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Abstract

Some Robertson–Walker (RW) models admitting a contracted Ricci collineation along the
fluid flow vector and having time-varying G and Λ are investigated. The nature of the
expansion of the models obtained in the cases k = ±l is found to be interchanged from the
corresponding standard FRW models. Estimates of the present values of various cosmological
parameters are obtained and found to be well within the observational limits.

1. Introduction

The Einstein field equation has two parameters—the gravitational constant G
and the cosmological constant Λ. The Newtonian constant of gravitation G plays
the role of a coupling constant between geometry and matter in the Einstein field
equation. In an evolving universe, it appears natural to look at this ‘constant’
as a function of time. Numerous suggestions based on different arguments have
been proposed in the past few decades in which G varies with time (Wesson
1978, 1980). Dirac (1938, 1975) proposed a theory with variable G motivated
by the occurrence of large numbers discovered by Weyl, Eddington and Dirac
himself. Many other extensions of Einstein’s theory, with time-dependent G ,
have also been proposed in order to achieve a possible unification of gravitation
and elementary particle physics or to incorporate Mach’s principle in general
relativity (Brans and Dicke 1961; Hoyle and Narlikar 1964; Canuto et al. 1977a).

From the point of view of incorporating particle physics into Einstein’s theory
of gravitation, the simplest approach is to interpret the cosmological constant
Λ in terms of quantum mechanics and the physics of the vacuum (Zeldovich
1968; Sakharov 1968; Ford 1975; Steeruwitz 1975). The Λ-term arises naturally
in general-relativisitic quantum field theory where it is interpreted as the energy
density of the vacuum (Zeldovich 1967; Ginzburg et al. 1971; Fulling et al. 1974).
The Λ term has also been interpreted in terms of the Higgs scalar field (Bergmann
1968; Wagoner 1970). Dreitlein (1974) suggested that the mass of the Higgs boson
is connected with Λ as well as G . Linde (1974) proposed that Λ is a function
of temperature and is related to the process of broken symmetries. It is widely
believed that the value of Λ was large during the early stages of evolution and
strongly influenced its expansion, whereas its present value is incredibly small
(Weinberg 1989; Carroll et al. 1992). Several authors, for example Freese et al.
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(1987), Ozer and Taha (1987), Gasperini (1987, 1988), Chen and Wu (1990)
and Carvalho et al. (1992), have advocated a variable Λ in the framework of
Einstein’s theory to account for this fact. The rationale behind this is that the
energy density of the vacuum should spontaneously decay into massive and/or
massless particles reducing Λ to its present value. This view is also supported
by Gasperini (1987, 1988) who argued that Λ can be interpreted as a measure of
the temperature of the cosmic vacuum which should decrease, like the radiation
temperature, with cosmic expansion. In this regard, Peebles and Ratra (1988)
have shown that if the potential energy of the scalar field during inflation has
a power-law tail at large φ, the mass density associated with φ acts like a
cosmological constant that decreases with time.

The possibility of Λ as a function of time has also been considered by Bicknell
and Klotz (1976), Canuto et al. (1977b), Endo and Fukui (1977) and Bertolami
(1986) in various variable-G theories in different contexts. Lau (1985) has made
Dirac’s large number hypothesis compatible with Einstein’s theory of gravitation
by attempting a tentative generalisation of Einstein field equations with time
dependent G and Λ. The possibility of variable G and Λ in Einstein’s theory
has also been studied by DerSarkissian (1985) by making use of the principle of
absolute quark confinement.

Investigating the distance dependence of gravity under very general conditions,
Wilkins (1986) found that the gravity field at a distance r from a point mass has
two components: one varying as r−2, the other as r (Hookian field). The latter
component is identifiable with the weak field limit of the Λ term in Einstein’s
equations. His analysis allows one to consider both the gravity fields—the Hookian
field, coupled to Λ and the Newtonian one, coupled to G—on an equal footing.
With this in view, Beesham (1986), Abdel-Rahman (1990) and Kalligas et al.
(1992) have proposed linking the variation of G with that of Λ in the framework of
general relativity. This approach preserves conservation of the energy–momentum
tensor of matter and leaves the form of the Einstein field equations unchanged.
Although this approach is non-covariant, it is worth studying because it may be
a limit of some higher dimensional fully covariant theory (Wesson 1984; Kalligas
et al. 1992).

In this paper we consider time-dependent G and Λ in the framework of general
relativity in the background of RW spacetime and investigate some cosmological
models admitting a contracted Ricci collineation along the fluid flow vector by
assuming conservation of the energy–momentum tensor of matter content.

2. The Field Equations

We consider the homogeneous and isotropic spacetime described by the RW
metric

ds2 = −dt2 +R2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2θ dφ2)
)
, (1)

characterised by its scale factor R(t) and the curvature parameter k (=±1, 0).
In the Gaussian normal coordinates of this metric, the fluid flow vector v i is
the normalised timelike eigenvector of T ij , the energy–momentum tensor of the
perfect fluid, given by
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Tij = (ρ+ p)vi vj + pgij (in units with c = 1). (2)

Here ρ is the energy density of cosmic matter and p is its pressure. In the context
of (1) and (2), the Einstein field equation, with time-dependent G and Λ, i.e.

Rij − 1
2R

`
` gij − Λ(t) gij = −8πG(t)Tij , (3)

yields two independent equations:

− R̈
R

=
4πG(t)

3
(ρ+ 3p)− Λ(t)

3
, (4)

Ṙ2

R2 +
k

R2 =
8πG(t)

3
ρ+

Λ
3
, (5)

having the same form as in the standard FRW model.
In view of the vanishing divergence of the Einstein tensor, equation (3) gives

ρ̇+ 3(ρ+ p)
Ṙ

R
+ ρ

Ġ

G
+

Λ̇
8πG

= 0 . (6)

We now assume the law of conservation of energy (T ij;j = 0) giving

ρ̇+ 3(ρ+ p)
Ṙ

R
= 0 , (7)

by the use of which, equation (6) yields

Ġ = − Λ̇
8πρ

, (8)

indicating that G increases or decreases according to whether Λ, respectively,
decreases or increases. We also consider the perfect fluid equation of state

p = wρ , (9)

where w , as suggested by Freese et al. (1987), may be defined by

w = 1
3

ρr

ρm + ρr

, (10)

with ρ = ρm + ρr, ρm and ρr being the matter (rest mass) and radiation energy
densities. As the variation of w(t) is slow compared with the expansion of the
universe, except near the time when matter and radiation energy densities are
equal, we can approximate w(t) as a step function:

w '
{

1
3 , in the radiation dominated (RD) universe

0, in the matter dominated (MD) universe
. (11)
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As equations (4)–(9) supply only four independent equations in the five unknowns
ρ, p, R, G and Λ, an extra equation is needed to solve the system completely,
which we shall obtain in the following by using symmetry considerations.

Symmetry methods of obtaining conservation laws in general relativity are well
known. Symmetries of the RW metric belonging to Ricci and contracted Ricci
collineations have been discussed by Green et al. (1977) and Nunez et al. (1990).
In this connection, we note that a spacetime is said to admit Ricci collineation
along a field vector ηi if Lη Rij = 0 (Katzin et al. 1969), where Lη denotes the
Lie derivative along ηi. If the Ricci tensor is Lie transported along ηi, then
there exists a conservation law generator of the form (Collinson 1970)

[Rjm η
m];j = 0 , (12)

and if the Einstein field equation (3) is satisfied, this can be written as{
GT jm η

m +
(

Λ
8π
− 1

2GT

)
ηj
}

;j

= 0 , (13)

which provides the symmetries of the stress energy tensor depending upon the
specific character of the symmetry vector ηi.

A spacetime is said to admit a family of contracted Ricci collineation if
g ij Lη Rij = 0, which leads to a conservation law generator of the form (Davis
et al. 1976) [√

−g
{
GT jm η

m +
(

Λ
8π
− 1

2GT

)
ηj
}]

;j

= 0 . (14)

If we specify the symmetry vector ηi by taking it along the fluid flow, i.e.
ηi = constant× v i, then the conservation law generator (14), for T ij given by
(2), yields

G

(
ρ+ 3p− Λ

4πG

)
R3 = constant = A (say) , (15)

which, in some sense, may be interpreted as the conservation of the total active
gravitational mass of the universe (Abdussattar and Vishwakarma 1995, 1996a,
1996b). From the field equation (4), the conservation law (15) leads to

R̈ = −4πA
3R2 , (16)

by virtue of which, g ij Lη Rij = 0 is satisfied identically. On integration, equation
(16) gives

Ṙ2 =
8πA
3R

+B, B = constant , (17)

supplying the time-variation of R(t). Equations (5) and (17) give
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ρ =
A

GR3 +
3(B + k)
8πGR2 −

Λ
8πG

(18)

which, taken together with (15), yields

p =
Λ

8πG
− B + k

8πGR2 . (19)

Abdussattar and Vishwakarma (1996b) previously obtained a model of the universe
based on these equations, in which the constant A assumes two values: one in the
early RD phase and the other in the present MD phase. The model originated
from a non-singular origin and was free from the horizon problem. In the present
paper, we investigate the prospects of a big bang origin by considering the same
A throughout the evolution and obtain three different models for k = ±1, 0. This
will be done in the following section.

3. The Models

By the use of (9), equation (7) may be solved as

ρ = CR−3(1+w); C = Some positive constant , (20)

and equations (9), (18), (19) and (20) may be used to obtain

G =
R3w

4π(1 + w)C
[4πA+ (B + k)R] , (21)

Λ =
1

(1 + w)R3 [8πwA+ (1 + 3w)(B + k)R] . (22)

In order to determine the constants A, B and C , we associate them with the
present values of the cosmological parameters. In this regard we note that the
present cosmic energy density ρp, according to current observations (Kolb and
Turner 1990; Olive 1990) is close to its corresponding critical value

ρcp ≡
3

8πGpH
2
p

,

H p being the present value of the Hubble parameter. The substitution of the
assumption ρp = ρcp into equation (5) results in Λp = 3k/R2

p. When this result,
together with the assumption that p = 0 in the MD era, is substituted in equation
(19), one obtains

B = 2k . (23)

The value of A then follows from equation (15) as

A = Gp ρpR
3
p −

3k
4π

Rp . (24)
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The value of C in the MD era may be represented from equation (20) as
C = ρp R3

p. The evolution of the deceleration parameter q ≡ −RR̈/Ṙ2 is then
obtained from equations (16) and (17) as

q =
(

2 +
3kR
2πA

)−1

. (25)

Differentiation of equation (21) with respect to t gives

Ġ =
3R3wṘ

(1 + w)C

(
wA

R
+
k(1 + 3w)

4π

)
, (26)

implying [
Ġ

G

]
p

=
3kHp

4πGp ρpR
2
p

. (27)

From the estimates of the parameters as obtained later on, we shall see that
A > 0 in the models indicating, via equation (16), that R̈ < 0. This, with Ṙ > 0,
shows that R must have reached R = 0 at some finite time in the past, say at
t = 0, which is a singularity in the present models with G = 0 and Λ, ρ and Ṙ
infinite there.

We now consider the three cases k = l, −1 and 0 and investigate some properties
of the resulting models.

Case I: k = 1

The time-variation of the scale factor R, in this case, is obtained from equation
(17) as

R =
2πA

3
(cosh2τ − 1), t =

√
2πA
3

(sinh2τ − 2τ) , (28)

which is similar to that in the pressure-less phase of the open (k = −1) FRW
model in the standard case. Thus R →∞ as t →∞, although k = 1. Equations
(21) and (22) respectively indicate that G increases and Λ decreases, first at a
higher rate in the early universe and then comparatively slowly in the present
universe. Equation (25) suggests that q = 1

2 initially. It decreases monotonically
and approaches zero as t →∞. In order to obtain the estimates of the present
values of the parameters, we use the observational values |(Ġ/Gp)| = 10−11 yr−1,
H p = 75 km s−1 Mpc−1 (=7 ·5×10−11 yr−1), Gp = 6 ·673×10−8 cm3 g−1 s−2 and
ρp = ρcp ≈ 10−29 g cm−3 in equation (27), giving

Rp ≈ 4 ·88× 1028 cm . (29)

This gives A ≈ 7 ·57×1028 cm and hence qp ≈ 0 ·43. The present value of the
cosmological constant is obtained as Λp ≈ 10−57 cm−2, which is well within
the upper limit of Λp found as 10−56 cm−2 from the cosmological observations
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(Carvalho et al. 1992). This is remarkable since the value of Λ is infinitely
large initially. The age of the universe is obtained from equation (28) as
tp ≈ 9 ·14×109 yr which is approximately the same as in the standard model.

Case II: k = −1

The metric, in this case, is obtained from equation (17) as

R =
2πA

3
(1− cos2τ), t =

√
2πA
3

(2τ − sin2τ) , (30)

being similar to that in the pressure-less phase of the closed (k = 1) FRW model.
Equation (30) indicates that the model attains its maximum radius Rmax = 4πA/3
at t =

√
2π2A/3 and thereafter starts contracting back to the origin in a way

similar to the k = 1 case of the standard FRW model, although here k = −l.
We note from equation (26) that G increases in the early universe, whereas it
decreases in the present universe. Thus it reaches a maximum at somewhere in
the matter and radiation era where

R =
4πA

3
ρr

ρm + 2ρr

.

At this time Λ is a minimum as equation (22) indicates. Thereafter G decreases
continuously and vanishes at R = Rmax. It then again starts increasing in the
contracting phase. We also note from equation (22) that Λ decreases continuously
and vanishes somewhere in the matter and radiation era at

R =
8πA

9
ρr

ρm + 2ρr

.

Thereafter Λ becomes negative.
It may be noted that the observational values of the parameters as considered

in case I, obtain the same Rp and hence the same |Λp| in this model as obtained
there. However, this gives A ≈ 9 ·90×1028 cm and qp ≈ 0 ·57 in the present model.
We also find that Rmax ≈ 4 ·15×1029 cm at t ≈ 4 ·88×1011 yr. The present age of
the universe in this model is obtained from equation (30) as tp ≈ 8 ·66×109 yr.

Case III: k = 0

In this case R is obtained from equation (17) as

R = (6πA)1/3 t2/3 . (31)

This variation of R, which holds throughout the evolution as in the previous cases
(28) and (30), is similar to that in the pressure-less phase of the Einstein–de
Sitter model. In the present model, G increases as R and Λ decreases as R−3

in the early RD era and approach, respectively, Gp and 0 as the universe turns
matter dominated and the model then reduces to the Einstein–de Sitter model.
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4. Conclusions

By taking time-dependent G and Λ in Einstein’s theory of general relativity, in
a way which conserves the energy–momentum tensor of matter content and leaves
the form of the field equations unchanged, we have obtained some models of the
universe which admit a contracted Ricci collineation along the fluid flow vector.
This imposed symmetry implies the constancy of the so-called active gravitational
mass of the universe. In earlier work (Abdussattar and Vishwakarma 1996b), we
have taken this constant changing with phases. Here we have assumed the same
constant throughout the evolution which obviously results in obtaining the same
model describing the different phases of evolution.

Another consequence of the assumed symmetry is that the curvature parameter
k , for k = ±l, has an opposite role, as compared to the standard model, in
determining the nature of expansion. For k = 0, however, the model reduces to
the standard (Einstein–de Sitter) model in the present matter dominated phase,
though its early evolution is altogether different.
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