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Abstract

We study a simple model of a granular material or powder where the particles are excited
by an external noise source and dissipate energy by inelastic collisions. Due to the inelastic
collisions between particles there is an effective interaction between them. In one dimension
this leads to long-range correlations between the particles in a gas phase despite the absence of
long-range forces between the particles. In two dimensions the dissipative effects cause a very
sharp liquid–gas phase transition at which the susceptibility has a pronounced peak. In the
presence of a double-welled potential the inelasticity causes a symmetry-breaking instability
where all the particles cluster into one of the wells.

1. Introduction

Granular materials or powders may be defined as any material which consists of
‘grains’ or small particles. Examples include many products of importance to the
agricultural, mining and food industries, such as rice, wheat, coal, most ores and
most breakfast cereals. Although granular materials have long been of interest to
engineers they have only attracted significant attention from the physics community
over the past decade (Jaeger and Nagel 1992). To physicists these materials are
interesting because they exhibit a wide range of interesting phenomena, many of
which remain either unexplained or not fully understood. These include, heaping,
clustering, size-segregation and the breakdown of macroscopic hydrodynamics
(Babić 1993; Bernu and Mazighi 1990; Campbell and Brennen 1985; Du et al.
1995; Goldhirsch and Zanetti 1993; Haff 1983; Hopkins and Louge 1991; Jaeger
and Nagel 1992; Jenkins and Savage 1983; Luding et al. 1994; McNamara and
Young 1992; Schmittmann and Zia 1991; Sela and Goldhirsch 1995; Williams 1997;
Williams and MacKintosh 1995, 1996). These effects and others have been much
studied experimentally and by computer simulation. However, despite extensive
studies a reasonable understanding of granular materials is still lacking. This is
presumably in part because the individual grains undergo complex interactions,
where short range elastic forces and nonlinearities become important. However,
there is clearly also a more fundamental reason. The vast majority of the
experiments and simulations on granular materials involve several separate and
identifiable influences. These are:
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(i) The interactions between the particles are inelastic. Thus when two
particles collide, energy is dissipated.

(ii) The systems studied usually include a boundary such as the walls of the
container.

(iii) Energy normally flows from the boundaries into the granular media.
(iv) The system is placed in a gravitational field.

Each of these influences obviously complicates the system and it is thus not
surprising that many of the experiments and simulations show novel and rich
behaviour. There are two obvious analogs here. The first is with the dynamics of
simple fluids. In general the flows of such fluids away from fields and boundaries
are relatively easy to understand. However, in the presence of boundaries and
fields simple fluids exhibit convection and turbulence and are still not perfectly
understood. The second analogy is with the theory of magnetism. If one wants to
understand ferromagnetism it is simplest to study the Ising model on an infinite
lattice in the absence of any external fields, boundaries or imposed gradients. The
situation with granular materials is even more complicated. In general, influences
(ii) to (iv) artificially break the symmetry and induce spatial gradients in the
system which make a simple understanding somewhat difficult. In this paper we
present a system which has some or all of these undesirable influences removed.
Indeed a step in that direction has already been made (Goldhirsch and Zanetti
1993; Hopkins and Louge 1991; McNamara and Young 1992). The system is a
dissipative gas, which is simply a gas in which the particles undergo inelastic
collisions. Thus far the studies have concerned ‘cooling’ gases which are not
heated in anyway. These gases can show interesting dynamics, but they have no
non-trivial steady-state behaviour: i.e. all the particles just cool down and stop
moving. The simplest system for which there is any non-trivial steady-state is
the one we shall study here: a driven dissipative gas. This system was introduced
in Williams and MacKintosh (1995) and was studied further by Williams and
MacKintosh (1996) and Williams (1997).

In this system the particles undergo inelastic collisions but each particle is
heated individually and continuously. It thus includes the important difference
between granular and other fluids (inelasticity) whilst ignoring the complicating
boundary and field effects. This system is intrinsically much simpler than
traditional granular materials. However, as we shall see here, an examination
of driven dissipative fluids also reveals non-trivial behaviour and can lead to a
better understanding of material properties.

This paper is partly a review and partly a presentation of new results. It is
laid out as follows. We first present an off-lattice study of a one-dimensional
driven dissipative gas. This gas shows clustering and long-range correlations
between the particles. In Section 3 we derive an equation of state for this gas.
In Section 4 we present results from a lattice simulation of a two-dimensional
driven dissipative gas. At a certain density this gas suddenly nucleates a liquid
phase which coexists with the gas phase. In Section 5 we begin to introduce one
of the complications mentioned above, i.e. we apply a potential. This leads to
an interesting symmetry-breaking instability. We conclude in Section 6.

Throughout this study we have used various computer codes. These were
checked by calculating by hand what occurs during several collisions and comparing
it with the computed results.
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2. Clustering in One-dimensional Gases

Clustering is observed when granular media are sheared (Campbell and Brennen
1985; Hopkins and Louge 1991; Babić 1993). In general clustering is driven
by inelastic collisions. When two particles collide inelastically they dissipate
energy, slow down and hence remain close to one another. Here we investigate
numerically the effect of such inelastic collisions in a one-dimensional system
of point-like particles that are excited by a thermal reservoir. We show that
clustering, as described by the two-point correlation function, occurs even in the
absence of any other forces between the particles. There have been several studies
of systems which are started in a ‘hot’ state and then slowly cool (Goldhirsch and
Zanetti 1993; Hopkins and Louge 1991; McNamara and Young 1992; Luding et
al. 1994; Bernu and Mazighi 1990), as there is no energy input. In one and two
dimensions these can show ‘inelastic collapse’. The novel feature of the collapse
is that for coefficients of restitution η below a critical value ηc the kinetic energy
is dissipated in a finite time. For η > ηc the kinetic energy dissipates gradually.

In the model considered here (Williams and MacKintosh 1995), we consider
a continuous input of energy locally to each particle, as well as dissipative
collisions. This might model for instance a system of particles confined to a
line on a vibrating plate. For a coefficient of restitution η < 1, the system
eventually settles down to a ‘steady-state’. For η ≈ 1, this steady-state looks,
at least superficially, like an ideal gas, in which there are no significant spatial
correlations between the particles. However, we show that as η is reduced, even
in the absence of any long-range interactions, the system develops a structure
factor that is characteristic of an equilibrium system with long-range interactions.
In particular, the dissipative interactions lead to a correlation function g(x ) that
is no longer a constant as it would be for an ideal gas, but shows a peak near the
origin. Furthermore, this enhancement of g(x ) near x = 0 follows a power-law.
Thus, the system behaves as if it there were long-range attractive interactions
between the particles. Only in the limit η → 1 does the correlation function
become uniform. As η decreases g(x ) becomes more and more sharply peaked
about x = 0. Note that in recent years there has been much work on the critical
properties of driven gases (see e.g. Schmittmann and Zia 1991). Our work differs
from these works in that it specifically uses dissipative collisions.

We consider N point particles of unit mass, m = 1, confined to a line of length
L = 1 (Fig. 1). We use periodic boundary conditions, so that the particles lie
on a circle of unit circumference. When two particles i and j collide in this
one-dimensional system, the final (primed) velocities are given in terms of the
initial (unprimed) velocities by

vi
′ = 1

2 (1− η)vi + 1
2 (1 + η)vj , v′j = 1

2 (1− η)vj + 1
2 (1 + η)vi . (1)

The main difference between this and previous studies of dissipative gases is that
each individual particle is ‘heated’ at a constant rate. This is done by adding a
random amount to the velocity of each particle during a time-step ∆t via the
Langevin equation

vi(t+ ∆t) = vi(t) +
√
r
√

∆tf(t) , (2)
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Fig. 1. Picture of the one-
dimensional system of particles
which are uniformly and individually
heated. Periodic boundary conditions
are used, and the particles are
point-like. The system forms cool
clusters surrounded by hot gas-like
regions. As the coefficient of
restitution is reduced these clusters
become more pronounced.

where f (t) is a random number chosen uniformly between −1
2 and 1

2 and r is a
number proportional to the heating rate. After the velocities are adjusted the
system is transferred to the centre of mass frame, so that vi → viv, where v is
the average velocity of all the particles in the system. The algorithm (2) ensures
that the velocities undergo a random walk, whilst the transfer to the centre of
mass frame ensures that the particle speeds do not increase indefinitely. This
transfer step is for convenience only, since the properties of collisions do not
depend on the absolute speeds, only on the relative speeds. Before the heating
step the kinetic energy of the system is K = 1

2ΣNi=1v
2
i and after heating it is

K ′ = 1
2

N∑
i=1

(vi + δvi)
2 = K +

N∑
i=1

viδvi + 1
2

N∑
i=1

(δvi)
2 , (3)

where δvi =
√
r
√

∆tf(t). On average the term linear in vi vanishes and the
average of the remaining term, 1

2ΣNi=1(δvi)
2, is 1

2rtN〈f2〉 = 1
24rtN . Hence the

heating rate is Ω ≡ 1
24r, which is the energy input per unit time per particle.

Provided η < 1, this system, started with some initial random speeds, rapidly
reaches a steady-state configuration.

Qualitatively the system appears to form liquid-like clusters of high density
surrounded by a gas-like ‘phase’ of lower density (Fig. 1). In order to study
this effect quantitatively we use the two-particle correlation function g(x). We
select a particle and ask what is the density of particles at distance x from
it. This, suitably normalised, is g(x). For an ideal gas of point particles the
answer is g(x ) a constant. For a gas which has some attractive potential U(x)
acting between the particles, g(x) will be peaked about x = 0 and will decay
to a constant as x → ∞. For the dissipative gas discussed here we find g(x)
shows a peak at the origin, even though we have no potential acting between
the particles. This peak is caused by the dissipation effect discussed above, and
can be thought of as a steady-state version of the collapse and clustering seen in
cooling gases (Goldhirsch and Zanetti 1993; Hopkins and Louge 1991; McNamara
and Young 1992; Luding et al. 1994; Bernu and Mazighi 1990). As η → 1 the
structure becomes less pronounced and g(x) approaches a constant. However, as
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η becomes small, g(x) becomes very sharply peaked. Some characteristic results
are shown in Fig. 2. We find that the correlation function depends only on the
density and on η and is independent of the heating rate. At least for small x ,
where the finite size of the system has little effect, g(x) can be approximated
by a power law g(x) ∼ xα(η). Here α(η) is a monotonically increasing function
of η. In the limit of a perfectly elastic system η → 1 and α→ 0. However, for
perfectly inelastic systems where η → 0 we find α→ 1

2 .

Fig. 2. A log–log plot of the two-point correlation function versus distance for three values of
the coefficient of restitution for N = 10 particles. For η = 0 ·99 (lowest curve) the correlation
function is almost a constant. For η = 0 ·5 (middle curve) strong correlations have developed,
and for η = 0 ·01 (upper curve) the function is clearly a power-law with exponent − 1

2 . The
correlations arise because of the effect of inelasticity, i.e. when two particles collide they move
more slowly and hence stay near each other, thus causing a correlation. The correlation
function is independent of the heating rate Ω. Here we have superimposed data from two
heating rates which differ by a factor of 100, Ω = 0 ·0017 and Ω = 0 ·17, and each point
represents an average over 2× 105 collisions.

3. Equation of State for One-dimensional Gases

Despite the long-range correlations in the one-dimensional system we can write
down an equation of state by a simple energy argument (Jenkins and Savage 1983;
Haff 1983). By ‘equation of state’ we mean the relation between the heating rate,
the number of particles, the system size, and the kinetic energy of the particles.
Let us ignore correlations between the particles. The average distance a particle
must move between collisions is L/2N . Then, for particles which have some
average speed v , the time between a collision (for each particle) is approximately
t = (L/2N)v−1. Since there are N/2 pairs of particles the rate of collisions is
≈ (N/2)t−1 = vL−1N2. During each collision an amount of energy (1− η2)v2 is

dissipated. Thus the rate of energy dissipation is approximately

W = v3(1− η2)L−1N2 . (4)

However, the rate of energy input is ΩN . In the steady state these must be
equal. Thus we find an equation of state
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K3/2(1− η2)N = CΩL , (5)

where K is the kinetic energy per particle and C is a numerical constant. The
dependencies on K , Ω and L are somewhat trivial since they can be derived
independently by dimensional analysis. However, the dependence upon η and
especially N are less trivial. We can test how accurately this equation describes
the system by comparing it with the results of our computer simulation. The
scaling of the kinetic energy with the coefficient of restitution is exactly as
predicted by the theory (5) (Fig. 3). The scaling with N also agrees with theory
(Williams and MacKintosh 1995, 1996; Williams 1997).

Fig. 3. Test of the η dependence in the equation of state (5). Here we have plotted
K3/2NL−1Ω−1 versus (1− η2)−1. As predicted by theory (5) the relation is close to linear.
Note that because the scaling with N in (5) is not precise the lines for different N are not
exactly superimposed. The data are points from the computer simulation and each point
represents an average over 106 collisions. The following pairs of the particle number and
heating rate (N, Ω) were used: (10, 0 ·0017) = v, (20, 0 ·0017) = V, (40, 0 ·0017) = +.

We can use the equation of state to obtain the force on a wall placed at the
boundary of a finite system. We assume that the particles undergo perfectly
elastic collisions with the wall. The time averaged force F exerted by the
particles is the ‘pressure’ for a 1D gas. The current of particles hitting the
wall is J = Nv/L. Each particle imparts momentum 2v to the wall. Thus the
time-averaged force is F = pv2, where ρ = 1/L is the linear density. Thus the
relation between the force and the density is

F = Ω2/3ρ1/3(1− η2)−2/3 . (6)

This is very different from the result for an ideal gas where the pressure is
proportional to the first power of the density.

The long-range correlations introduced in the previous section can be thought
of as being induced by an effective potential of mean force U(x), where
g(x) ∝ exp[−U(x)/kT ]. Here kT can be taken as the kinetic energy of the
particles. This potential is approximately logarithmic. Note however that, since



     

Driven Granular Media 431

the only energy occurring in the problem is the kinetic energy of the particles,
the potential is just proportional to the temperature.

4. Two-dimensional Gases: A Liquid–Gas Phase Transition

In this section we study a two-dimensional excited dissipative gas. It is well
known from the theory of phase transitions that the one-dimensional case is
special. It is thus important to study the above effects in two dimensions. A
logical question to ask is how do the long-range correlations affect the phases of
this system in two or three dimensions? Here we show that they can induce
a liquid phase in coexistence with a gas phase. The system we have in mind
is a two-dimensional excited powder, i.e. a group of grains laid upon a surface,
and gently randomly vibrated. The particles reside on a square L × L lattice
with lattice constant unity, and move in the x and y directions, with velocity
components vx and vy. The particles undergo inelastic collisions with each other
with coefficient of restitution η. For simplicity we assume that the collision
occurs only in the x direction or the y direction at any one time. Thus if the
x direction is chosen the final (primed) and initial (unprimed) velocities of the
two colliding particles, i and j , are given by

v′ix = 1
2 (1− η)vix + 1

2 (1 + η)vjx, v′jx = 1
2 (1− η)njx + 1

2 (1 + η)vix , (7)

v′iy = viy, v′jy = vjy . (8)

The particles are continuously heated by changing either their x or y velocities
as in the one-dimensional case. If the x direction is chosen then

vx(t+ ∆t) = vx(t) +
√
r∆tf(t) , vy(t+ ∆t) = vy(t) , (9)

where r and f have the same meanings as in the one-dimensional model.
We use periodic boundary conditions. The algorithm for particle motion is

as follows: (1) A particle is chosen at random and either the x or y direction
is then chosen, also at random. The time step is fixed originally at ∆t = 1
and is decremented as the particle moves. (2) If say the x direction is chosen
and |vxt| > 1 the particle attempts to move to the next lattice site. If this is
unoccupied the time is decremented and step (1) is repeated. (3) If the chosen
lattice site is occupied a collision takes place and the x velocities of the two
particles are adjusted according to (7) and (8) and the direction is again chosen
randomly. (4) Once the particle has finished it motion, i.e. |vxt| < 1, another
particle and direction is chosen at random and heated according to (9). The
process then repeats.

The advantage of using a lattice is clear in the collision step. Searching
for collisions is trivial on a lattice, but would be very time-consuming in an
off-lattice simulation. For off-lattice simulations with no heating an ‘event-driven’
algorithm can be used, but for a heated system the random heating invalidates
this algorithm. The particles undergo continual collisions and continuos heating.
Eventually these two effects balance out and the system reaches a steady state.
At low densities the system behaves like a gas. However, the gas is not ideal. This
is because the inelastic collisions between particles cause correlations between
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them. The simplest way of seeing this is to consider two particles colliding in the
centre of mass frame. Their initial speeds are v and their final speeds are ηv < v.
Thus the particles recede from each other more slowly than they approached and
indeed more slowly than if they had not collided. They thus spend more time
together and a correlation is induced. As shown in Section 2, in one dimension
this correlation takes a power-law form.

Some characteristic results are shown in Fig. 4. At low densities the inelastic
correlation causes one to have a relatively uninteresting correlated gas. To the
naked eye this looks very similar to an ideal gas, and only by looking in detail
at the correlation function can one distinguish the two. However, at higher
densities the effective ‘potential’ induced by the inelastic collisions becomes very
important. In particular, it leads to a first-order phase transition from a gas
phase to a dense liquid phase which coexists with a vapour phase. This is clear
in Fig. 4 where the behaviour of the system suddenly changes when the density
is changed by of order 0.04%.

Although the transition is clear to the naked eye in large lattices, it is not
so clear on smaller lattices. For this reason and to describe the transition
quantitatively, it is useful to introduce the susceptibility χ (Binder and Herman
1988), defined by

χ = φ−1

′∑
s

s2ns , (10)

where ns is the number of clusters of s particles and the prime means that
the largest cluster is omitted. Here φ is the fraction of sites occupied by the
particles, which we also call the density.

For small lattices where L = 30, 40 the transition is not clear and manifests
itself as a pronounced peak in the susceptibility (Fig. 5). However, for larger
lattices the peak is very pronounced, and there is a clear transition density φt
beyond which the susceptibility is zero. This, together with the visual evidence
shows that the system undergoes a liquid–gas phase transition at this point.

5. One-dimensional Gas in a Potential: A Symmetry Breaking Instability

The two systems studied above constitute possibly the simplest of all models
for granular materials. Although we still do not understand them completely we
do at least have a semi-quantitative understanding of some of their properties. It
is thus not unreasonable to now include some of the complications often found in
real granular materials. The existence of fixed boundaries has for instance been
studied by Du et al. (1995) who found a breakdown on classical hydrodynamics
caused by dissipative effects. In this section we wish to discuss, somewhat
tentatively, the effect of another complication, i.e. the presence of a potential.
In this section we work entirely in one dimension. It is well known that a
classical ideal gas in equilibrium in a potential U(x) has a density which scales
as ρ(x) = ρ0exp[−U(x)/kBT ], where ρ0 is a normalising constant and T is the
temperature of the entire system. Consider what occurs for our dissipative gas.
In the absence of any potential the average temperature and density are uniform
over the system and are related by (5), ρ = CΩ(1 − η2)−1T−3/2, i.e. hotter
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Fig. 4. Snapshots of the 2D lattice model for a 200× 200 lattice with η = 0 and r = 5. The
area fractions covered by the particles are (a) φ = 0 ·259125 and (b) φ = 0 ·25925. Between
(a) and (b) the system undergoes a sharp transition from gas to liquid–gas coexistence. Note
that periodic boundary conditions are used so there is only one droplet. The different shades
of grey in the pictures correspond to different temperatures. Note that in going from (a) to (b)
only five new particles are added, i.e. a change of area fraction of ∆φ = 1 ·25×10−4 = 0 ·04%φ.
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regions are less dense. An applied potential tends to confine the gas to regions
where the potential is low. Thus in a parabolic potential, U = x2, the particles
will tend to cluster around the origin. The origin will thus be cooler than the
surroundings and there will be a temperature gradient in either direction away
from it. Thus a potential applied to an excited dissipative gas will induce a
permanent temperature gradient. Of course, in a potential we cannot guarantee
that (5) is correct, however, a qualitatively similar relation should hold. This
cooling of the system in regions of low potential may lead to several interesting
effects. The first of these is that the density may be a non-monotonic function
of the potential. Thus, in some cases regions of high potential may have an
increased density.

Fig. 5. Susceptibility χ versus the area fraction of particles, φ, for different L × L. Here
η = 0 and r = 5. The different points are as follows: L = 30→ +, L = 40→ M, L = 100→ V,
L = 200 → v. The position of the beak gives the transition density at which the system
changes from a gas to gas–liquid coexistence. Note that as the size of the lattice increases
the sharpness of the peak increases. The fact that the peak is higher for L = 100 compared
with L = 200 is probably a result of finite sample times. Near the transition point there are
large fluctuations in the susceptibility and an accurate measurement requires many samples.

We wish to concentrate on a second, more novel effect of the density–temperature
relation when it is coupled to a potential. This we call ‘phase separation’ or
‘symmetry breaking’, and it can be most readily seen in the simple double-well
potential U(x) = x4 − x2. This potential has two equal wells separated by a
barrier. For an ideal gas placed in this potential, the density of particles in each
well would be equal and would undergo small fluctuations of order

√
N . Thus

for large N , at any given time the number of particles in each well would be
equal. A moments thought shows that this is not the case for our dissipative
gas (Fig. 6). Suppose the system is started with N /2 particles in each well.
Due to the random noise in the system the particles will begin to mount the
barrier and particles will be exchanged between wells. If the left well gains one
particle then the density in that well increases and the temperature of that well
decreases. Thus particles will be less likely to leave the left well, as they are
cooler and have less energy to mount the barrier. Conversely, particles in the
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Fig. 6. Series of snapshots taken from a computer simulation of the particles in a one-
dimensional double-well potential. Here we show the situation at low heating rates. In each
case the potential is plotted against position. In (a), at the start of the simulation, the
particles are roughly equally distributed between the wells. In going from (b) to (c) the
particles begin to cluster, until in (d) they are all in the left well.

right well become hotter and begin to mount the barrier into the left well with
ease. In this case there is a net current of particles and this process clearly
describes an instability and leads to an avalanche of particles from one well to
the other. The symmetry is thus broken in this system. At low heating rates
one expects the particles to be mainly located on one side of the barrier, and the
system phase separates. Of course this phase separation is not permanent, and
after long intervals of time one expects a rapid transition from one well to the
other. Nevertheless, at any one time the most likely state of the system is to
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Fig. 7. Plots of the order parameter ∆ as a function of time for the particles in a
one-dimensional double-well potential. In (a) we see the high temperature case, where ∆
fluctuates rapidly near 1

2 . In (b) we see the low temperature case, where ∆ remains near 0
or 1. In this case there are rare switches between the two states.
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have almost all the particles in one well. At higher heating rates this symmetry
breaking ceases to be important. All the particles have enough energy to mount
the barrier and the phase separated state disappears.

It is possible to test this idea by computer simulation. To this end we define
an order parameter

∆ = (1−Nleft/N) , (11)

where Nleft is the number of particles to the left of the origin. If all the particles
are in one well then either ∆ = 0 or ∆ = 1. If the particles are equally distributed
between the two wells then D = 1

2 .
For the high temperature phase we expect rapid time variations in ∆ about

∆ = 1
2 . In the low temperature phase we expect D to be confined near ∆ = 0

or ∆ = 1, with rare rapid variations between the two. This is in fact what is
found (see Fig. 7).

6. Conclusion

In this paper we have a simple model for a granular material, a driven
dissipative ‘gas’. This model avoids many of the complications inherent in
previous granular studies, but still shows non-trivial behaviour. In the absence
of a potential this behaviour is entirely due to the inelastic collisions between
the particles. In one dimension these lead to long-range correlations which have
approximately a power-law form. Despite this the one-dimensional system can be
readily described by a simple equation of state. In two dimensions the inelastic
collisions lead to a transition from a gas phase to a liquid–gas coexistence. More
complex behaviour arises when the system is coupled to a potential. The phase
separation which occurs is as a result of the temperature–density relation for
these gases. In particular, it arises because dense regions are cool.

The models presented here are perhaps the simplest possible for granular
materials. It is clear that they are only partially understood at present. Thus, we
have an equation of state in the one-dimensional case, but we have no accurate
way of predicting the exponent α which describes the correlations. Although we
know that the two-dimensional case exhibits a liquid–gas phase separation we
have not predicted where this will occur. In general all the systems we have
presented are simple enough that they should be amenable to a simple theoretical
description. This represents the greatest challenge for future work. One thing
however is clear. The inelastic collisions cause an effective attractive potential
to act between the particles. This potential can be thought of as causing the
correlations in one dimension, the gas–liquid transition in two dimensions and
the symmetry-breaking instability in the presence of an external potential.
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