14 ·9, is shown in Fig. 3. The cylindrical geometry actually gives
rise to these different modes due to the presence of the Bessel function. To show
that such modes make a difference in actual physical values of the phase velocity,
we plot the values of the phase velocity for these three p0n or or q values for a
fixed value of q or p0n in Figs 4 and 5 respectively. So we may conclude that
the phase velocity increases with an increase in R and also it has larger values
for the smaller zeros of the Bessel function, which is the dispersion relation in
the present situation.

Fig. 4. Variation of phase velocity with ω for three values of p0n when n0 = 1, q =
0 ·1 and R = 1.
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Fig. 5. Variation of phase velocity with ω for three values of q when
n0 = 1, q = 0 ·1, R = 100 and p0n = 5 ·5.

3. Pseudopotential and Solitary Wave

We now consider the problem of arbitrary amplitude nonlinear wave propagation
with the help of a pseudopotential formalism taking care of the boundary condition
on the surface of the cylindrical wave guide. From our previous analysis we now
know that the radical variation of all the perturbed quantities is given by J0(kr).
Using this fact we deduce the following equations from (1). It may be pointed
out that the radial dependence through J0(kr) for the perturbed quantities is
implied by the geometric symmetry of the situation. That is, we assume that
the disturbances produced by the perturbation proceed only in the x direction.

Actually we substitute

ni = 1 + J0(kr)Ni(xt), ui = ui0 + J0(kr)Ui(xt),

ne = 1 + J0(kr)Ne(xt), ue = ue0 + J0(kr)Ue(xt),

φ = J0(kr)φ(xt),

and obtain

J0
∂Ni

∂t
+ J0

∂Ui

∂x
+ J0Ui0

∂Ni

∂x
+ J2

0

∂

∂x
(Ni Ui) = 0 , (8)

J0
∂Ui

∂t
+ J0 Ui0

∂Ui

∂x
+ J2

0 Ui
∂Ui

∂x
= −J0

∂φ

∂x
, (9)
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J0q(1 + J0Ne)
∂Ue

∂t
+ J0(1 + J0Ne)(Ue0 + J0 Ue)

∂Ue

∂x

+J0
∂Ne

∂x
= J0(1 + J0Ne)

∂φ

∂x
. (10)

Note that here we have considered both the streaming of electrons and ions.
In each of these equations the dependence on the radial distance is in the
Bessel function J0(kr). To remove this we multiply each equation by J0(kr) and
integrate over r from 0 to R, whence we get

Ni =
Ui

M − (αUi + Ui0)
, (11)

where

α =
∫ R

0

J3
0 (r) r dr/I,

U i0 is the streaming velocity of the ion and we have used a wave front ξ = x−Mt
in integrating these equations. The electron equation similarly yields

Ne =
Ue

M − (αUe + Ue0)
, (12)

whereas equation (9) yields

−MUi + Ui0 Ui + 1
2αU

2
i = −φ . (13)

Finally from equation (10) we get(
B

3
− α2

3

)
U3

e +
(
αM

2
− αUe0

2

)
U2

e + γUe + δ = 0 , (14)

γ = MUe0 − qM2 − U2
e0 −

M − Ue0

M
+ qMUe0 , (15a)

δ = (Ue0 −M)φ−
(
M − Ue0

α

)
logM − Ue0(M − Ue0)

Mα
, (15b)

β =
∫ R

0

J4
0 (r) r dr/I; I =

∫ R

0

J2
0 (r) dr . (15c)
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Finally, Poisson’s equation yields

∂2φ

∂ξ2 = φ+Ne −Ni

= φ+
Ue

M − αUe − Ue0

+
[

1
α
− 1
α

(
1− 2αφ

(M − Ui0)2

)− 1
2
]

= − ∂V

∂φ
, (16)

where Ue is to be solved from equation (14) and substituted. This cubic equation
for Ue can be analytically solved by Cardan’s method and we only consider real
values of Ue for physical considerations. The real values of Ue are written as

Ue =
z − a1

a0

; Z = U − H

U
;

U3 =
−G+

√
G2 + 4H3

2
, G2 + 4H3 > 0 ,

with

G = a2
0 δ − a0 a1 γ + 2a3

1 ,

H = 1
3a0 γ − a2

1 ,

a0 = 1
3 (β − α2); a1 = 1

3

(
αM

2
− αUe0

2

)
.

Equation (16) in conjunction with (14) gives us the pseudopotential equation in
the presence of the boundary and of electron inertia. Due to the complicated
dependence of Ue on φ, equation (16) can be solved only numerically (Baboolal
et al . 1988, 1989). The results of such an analysis are given in Figs 6 and 7.
Fig. 6a corresponds to the situation with no boundary and Fig. 6b to the case
when the cylindrical boundary is present, where we have taken p0n = 5 ·5. It may
be observed that the presence of the boundary favours the trapping of particles
and hence the formation of solitons. To understand the soliton formation more
clearly we can consider the special situation when φ is small. Then we can
expand the algebraic expressions (16) and (15) in powers of φ and keep only
lowest powers. This immediately leads to

Ue ≈ α0 + α1 φ+ α2 φ
2 + ... ,
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Fig. 6. Variation of V (φ) with φ when M = 1 ·5, q = 0 ·1 and Ui0 =
Ue0 = 0, with α = −4 ·9 and β = 25 ·75 for p0n = 5 ·5: (a) no
boundary case and (b) cylindrical boundary case.

Fig. 7. As for Fig. 6, but with α = −25 ·35 and β = 685 ·8, for
p0n = 11 ·8.

which when used in (16) leads to

∂2φ

∂ξ2 = β0 − β1 φ+ β2 φ
2 + ... .



124 K. K. Mondal et al .

An easy integration leads to φ = η sech2(kξ), the usual profile of solitons. But
in the general case when the amplitude is not small, the analytic approach is
not possible. In this computation only the case q = 0 ·1 is considered. On the
other hand, an interesting situation develops if we consider a different zero of
the Bessel function, say p0n = 11 ·8, as shown in Fig. 7. In Fig. 7b we have
again drawn the curve shown in Fig. 6b to compare with the situation which
emerges in the case p0n = 11 ·8 given in Fig. 7a. There is a drastic change in
the behaviour of the curve and the trapping of particles is now less favoured
compared to the case p0n = 5 ·5.

4. Discussion

In our analysis we have discussed the behaviour of the phase velocity and the
pseudopotential (Sagdeev) in the presence of a cylindrical boundary and electron
inertia. It is observed that due to the existence of multiple modes of solution of
the dispersion equation (involving a Bessel function), the usual conclusions of the
free space analysis can be changed completely. The pseudo-potential undergoes
a dramatic change and a whole new set of phenomena can occur.
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