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Abstract

The stability of ideal ballooning modes in the presence of a rigid toroidal rotation is revisited.
Two stabilising contributions arising due to rigid toroidal rotation are identified. These
stabilising contributions can be particularly significant for present and future generations of
low and ultra-low aspect ratio tokamaks.

1. Introduction

It is well known that ideal ballooning modes can limit the beta values
attainable in a tokamak operation in the usual first stability parameter regime,
but the existence of a theoretically predicted second stability regime could give
the possibility of high beta operation. Various methods, such as the use of
highly energetic particles (Rosenbluth 1983), cross sectional shaping (Miller 1979;
Chance 1983), current profile control (Sykes and Turner 1979; Coppi 1983) and
the use of radio-frequency waves close to characteristic frequencies such as the
lower hybrid frequency and the ion cyclotron frequency (D’ippolito 1987; Sen et
al. 1986; Sen et al. 1991) have been shown to be capable of stabilising ballooning
modes on individual flux surfaces for low values of shear, thus providing a route
by which to access the second stability regime. Several other mechanisms have
been known to affect the stability of ballooning modes. One of these is plasma
rotation (Waelbroeck and Chen 1991 and references therein). In almost all the
NBI heating experiments beam injection is unbalanced and, as a result, large
plasma flows with toroidal and poloidal velocities which could be a significant
fraction of poloidal Alfvén speed are observed (Brau 1983). However, poloidal
flow is efficiently damped by magnetic pumping (Hassam and Kulsrud 1978).
Indeed, as is observed experimentally, the damping time of poloidal flows is of
the order of the ion–ion collision time (Brau 1983) and hence is much smaller
than the damping time of toroidal flows. As a result, poloidal rotation dies away
immediately after the beams are turned off, leaving the plasma rotation in the
toroidal direction. Toroidal rotation, by contrast, is dissipated only through the
diffusive transport of momentum. In a quiescent plasma, this viscous transport
can be expected to reduce to low, neoclassical levels (Waelbroeck 1992).

The stability of MHD ballooning modes in the presence of toroidal flow is
therefore an important issue. However, the presence of flow in the equilibrium
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state has a detrimental effect on the work of stability analysis. This is because
it is usually impossible to give a necessary and sufficient condition for stability
in the presence of flow. One can only state a sufficient condition for stability,
typically as the positivity of the energy integral suggested by Frieman and
Rotenberg (1960). Our main result in this work is to improve this criterion for
ballooning perturbation by taking into account the effects of the Coriolis force
and the modification in the pressure profiles due to rotation. This might bring
the criterion closer to the actual stability boundary. These additional stability
contributions can be particularly significant for the low (Peng and Strickler 1986)
and the ultra-low (Shaing 1995) aspect ratio tokamaks. This is particularly
important because one of the major approaches for extracting fusion power more
economically is to reduce the aspect ratio in present and future generations of
tokamaks.

2. Equilibrium and Stability

We consider a plasma confined in a perfectly conducting axisymmetric torus
which obeys the ideal MHD equations

Bt + curl(B×V) = 0 , (1)

ρ(Vt + V.∇V) +∇p = J×B , (2)

ρt + div(ρV) = 0 , (3)

St + V.∇S = 0 , (4)

where B is the magnetic field, J = curl B is the current density, and V, p and ρ
are the plasma velocity, pressure and density respectively. Here S is a function
of the specific entropy and γ is the ratio of specific heats, while the subscript t
implies derivations with respect to t. We assume that the plasma satisfies the
equation of state

p = Sργ . (5)

We consider the case of pure toroidal rotation where the plasma experiences
a rigid rotation about its axis of symmetry, with a constant angular velocity
Ω = V0/R (where V0 is the flow velocity and R is the radius). We assume the
temperature to be a surface quantity (in view of the high thermal conductivity
along the field lines) and replace equation (4) by B.∇T = 0. With a further
choice of T = constant and with C2

s = ∂p/∂ρ (=γRT ) denoting the square of
the sound velocity, the parallel component of equation (2) can be solved to give
the equilibrium pressure as (Sen 1994; Maschke and Perrin 1980):

p0 = p0(ψ)exp
(

Ω2R2

2RT

)
, (6)
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where p0(ψ) is an arbitrary function of the poloidal flux. Note that rotation
induces poloidal asymmetry in the equilibrium pressure on a flux surface. We
will come back to this point in detail later.

To consider the linear stability of the equilibrium just described it is convenient
to carry out the analysis in a frame rotating with the plasma. In this frame
the governing equations differ from those in an inertial frame by the addition
of two terms, the centrifugal and the Coriolis force, which arise because of the
noninertial nature of the reference frame. Assuming that the perturbations have
a time dependence of the form eiωt, we can show that stability is given by
(Bhattacharjee 1987; Hameiri and Laurence 1984)

ω2K − 2ωA− δW = 0 , (7)

where

K = 1
2

∫
ρξ2dv , (8)

A = 1
2

∫
iρΩ .(ξ × ξ∗) , (9)

δW =
∫
dl

B

[
X ′N2 −X2

(
2(N .∇p)(N .κ)−RΩ2(N .∇R)(N .∇ρ)

+
1
γp

(ρRΩ2N .∇R)2

)]
, (10)

where ξ is the Lagrangian displacement of the fluid from its equilibrium position,
X is the component of ξ in the direction N, which is parallel to B× κ and
normalised such that N .∇ψ = 1, and the prime indicates derivation with respect
to l, the coordinate along the field-line, and κ is the curvature.

Now it is easy to see that the presence of the second term (the contribution
due to the Coriolis force) in equation (7) does not allow a self-adjoint formulation.
Thus, unlike in the static case, it is not possible to establish a necessary and
sufficient condition for stability in a manner analogous to that used in the ideal
MHD theory based on the energy principle. This difficulty is usually overcome
by assuming a large aspect ratio (ε = a/R¿ 1) and high beta tokamak ordering
(Hameiri and Laurence 1984). Then, in calculating δW , only terms of the order
of ε2 are retained, so that the first and third terms in equation (7) being both
of order of ε2 are retained, while the middle term which turns out to be of
order of ε 5

2 is dropped to leading order. Once this term is dropped the problem
then reduces to a self-adjoint formulation such that δW < 0 implies instability.
Therefore, δW < 0 with δW ∼ ε2 is not only a necessary but also a sufficient
condition for instability. Hence, as evident from the expression of δW (equation
10), a rigid rotation in general has a destabilising effect on ideal ballooning modes
(Bhattacharjee 1987).

However, we will now show that extending the stability analysis to higher
order can make this picture different. First, we will show by a heuristic argument
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that the Coriolis force which is usually dropped in the stability analysis has a
stabilising role. To show this we notice that in order for the mode to be stable
(i.e. ω to be real) the discriminant of equation (7) has to be positive, i.e.

4A2 + 4KδW > 0 .

This shows that the Coriolis force (represented by 4A2 term in the above
condition) has a stabilising contribution. This condition however is only sufficient
for stability and not necessary. This was also noted by Frieman and Rotenberg
(1960). This stabilising contribution should be taken into account while predicting
the deleterious role of the rigid rotation. It should be pointed out that this
improvement in the stability is of the order of ε 5

2 (see e.g. Sykes 1979). However,
one of the more economic approaches to extracting fusion power in the present
and future generations of tokamaks is to reduce the aspect ratio to low, e.g.
(R/a) ∼ 2 ·5, and ultra-low, e.g. (R/a) ∼ 1 ·0, levels (Peng and Strickler 1986;
Shaing 1995), in which case the stabilising contribution of the Coriolis contribution
can be significant.

Now we will show that there can be one more stabilising effect due to the
rigid rotation. To show this we start with the expression of equilibrium pressure
from equation (6), which can be written (assuming large aspect-ratio and circular
cross section) as

p(r, θ) = p(r)
(

1 + δ
r

R0

cosθ
)
, (11)

where p(r) = p(r)eδ, δ = Ω2R2
0/2RT and R = R0 + rcosθ. This gives

∇p =
∂p

∂r
er +

1
r

∂p

∂θ
eθ

=
∂p

∂r
[1 + ηcosθ]er −

p

R0

δ sin θeθ , (12)

where η = δ (r−Lp)/R0 and Lp = −p(dp/dr) is the pressure gradient scale length.
An interesting point can be noted from equation (12). For r < Lp(η < 0), i.e. for
inner flux surfaces the pressure gradient is reduced in the outboard side of the
plasma (| θ | ≤ π/2) where the ballooning mode is most unstable and the rigid
rotation is therefore expected to have a stabilising influence on the ballooning
mode. On the other hand, for r > Lp(η > 0), i.e. for the outer flux surfaces,
rotational drive adds to enhance the pressure gradient in the outboard side of
the plasma and the rigid rotation is expected to have a destabilising influence on
the ballooning mode. It is well known for a static plasma that if the equilibrium
is such that the pressure surfaces are shifted inward (towards the favourable
side) with respect to the flux surfaces, the stability of the ballooning mode can
be improved (see e.g. Wang and Bhattacharjee 1990). From equations (11) and
(12) it is evident that due to the effect of the centrifugal force, equilibrium
pressure becomes poloidally asymmetric and p(ψ)′ = constant surfaces (here the
prime refers to the derivations with respect to ψ) are inwardly shifted for r < Lp



Ballooning Modes 939

(η < 0). So, rigid rotation has a stabilising influence on the inner surfaces.
On the other hand, for r > Lp(η > 0), the p(ψ)′ = constant surfaces are shifted
outward (towards the unfavourable side) and as a result instability is favoured
(Bishop and Hastie 1985).

To show this more explicitly, let us assume the limit ε ¿ 1 for the sake
of simplicity and write equation (10) in a more familiar form for circular flux
surfaces (Sykes 1979):

δW =
∫ ∞
−∞

[1 + (θs+ λ)2]
(
dX

dθ

)2

−G[cosθ + (θs+ λ)sinθ]X2dθ , (13)

where

G = α(1 + η cos θ), α =
2Roq2

B2
0

(
p +

ρR2
oΩ

2

2

)
′,

λ = α

(
1 +

η

4
cos θ

)
sin θ, s = rq′/q

and B0 is the toroidal magnetic field. It is straightforward to see that the
corresponding Euler equation obtained from (13) is the s − α equation derived
by Sykes (1979) in the static case (hence α in their equation does not have a
flow pressure contribution and η, the poloidal asymmetry, is produced by the
high power neutral beam injection). This s− α equation was solved numerically
by Sykes (1979), who confirmed stability for η < 0. Later Bishop and Hastie
(1987) extended the case for η > 0 and found destabilisation for this case. It
is also worth noting that the pressure asymmetric effect (due to rotation) on
the stability of the ballooning mode was also noted by Wang and Bhattacharjee
(1990). What we have demonstrated here is that the rigid rotation can produce
a favourable (η < 0) poloidal asymmetry in the equilibrium pressure and thereby
can actually exert a stabilising contribution on the ballooning mode stability.
As typically Lp ∼ Ln (the density scale length), the r < Lp region encompasses
the bulk of the plasma profile. So, the bulk of the plasma is expected to
experience the stabilising effect of the rigid rotation. At the outer edge, the
present theory which is limited to the case of rigid toroidal rotation is however
not expected to be applicable. So, the case of r > Lp should be treated with
caution. Before leaving this section it is important to mention that the pressure
asymmetry envisioned in this work is a next order effect (as η ∼ ε). However, as
found by Sykes (1979) and also by Fielding and Haas (1978), the stabilisation
can be substantial for rather modest values of ‘η’. So even though the poloidal
asymmetry in the pressure profile is of the next order, it can play an important
role in the ballooning mode stability for a low aspect ratio tokamak. It can be
shown that, although the higher order stabilising contributions due to the Coriolis
force (∼ ε

5
2 ) and due to the poloidal asymmetry in the pressure (∼ ε3) taken

separately cannot compete with the lower order (∼ ε2) destabilising contribution,
these two higher order stabilising contributions taken together can supersede the
lower order destabilising contribution for low aspect ratio tokamaks (ε ≥ 1/2 ·5).
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3. Conclusions

In summary, we have found that the effect of rigid toroidal rotation on the
stability of ballooning modes may not be all deleterious. We have identified two
contributions arising due to the rigid rotation—one due to the Coriolis force
and the other due to the modification of pressure—which can have stabilising
influences on ballooning modes. These two stabilising contributions can add
together to suppress the rotational drive. This improvement in stability can be
particularly significant in low aspect ratio tokamaks. Our results therefore could
be crucial in present and future generations of tokomaks which aim to reduce the
aspect ratio to low and ultra-low values for extracting fusion power economically.
This stabilisation of ballooning modes by toroidal rotation may be crucial in
explaining the core confinement improvement (like VH modes) in tokamaks. This
could also be a plausible cause for the H-mode transition induced by the NBI
which introduces considerable toroidal momentum to the plasma.
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