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Abstract

A new derivation for the radiation reaction on a point charge is presented. The field of the
charge is written as a superposition of plane waves. The plane wave spectrum of the field
consists of homogeneous plane waves which propagate away from the charge at the speed of
light, and inhomogeneous plane waves which constitute the Coulomb field of the point charge.
The radiation field is finite at the orbit of the point charge. The force acting on the charge
due to this field is the well known Abraham–Lorentz radiation reaction.

1. Introduction

Maxwell’s equations

∇ . E = %/ε0, (1)

∇×B− µ0ε0
∂E
∂t

= µ0J, (2)

∇×E = −∂B
∂t
, (3)

∇ . B = 0 , (4)

together with the Lorentz force density equation

f = %E + J×B , (5)
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provide a complete and self-consistent theory for the classical electrodynamics
of continuous distributions of charge. The field of any continuous distribution
of charges and currents is completely determined by Maxwell’s equations (with
appropriate initial/boundary conditions) and the motion of the charges is
determined by the Lorentz force density equation. The equations also lead to
conservation theorems in terms of an energy–momentum tensor. These equations
successfully describe a wide range of phenomena and provide the theoretical basis
for many practical applications.

A continuous distribution of charge is an idealisation. Charges occur in nature
as aggregates of charged fundamental particles which should be described, within
the limits of validity of classical physics, as point charges. Maxwell’s equations
can be used to obtain the fields of point charges. However, it proved very difficult
to generalise the force density equation to include the case of point charges.
The obvious generalisation of equation (5) to an equation of motion for a point
charge,

dp
dt

= e(E + v ×B) , (6)

where p is the momentum of the point charge, e is its charge and E,B are the
fields of other charges, provides a very accurate description for the motion of
point charges. The covariant version of equation (6)

dPµ

dτ
= eFµν U

ν , (7)

where P is the 4-momentum, τ is the proper time, F is the field tensor and
U is the 4-velocity, accurately describes the motion at relativistic velocities.
Equations (6) and (7) are not consistent with energy and momentum conservation
because they do not include the effect of radiation. The effect of radiation can be
included only by allowing some form of interaction between the charged particle
and its self -field. This raises a fundamental difficulty because the self-field
diverges at the position of the particle. It is recognised that this difficulty cannot
be completely resolved by classical arguments, however it is desirable to develop
a consistent classical theory for the electrodynamics of point charges. Such a
theory must include a satisfactory treatment of radiation reaction.

Radiation reaction has been the subject of many investigations since the turn
of the century. Significant contributions were made, but a completely satisfactory
treatment is yet to be developed (Parrot 1987). The starting point for the early
investigations (Lorentz 1904; Abraham 1903) was an extended model for the point
charge (more readily available accounts of these works can by found in Jackson
1973 and Rohrlich 1959). The formula for the radiation reaction obtained from
extended-particle models is in the form of a power series, with higher order terms
dependent on some unverifiable form-factors. The structure-dependent terms can
be eliminated by taking the limit of a point particle, but this leads to divergent
self-energy and hence infinite mass. Dirac (1938) derived the radiation reaction
force for a point charge by considering the energy–momentum flux through a world
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tube surrounding the world line of the charge. This very important contribution
did not provide a satisfactory treatment of the diverging self-energy. More recent
contributions were discussed by Rohrlich (1959) who showed the importance of
incorporating an asymptotic boundary condition. Modern contributions include
those of Barut (1990, 1992), Ford and O’Connell (1991, 1993), Herdgen (1992),
Ianconescu and Horwitz (1992), Bosanac (1994) and Gaftoi et al . (1994).

The most objectionable aspect of extended-particle models is that the structure
of fundamental particles is outside the domain of validity of classical physics.
Also a classical extended charge is unstable because of the Coulomb force. The
main disadvantage of point-charge models is the divergent self-energy. Also there
is some evidence that the run-away solutions to the equation of motion can be
traced back to the assumption of a point-charge (Burke 1970; Levine et al . 1977).
The analysis presented in this paper does not depend on any structure-dependent
features or any assumptions about the ‘physical size’ of the charge and the term
point charge is used in this sense.

In this paper the radiation reaction force on a point charge is derived by
expanding the field of the charge into a spectrum of plane waves. This expansion
provides a unique and natural distinction between the radiation field and the
Coulomb field. The radiation field is finite at the orbit of the charge and it
propagates away from it at the speed of light. The Coulomb field does not detach
from the charge and it diverges at the orbit. It is postulated that the charge does
not interact with its Coulomb field. The radiation reaction is obtained in terms
of the radiation field which does not diverge anywhere. The expression obtained
for the radiation reaction is identical to that obtained by Lorentz, Abraham,
Dirac and most recent workers. The difficulties associated with the equation of
motion such as runaway solutions and preacceleration are not discussed here.
The main advantage of the new derivation is that conservation of energy is not
imposed as an extra condition in addition to the theory of Maxwell’s equations.
Energy conservation is automatically satisfied as one would expect in any theory
which does not violate symmetry under time translation. Another advantage is
that the divergent Coulomb field which does not contribute to the self-force is
separated from the radiation field in a unique and physically plausible way.

The plane wave expansion of electromagnetic fields is described briefly in
Section 2. The power and limitations of the technique are illustrated by applying
it to the field of a Hertzian dipole in Section 3. The radiation reaction force on
a point charge moving in a planar orbit is derived in Section 4. It is shown in
Section 5 that the restriction to plane orbits is not necessary. The results are
discussed in Section 6.

2. Plane Wave Spectrum Representation of Electromagnetic Fields

The theory and applications of the plane wave spectrum representation of
electromagnetic fields are explained in an excellent monograph by Clemmow
(1966). A brief summary is given below. The plane wave is the simplest solution
to Maxwell’s equations (1)–(4) in a source-free (%,J = 0) region. A general
solution can be written as a linear superposition of plane waves. If there are
some localised sources, it is not possible to have a plane wave representation
which is valid everywhere in the source-free region; any given representation can
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be valid in at most a half-space. For the special case where the source is a
surface current flowing in the z = 0 plane, the current density can be written as
a Fourier integral

J(x, y, z, t) = δ(z)
∫ ∞
−∞

dω

∫ ∞
−∞

d`

∫ ∞
−∞

dm

× exp
[
iω

(
`x+my

c
+ t

)]
(−2Qax + 2P ay) , (8)

where

δ(z)Q(`,m, ω) =
ω2

16π3c2

∫ ∞
−∞

dt

∫ ∞
−∞

dx

∫ ∞
−∞

dy

× exp
[
− iω

(
`x+my

c
+ t

)]
(−J . ax), (9)

δ(z)P (`,m, ω) =
ω2

16π3c2

∫ ∞
−∞

dt

∫ ∞
−∞

dx

∫ ∞
−∞

dy

× exp
[
− iω

(
`x+my

c
+ t

)]
(J . ay), (10)

c is the speed of light and ax,ay are unit vectors in the x and y directions. The
field of any of the Fourier components is a plane wave in the z > 0 half-space
and another plane wave in the z < 0 half-space. These two waves are obtained
by imposing the boundary conditions on the fields at z = 0. The tangential
component of E is continuous at z = 0 and the discontinuity in B is given by

{B(z = 0+)−B(z = 0−)} × az = µ0Js ,

where Js is the surface current density J = δ(z)Js. Also the Sommerfeld radiation
condition (vanishing incoming radiation) is imposed. The boundary conditions
for the normal components of the fields are automatically satisfied (Clemmow
1972, p. 23). The plane wave spectrum representation of the field is

B(x, y, z, t) = µ0

∫ ∞
−∞

dω

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω

(
`x+my ∓ nz

c
+ t

)]

×
[
± nP ax ± nQay + (`P +mQ) az

]
, (11)
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E(x, y, z, t) = µ0c

∫ ∞
−∞

dω

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω

(
`x+my ∓ nz

c
+ t

)]

× [(`mP + (1− `2)Q) ax − ((1−m2)P +m`Q) ay

∓ n(mP − `Q) az] , (12)

where n =
√

1− `2 −m2 and the upper and lower signs apply for z > 0 and
z < 0 respectively. It should be noted that the fields in either half-space can
be written as in equations (11) and (12) even if the source is not a surface
current. In this case, the above remark regarding the signs does not apply and
the angular spectrum functions P and Q are not directly related to the source
by equations (9) and (10). Instead, P and Q are obtained by matching the plane
wave spectrum to a given field at z = 0.

3. Radiation Reaction on a Hertzian Dipole

The main objective of this work is to obtain the radiation reaction on a point
charge. However, the analysis for a Hertzian dipole is much simpler and allows
the physics of the problem to be examined without being obscured by tedious
manipulations. The field of a Hertzian dipole (Jackson 1973, p. 395) consists
of terms which are proportional to 1/r and other terms which are proportional
to 1/r2 and 1/r3. The terms proportional to 1/r are usually identified as the
radiation or far fields. The other terms are identified as near fields or Coulomb
and induction fields. It is noted that neither the far field nor the near field
satisfies Maxwell’s equations; only the total field does. Also, both fields tend
to infinity at r = 0. The plane wave spectrum representation of the field is
more convenient for the purpose of separating the radiation fields from the
Coulomb fields. Both the radiation and Coulomb fields defined in terms of the
plane-wave spectrum satisfy Maxwell’s equations. Also the radiation field is finite
everywhere.

For the following analysis we choose the x axis parallel to the dipole so that
we can use the results of the previous section. Equations (8), (9), (11) and (12)
can be used to obtain the plane wave representation of the field (Clemmow 1966,
p. 35). The expressions for J and Q are

J = pδ(x)δ(y)δ(z) exp(iω0t) ax, (13)

δ(z)Q(`,m, ω) = − pω2

8π2c2
δ(ω − ω0) , (14)
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where p = pax is the dipole moment. The fields are obtained using equations
(11), (12) and (14):

B(x, y, z, t) = − µ0ω
2
0p

8π2c2

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω0

(
`x+my ∓ nz

c
+ t

)]

× [±nay +maz], (15)

E(x, y, z, t) = − µ0ω
2
0p

8π2c

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω0

(
`x+my ∓ nz

c
+ t

)]

× [(1− `2) ax −m`ay ± n` az]. (16)

Equations (15) and (16) give representations of the dipole field in the two
half-spaces z−⇀↽− 0 as a superposition of plane waves of different `,m. Waves with
`2 +m2 < 1 have real n. These are homogeneous (surfaces of constant phase and
constant magnitude are parallel) plane waves which travel away from the z = 0
plane. Waves with `2 + m2 > 1 have imaginary n. These are inhomogeneous
(surfaces of constant phase and constant magnitude are not parallel) plane waves
which do not travel away from the z = 0 plane. It is noted that travelling away
from the z = 0 plane is not the same thing as travelling away from a point source
such as a dipole, except in a small solid angle around the z axis. The radiation
fields in a small solid angle around the z axis are given by the homogeneous
part of the spectrum and are obtained from equations (15) and (16) with the
integration in the ` −m plane limited to the disc `2 + m2 < 1. The Coulomb
fields in this small solid angle are given by equations (15) and (16) with the
integration in the `−m plane limited to the region `2 +m2 > 1. The radiation
fields are regular at the origin and their limits (as one approaches the dipole
along the z axis) are

Brad(0, t) = − µ0ω
2
0p

8π2c2
exp(iω0t)

∫ 2π

0

dα

∫ 1

0

τdτ√
1− τ2

× [±
√

1− τ2 ay + τ sinα az]

= ∓ µ0ω
2
0p

4πc2
exp(iω0t)

∫ 1

0

τdτay, (17)
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Erad(0, t) = − µ0ω
2
0p

8π2c
exp(iω0t)

∫ 2π

0

dα

∫ 1

0

τdτ√
1− τ2

× [(1− τ2 cos2 α) ax − τ2 sinα cosα ay ± τ
√

1− τ2 cosα az]

= − µ0ω
2
0p

4πc
exp(iω0t)

∫ 1

0

dτ
τ(1− τ2/2)√

1− τ2
ax , (18)

where ` = τ cosα and m = τ sinα. It follows that radiation fields at the origin
are

Erad(0, t) =
−µ0ω

2
0

6πc
p, (19)

Brad(0, t) = ∓µ0ω
2
0

8πc2
pay. (20)

The ∓ sign in equation (20) corresponds to the limit of the magnetic field as
the origin is approached from z−⇀↽− 0. It is noted that the time-average of the
work done against the radiation field is given by

W = −Av
{∫ ∞
−∞

dxdydzErad . J
}

=
µ0ω

2
0

12πc
p2 , (21)

where the time-average is taken over any complete number of cycles. The
time-average of the work done against the radiation reaction is equal to the
time-average of the radiated power (which is obtained by integrating the power
flux over a closed surface). Thus conservation of energy is not imposed as an
extra condition; it follows naturally from the interaction between the dipole and
its radiation field.

The field in any small solid angle can represented as a suitable spectrum of
plane waves and hence the radiation and Coulomb fields within this solid angle
can be distinguished. It is not obvious that the radiation electric field at the
dipole does not depend on the orientation of the solid angle. It is sufficient to
show that the same value of the radiation field at the position of the dipole is
obtained when the solid angle is oriented along the dipole axis as when it is
oriented in a direction perpendicular to it. For this purpose, we consider the
plane wave representation of a dipole parallel to the z axis. The current density
of a Hertzian dipole parallel to the z axis and located at the origin is

J = pδ(x)δ(y)δ(z) exp(iω0t) , (22)



822 W. N. Hugrass

where p = paz is the dipole moment. The field of the dipole (Jackson 1973,
p. 395) is given by

B =
µ0p

4π
sin θ

(
iω0

cr
+

1
r2

)
exp

[
iω0

(
t− r

c

)
aφ

]
, (23)

E =
µ0cp

4π

[
cos θ

(
1
r2 −

ic

ω0r
3

)
ar + sin θ

(
iω0

cr
+

1
r2 −

ic

ω0r
3

)
aθ

]

× exp
[
iω0

(
t− r

c

)]
, (24)

where r, θ and φ are the standard spherical coordinates. Obviously the current
of this dipole does not lie in the z = 0 plane and hence equations (9) and (10)
cannot be used to obtain the plane wave spectrum functions P and Q. These
functions are obtained by comparing equations (11) and (23). The fields are
given by

B(x, y, z, t) = µ0

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω0

(
`x+my ∓ nz

c
+ t

)]

× (nP ax + nQay) , (25)

E(x, y, z, t) = µ0c

∫ ∞
−∞

∫ ∞
−∞

d`dm

n
exp

[
iω0

(
`x+my ∓ nz

c
+ t

)]

× [±(`mP + (1− `2)Q) ax ∓ ((1−m2)P +m`Q) ay

− n(mP − `Q) az] , (26)

where

`P +mQ = 0 ,

P (`,m, ω0) =
ω2

0

4π2c2µ0

∫ ∞
−∞

dx

∫ ∞
−∞

dy exp
[
− iω0

(
`x+my

c
+ t

)]

×Bx(x, y, 0, t). (27)
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The expressions for the spectrum functions in the region `2 + m2 < 1 are
obtained using equations (23) and (27):

P =
pω2

0

8π2c2
m

n
, Q =

−pω2
0

8π2c2
`

n
. (28)

The radiation electric field at the origin is

Erad(0, t) =
−µ0ω

2
0p

4πc

∫ 1

0

τ3dτ√
1− τ2

az =
−µ0ω

2

6πc
p. (29)

Thus the limit of the radiation electric field at the dipole, when one approaches
it along its axis, is the same as the limit when one approaches the dipole in a
direction perpendicular to its axis [equation (19) above]. This result may seem
strange because the radiation pattern of the dipole has a node along its axis. The
node in the radiation pattern is evident from equations (23) and (24) since the
terms proportional to 1/r have the factor sin θ which vanishes along the z axis.
This fact is also evident from the plane wave spectrum representation (equation
28) as the spectrum functions P and Q vanish for the wave propagating in the
z direction (n = 1, ` = m = 0). It is noted however that our definition for the
radiation field in a small solid angle around the z axis is not the field of the
wave with n = 1; the radiation field is defined as the field of all waves with real
`,m and n. This field does not vanish but it obviously decays along the z axis
faster than 1/r.

4. Radiation Reaction on a Point Charge moving in a Planar Orbit

Consider a point charge e moving in a planar orbit

r = ξ(t) ax + η(t) ay. (30)

The current density is

J = evδ(x− ξ(t))δ(y − η(t))δ(z) , (31)

where

v =
dξ

dt
ax +

dη

dt
ay (32)
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is the velocity of the point charge. Since the orbit is planar, the fields in the
two half-spaces z > 0 and z < 0 can be written as in equations (11) and (12)
where the spectrum functions P and Q are related to the current density by
equations (9) and (10). The electric field is

E(x, y, z, t) =
µ0e

16π3c

∫ ∞
−∞

∫ ∞
−∞

d`dm

n

∫ ∞
−∞

dω

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ ∞
−∞

dt′ω2

×
[(
`m

dη

dt′
− (1− `2)

dξ

dt′

)
ax +

(
`m

dξ

dt′
− (1−m2)

dη

dt′

)
ay

)

∓ n
(
m
dη

dt′
+ `

dξ

dt′

)
az

]
δ(x′ − ξ(t′))δ(y′ − η(t′))

× exp
[
iω

(
t− t′ + `(x− x′) +m(y − y′)− nz

c

)]
. (33)

The electric field at a point on the orbit of the point charge is

E(ξ, η, 0, t) =
−µ0e

8π2c

∫ ∞
−∞

∫ ∞
−∞

d`dm

n

∫ ∞
−∞

dt′
[(
`m

dη

dt′
− (1− `2)

dξ

dt′

)
ax

+
(
`m

dξ

dt′
− (1−m2)

dη

dt′

)
ay ∓ n

(
m
dη

dt′
+ `

dξ

dt′

)
az

]

× d2

dt′
2 δ

[
t′ − t− `(ξ(t′)− ξ(t)) +m(η(t′)− η(t))

c

]
. (34)

If we choose a frame of reference such that v(t) = 0, the field at (ξ(t), η(t), 0, t)
is

E(ξ, η, 0, t) =
−µ0e

8π2c

∫ ∞
−∞

∫ ∞
−∞

d`dm

n

[(
`m

d3η

dt3
− (1− `2)

d3ξ

dt3

)
ax

+
(
`m

d3ξ

dt3
− (1−m2)

d3η

dt3

)
ay ∓ n

(
m
d3η

dt3
+ `

d3ξ

dt3

)
az

]
. (35)

The choice of this particular frame of reference makes it possible to identify
the radiation field, in a small solid angle surrounding a line parallel to the z
axis and passing through ξ(t), η(t), with the homogeneous part of the plane wave
spectrum (actually this identification is only valid near the orbit). The radiation
electric field in this small solid angle is obtained from equation (35) by limiting
the integrals in the `−m plane to the disc `2 +m2 < 1,

Erad =
µ0e

6πc

(
d3ξ

dt3
ax +

d3η

dt3
ay

)
(36)



Radiation Reaction Force 825

and hence the radiation reaction force is

frad =
µ0e

2

6πc
d2v
dt2

= 2
3

e2

4πε0c3
d2v
dt2

. (37)

This equation is valid only in the rest frame of the charge. The general equation
is obtained by invoking Lorentz covariance and the requirement that the radiation
reaction 4-vector must be perpendicular to the 4-velocity (see problem 17 ·4 in
Jackson 1973). It follows that the covariant form of the radiation reaction force
is

Frad = 2
3

e2

4πε0c3

[
d2U
dτ2 +

1
c2

(
dU
dτ

.
dU
dτ

)
U

]
. (38)

5. Radiation Reaction on a Point Charge

It is shown in this section that the restriction to point charges moving in
planar orbits is not necessary. Consider a point charge e moving in a general
orbit

r = ξ(t) ax + η(t) ay + ζ(t) az. (39)

The current density is

J = evδ(x− ξ(t))δ(y − η(t))δ(z − ζ(t)). (40)

This current density can be considered as a superposition of elementary sources,
each consisting of a short segment of the world line of the charge

J = e

∫
dt′v(t′)δ(x− ξ(t′))δ(y − η(t′))δ(z − ζ(t′))δ(t− t′). (41)

The field of any of these elementary sources vanishes everywhere except on
its future light cone. The world line of any point charge must be time-like and
hence the self-field evaluated at any point on the orbit depends only on the
local variables. This fact is evident from equation (36); the radiation field is
determined by local variables not by an integral over the orbit. Variations to
the rest of the orbit do not change the radiation field at a certain point on the
orbit. The orbit of the charge is assumed planar in the previous section only for
convenience in order to simplify the derivation.

6. Discussion and Conclusions

Representation of the field of a point charge as a spectrum of plane waves
provides a means for separating the radiation from the Coulomb fields. The
radiation field is finite at the orbit of the charge. If we postulate that the
charge does not interact with its Coulomb field, the self-force is finite and is
given by the force due to the radiation field. This makes it possible to derive
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the Abraham–Lorentz equation for the radiation reaction force without having
to deal with divergent quantities. Also energy conservation does not have to be
imposed as an extra condition.
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