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Abstract

A construction of real space–time based on metric linear connections in a complex manifold
is described. The construction works only in two or four dimensions. The four-dimensional
case based on a connection reducible to group U(2, 2) can generate Riemann–Cartan geometry
on the real submanifold of the original complex manifold. The possibility of connecting the
appearance of Dirac fields with anholonomic complex frames is discussed.

1. Introduction

We cannot build physics on the basis of the matter-concept alone. But the
division into matter and field is, after the recognition of the equivalence of mass
and energy, something artificial and not clearly defined. Could we not reject the
concept of matter and build a pure field physics?

Thus wrote Albert Einstein and Leopold Infeld in their book ‘The Evolution
of Physics’ in 1938 (Einstein and Infeld 1971). Einstein’s original idea was to
consider particles as regions with a high concentration of field energy, where the
field itself would have some geometrical meaning. A considerable difficulty with
such an approach lies in the existence of spin 1

2 particles. Geometrical theories
based on the structure of the real four-dimensional space–time manifold do not
naturally contain functions that are needed to describe such particles. Wave
functions describing spin 1

2 particles have transformation properties of complex
vectors transforming under the action of complex groups. They can be certainly
described quite well within the real space–time, but they do not form a natural
part of the geometry of space–time. Thus in order to give some simple geometrical
explanation of the existence of spin 1

2 particles, one should start with a more
fundamental complex manifold, and explain, why in some circumstances it has
an appearance of the real space–time and what sort of geometry would reveal
its true complex structure.

The purpose of the present article is to show that there is a mathematically
natural way to proceed in such a direction if one accepts that the fundamental
manifold is not open to direct observations and its structure may be investigated
only via cross sections in its bundle of frames. In fact, that is not really a new
idea. In general relativity, one talks about local observers associated with the
local Lorentz frames (Misner et al . 1970) and the geometrical properties of the

10.1071/PH96100         0004-9506/97/040793$05.00



794 P. K. Smrz

base manifold are deduced from a smooth choice of such frames over a given
region, i.e. from a local cross section of the bundle of linear frames of the base
manifold. Of course, one takes the space–time manifold as the base manifold in
general relativity. What is suggested here is to take one more step and start with
a more fundamental base manifold which would appear as a four-dimensional real
space–time only for a particular class of the local cross sections in its bundle of
frames. The general features of such a construction have been described (Smrz
1987) and lead to a tentative geometrical interpretation for the complex phase
used in quantum theory (Smrz 1995). Here we shall concentrate on the aspects
mentioned above, namely tentative geometrical interpretation of the spinor fields
describing spin 1

2 particles.
We start with a linear connection in a complex n-dimensional manifold reducible

to a unitary or pseudo-unitary subgroup of Gl(n,C). This provides a natural
way of reducing the observable real dimensions to n. It also defines a linear
connection on the n-dimensional real submanifold of the base manifold reducible
to SO(r, s), r + s = n, but only when n is either 2 or 4. The case with n = 4
is obviously the one that seems to correspond to reality. The linear connections
reducible to U(2, 2) lead to connections on the real submanifold reducible to
SO(4, 1). They also provide possible reasons why in some regions of space–time
we observe complex vectors (spinors). They may be associated with anholonomic
complex coordinates, and appear only when the original connection goes beyond
the ‘pure torsion’ connection defined on a pseudo-unitary complex affine space.

One should realise that when considering metric connections in a bundle of
linear frames of any manifold, there are three stages:

(1) The manifold is an affine metric space and the connection is the natural
flat connection defined by the parallelism in the affine space.

(2) The manifold is still an affine metric space (i.e. affine coordinates still
exist), but the connection is not flat, though it preserves the metric.

(3) The manifold is not an affine space (i.e. affine coordinates can be defined
only as anholonomic) and the connection is not flat.

From considerations of general relativity theory we consider (3) as more
fundamental than (2) since the basic structure of space–time appears to be of
type (3) with zero torsion, but from the mathematical point of view (2) is the
natural step from (1). In the approach starting from the connections in complex
manifolds, stage (2) corresponds to a description of an empty space–time of
general relativity, while stage (3) leads to the appearance of spinors.

2. Space–Time from Linear Connections on a Fundamental Manifold

In this section the basic idea is briefly reviewed (Smrz 1987). For an explanation
of geometric concepts the reader may consult for example the book by Nakahara
(1990). We assume the existence of a fundamental manifold which is not open to
direct geometrical observations. Yet, the geometry of the fundamental manifold
in the form of a connection in its bundle of frames is assumed to determine the
physical properties of the Universe, including the apparent existence of the real
four-dimensional space–time. Observers investigate the connection by building
local cross sections in the bundle of frames and measure their departure from
the horizontal directions determined by the connection. As mentioned before,
this is a normal procedure in general relativity where, however, the fundamental



Construction of Real Space–Time 795

manifold is space–time. In the present approach, the most basic geometrical
properties of space–time, including being real and four-dimensional, are to result
from such observations. This is achieved by including group elements which may
act like translations within the structure group of the bundle. What follows
is the mathematical formulation of the basic idea made as self-contained as
possible.

Let M be the fundamental manifold with a linear connection. We shall consider
M as real manifold of dimension m, since a complex manifold of dimension n
is also a special case of a real 2n-dimensional manifold. Let xµ denote local
coordinates in M . The bundle of frames P consists of all possible linear frames{

hµi
∂

∂xµ
; i, µ = 1, ..,m

}

at each point x ∈ M . A local cross section in P is a smooth selection of a
particular frame hµi (x) ∂

∂xµ for each x in a neighbourhood of a point in M . A
point in P , i.e. a frame at x ∈ M , may then be characterised by the set of
m+m2 coordinates xµ and aij :{

hµi (x)aij
∂

∂xµ
; j = 1, ..,m

}
.

This is the local trivialisation of P with respect to the selected local cross section.
The linear connection in M is then characterised by the horizontal lift X(h)

µ

of ∂
∂xµ

∈ TxM to p ∈ P :

X(h)
µ =

∂

∂xµ
−Aiµj(x)Y ji , (1)

where

Y ji = ajk
∂

∂aik

are the right-invariant vector fields of the general linear group Gl(m,R). Functions
Aiµj(x) are the components of the connection. When the reference cross section
characterised by hµi (x) is changed to hµj (x)αji (x), where αji (x) are elements of
Gl(m,R), the coordinates (xµ, aij) in P change to

x̃µ = xµ ãij = α−1i
k(x)akj ,

and, accordingly,

X(h)
µ =

∂

∂xµ
+
∂α−1i

k(x)
∂xµ

akj
∂

∂ãij
−Aiµja

j
k

∂ãlm
∂aik

∂

∂ãlm

=
∂

∂xµ
− [α−1l

i(x)Aiµj(x)αjm(x)− (∂µα−1l
i(x))αim(x)]ãmk

∂

∂ãlk
.
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This is the gauge transformation of the connection components which may be
also written in the matrix form as

Ãµ(x) = α−1(x)Aµ(x)α(x) + α−1(x)(∂µα(x)) . (2)

Even though the gauge transformation is only a special kind of a transformation
of coordinates, it has physical significance, since it involves selection of a reference
cross section and that forms a part of the process of measurement.

We assume that the connection in P is reducible to a subgroup G of Gl(m,R),
which contains a ten-dimensional subgroup H with the Lie algebra spanned by

{Lij = −Lji, Ti; i, j = 1, .., 4}

and the commutation relations

[Lij , Lkl] = gjkLil + gilLjk − gikLjl − gjlLik , (3)

[Lij , Tk] = gjkTi − gikTj , (4)

where gij = diag(1, 1, 1,−1). Such a set-up may define a Riemann–Cartan
geometry on a four-dimensional submanifold of M . Let N be such a submanifold,
and select the coordinate system in M in such a way that xµ, µ = 1, .., 4, are
coordinates in N , and N is defined by fixing the values of xµ, µ = 5, ..,m. Denoting
the components of the connection corresponding to Lij and Ti by Aij = −Ajiµ
and Aiµ respectively, we suppose that the 4 ×4 matrix Aiµ is invertible. Then a
cross section in the bundle of frames of N is defined by{

A−1µ
i

∂

∂xµ
; µ, i = 1, .., 4

}
,

while Aijµ become the Lorentz components of a metric linear connection in N .
The conserved metric is then given by

gµν(x) = Aiµ(x)Ajν(x)gij . (5)

The identification described above does not depend on the choice of the
reference cross section as long as the gauge transformation stays within the
Lorentz subgroup. The commutation relations (3) and (4) guarantee the correct
transformation of Aijµ and Aiµ under the Lorentz gauge transformations.

We do not assume any particular form for [Ti, Tj ]. That is needed only when
a gauge transformation outside the Lorentz subgroup is applied. Thus one can
generate a flat connection in N even if [Ti, Tj ] is not zero.

It should be expected that the submanifold N of M , i.e. the observed
space–time manifold, is determined in some way by the horizontal lift. Since we
assume that observers can measure a change of the position only by comparing
their reference cross section with the horizontal direction determined by the
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connection, it is natural to demand that the horizontal lift is trivial in the
unobserved directions:

X(h)
µ =

∂

∂xµ
, µ = 5, ..,m. (6)

We shall see in the next section how this can be achieved when the fundamental
manifold is complex.

3. Linear Connections in Complex Manifolds

Let M be an n-dimensional complex manifold and zµ = xµ + iyµ local
coordinates in M . A linear connection may be defined in a way similar to the
real case by the horizontal lift

Z(h)
µ =

∂

∂zµ
−Aiµj(z)Y

j
i , (7)

where Aiµj(z) and Y ji are now complex. In particular, we have

Y ij = aik
∂

∂ajk
,

where aij are elements of a complex invertible n× n matrix.
The above is in fact a special case of a linear connection in a 2n-dimensional

real manifold with local coordinates xµ and yµ. Writing

∂

∂zµ
=

∂

∂xµ
− i

2
∂

∂yµ
,

Aiµj = M i
µj + iN i

µj ,

aij = uij + ivij ,

∂

∂aij
= 1

2

(
∂

∂uij
− i ∂

∂vij

)
,

Z(h)
µ = 1

2 (X(h)
µ − iY (h)

µ ) ,

we have

X(h)
µ =

∂

∂xµ
−M i

µjU
j
i +N i

µjV
j
i , (8)

Y (h)
µ =

∂

∂yµ
−M i

µjV
j
i −N i

µjU
j
i , (9)
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and where

U ij = uik
∂

∂ujk
+ vik

∂

∂vjk
, V ij = vik

∂

∂ujk
− uik

∂

∂vjk
.

Let us now consider a reduction of the connection to a subgroup of Gl(n,C).
The analogue of a reduction to the orthogonal or pseudo-orthogonal subgroups
in the real case is a reduction to the unitary or pseudo-unitary groups. Assume
that the connection is reducible to U(r, s), r + s = n, and denote by gij the
diagonal matrix with r elements equal to +1 and s diagonal elements equal to
−1. The subgroup is then defined by

āki gkla
l
j = gij

and the right invariant vector fileds of U(r, s) may be written as

Yij = gikY
k
j − gjkȲ ki ,

where the bar denotes complex conjugation.
In the real representation we have

Yij = 1
2Uij +

i

2
Vij ,

where

Uij = gikU
k
j − gjkUki , Vij = gikV

k
j + gjkV

k
i .

The reduced horizontal lift of ∂/∂xµ can be written as

X(h)
µ =

∂

∂xµ
− 1

2M
ij
µ Uji + 1

2N
ij
µ Vji ,

where

M ij
µ = M i

µkg
kj = −M ji

µ , (10)

and

N ij
µ = N i

µkg
kj = N ji

µ . (11)

The requirement of M ij
µ being skew-symmetric and N ij

µ symmetric is necessary
for the reduction. At the same time, the reduced horizontal lift of ∂/∂yµ then
automatically yields the trivial lift

Y (h)
µ =

∂

∂yµ
.
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Of course, one could also consider the case of M ij
µ being symmetric and N ij

µ

skew-symmetric, which would lead to the trivial lift of ∂/∂yµ. In either case, n
real dimensions of M have trivial horizontal lift once the connection is reduced
from the 2n2-dimensional group Gl(n,C) to the n2-dimensional group U(r, s). In
this way a linear connection in M reducible to U(r, s) may lead to an induced
linear connection reducible to SO(k, l) in the real submanifold of M as long
as the Lie algebra of U(r, s), r + s = n, contains the Lie algebra spanned by
{Lij = −Lji, Ti; i, j = 1, .., n} with commutation relations as in (3) and (4). The
lowest dimension when this happens is n = 2 with SU(2) locally isomorphic
to SO(3) or SU(1, 1) locally isomorphic to SO(2, 1). The next case is U(2, 2)
containing subgroups locally isomorphic to SO(4, 1), SO(3, 2), as well as the
Poincaré group. For n > 4 no pseudo-unitary or unitary group contains subgroups
locally isomorphic to SO(k, l), k + l = n + 1, or to the corresponding Poincaré
group. It means that if the Riemann–Cartan geometry on a real manifold is to be
generated in the above described way, there is very little choice. It is, however,
significant that the observed space–time geometry, i.e. Lorentz reducible metric
connections on a 4-dimensional real manifold, is one of the allowed options.

4. Empty Space–Time and Connections in a Complex Four-dimensional Metric
Affine Space

Let M be a complex four-dimensional hermitean metric affine space with
canonical form of the metric gij = diag(1, 1,−1,−1). This means that it is
possible to choose an affine coordinate system zi, i = 1, .., 4, such that for
arbitrary tangent vectors we have

g

(
ui

∂

∂zi
, vj

∂

∂zi

)
= ūigijv

j

at any point of M . Even such a simple space can have a non-flat connection
defined in its bundle of frames. Thus if zµ are general coordinates in M we
can write the horizontal lift (7) defining the connection. If we assume that the
connection is reducible to U(2, 2), equations (10) and (11) can be written as

A†µG+GAµ = 0 , (12)

where G denotes the matrix with elements gij and Aµ the matrix with elements
Aiµj . The basis for complex matrices satisfying (12) consists of sixteen matrices,
of which eight are hermitean and anticommute with G, while the other eight are
antihermitean and commute with G. In terms of the standard Dirac matrices
γ1, γ2, γ3, γ4 and γ5 = γ4γ1γ2γ3, using the representation in which γ4 = G and
γ2

4 = −γ2
1 = −γ2

2 = −γ2
3 = 1, and γ4 is hermitean while the other gamma matrices

are antihermitean, we can write

Aµ = 1
2A

ij
µ Lij +BiµPi + CiµQi + FµD +HµE , (13)

where Lij = 1
2 (γiγj−γjγi), Pi = i

2
γi, Qi = 1

2γiγ5, D = i
2
γ5, E = i

2
I, i, j = 1, .., 4,

and the functions Aijµ , Biµ, Ciµ, Fµ, and Hµ are real. The subgroup L of U(2, 2)
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generated by Lij is locally isomorphic to the Lorentz group SO(3, 1), and together
with Pi or Qi we get groups locally isomorphic to the two de Sitter groups
SO(4, 1) and SO(3, 2), while L together with Pi + Qi or Pi −Qi yields groups
locally isomorphic to the Poincaré group.

A special case of (13), where

Aµ = 1
2A

ij
µ Lij +Aiµ(aPi + bQi) (14)

with a and b real constants such that at least one is different from zero and the
matrix [Aiµ] is invertible, corresponds to a Riemann–Cartan geometry induced on
the real submanifold of M . Notice that even though we assumed the existence
of the pseudo-unitary affine coordinates zi in M , the Minkowski coordinates on
the real submanifold of M will not in general exist. The curvature and the
torsion of the induced connection is calculated in the usual way from Aijµ and Aiµ.
Under the complex gauge transformation (2) limited to group L the functions
Aijµ and Aiµ transform respectively as the Lorentz components of the induced
connection and the tetrads identifying the reference cross section in the bundle
of frames of the real submanifold of M . It is only the complex tetrads of the
full complex manifold M which transform directly via the action of L, i.e. like
the four-component Dirac spinors.

The assumption about the existence of the pseudo-unitary affine coordinates
is not necessary for the geometrical interpretation of (14). Even when the
coordinates zi do not exist, the connection with Aµ given by (14) generates a
Riemann–Cartan geometry. The idea behind the assumption is as follows. If
zi exist, the set of cross sections in the bundle of frames connected by gauge
transformations limited to L, i.e. the system that the classical observer uses
to make geometrical measurements, contains only the information inscribed in
the comparison of the cross section with the horizontal direction given by the
connection. Only the induced geometry on the real submanifold of M can be
deduced from this, while the complex tetrads remain hidden for the observer.
This aspect is further discussed in the next section.

A few words should be added about the ‘non-geometric’ fields present in
the general form (13) of the matrix Aµ. At least one of them has a clear
physical interpretation. Field Hµ should correspond to the electromagnetic field
potential. The corresponding generator is that of the U(1) subgroup of U(2, 2),
and its trivial relationship to the other generators (it commutes with everything)
agrees with the main characteristics of the electromagnetic interactions. One can
say that the suggested approach leads also naturally to the appearance of the
electromagnetic field. However, a physical interpretation of Fµ combined with
the ‘dilation’ generator D is not clear.

5. Dirac Fields and Anholonomic Frames

Consider a linear metric connection in a manifold. At this stage it is irrelevant
whether the manifold is real or complex. The metricity of the connection
implies that the horizontal lift can be defined within the bundle of orthonormal
(or in the complex case unitary or pseudo-unitary) frames taken as a subbundle
of the full bundle of linear frames. Thus the connection carries two distinct sets
of information. One is about the connection within the bundle of orthonormal
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frames, while the other is about the imbedding of such a bundle into the full bundle
of frames. The two sets of information differ in their mathematical description.
The connection within the bundle of orthonormal frames is investigated by
comparing a selected cross section with the horizontally transported frames. The
difference is expressed in terms of the structure group of such bundle, i.e. the
group that transforms one orthonormal frame into another. On the other hand,
the mathematical description of the imbedding must go outside the structure
group. A non-trivial imbedding means that orthonormal (or pseudo-unitary)
coordinates do not exist in the base manifold and that the orthonormal frames
are anholonomic. For holonomic frames the functions hiµ are equal to the partial
derivatives ∂zi/∂zµ of the pseudo-unitary coordinates with respect to the general
coordinates, while in the case of anholonomic frames we have ∂µhiν−∂νhiµ different
from zero.

In the present approach the action of the structure group of the subbundle of
pseudo-unitary frames is limited to gauge transformations within the subgroup
L. These translate into the induced real transformations within the induced
real geometry and their complex origin disappears. It is feasible that when the
imbedding of pseudo-unitary frames into the full bundle of frames is trivial,
nothing else but the induced real geometry may be observed. However, when
the pseudo-unitary frames are anholonomic, they play a non-trivial role and the
complex tetrads hiµ must be included in the description of the geometry. In the
standard theory, this may (at least approximately) correspond to the addition of
the Dirac field to the pseudo-Riemannian space–time. A precise definition of the
Dirac field in terms of the tetrads as well as a geometrical significance of the
Dirac equation still needs to be discovered. One should look at expressions like∫

C

hiµdx
µ ,

where the integral is taken along a closed curve.
One more comment should be added to the above discussion. As the gauge

transformations controlled by the classical observer are assumed to be limited
to subgrup L, one may have anholonomic frames even when the base manifold
stays as the affine metric space and the pseudo-unitary coordinates exist. The
object ∂µhiν − ∂νhiµ which measures anholonomity does not transform covariantly
under general gauge transformations. If the pseudo-unitary coordinates exist, it
is possible to make the object equal to zero by some gauge tranformation but,
in general, it may not be possible when the tranformations are limited to L.
Thus, in principle, both the case of the empty space–time as well as that of the
space–time plus the Dirac field could be handled within the bundle of frames of
an affine metric space.

6. Conclusions

Whether we believe in a total geometrisation of physics or not is a matter
of personal taste. Still, the idea of representing particles by regions of special
geometrical significance within a unified geometrical theory has always been
attractive for a large number of physicists. Spin 1

2 particles needing complex
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vectors for their description present a challenge, and in the past the necessary
geometrical quantities were always added to the existing space–time structure.
In the standard approach one deals with the spinor valued Dirac fields, while the
attempts to include the spinors within the fundamental continuum were again
extending the space–time structure by adding spinor coordinates (Smrz 1968;
Salam and Strathdee 1974). Yet, it seems possible to start with a strictly complex
manifold where the presence of the complex vectors is natural, and derive the
observed real space–time with its geometrical properties via investigation of cross
sections in its bundle of linear frames. The reduction of the connection to a
pseudo-unitary subgroup is closely related to the reduction of the number of
observed dimensions, and the mathematical character of the gauge transformations
changes the original complex group into its real adjoint representation. At the
same time, the approach offers further possibilities. The regions with anholonomic
frames may force the inclusion of Dirac fields and thus give a special geometric
meaning to the regions occupied by particles. The existence of wider gauge
transformations leads to possible dramatic changes in the geometrical structure
of the observed space–time (including the change of the dimension) and could
help to understand the strange features of the quantum behaviour of particles
(Smrz 1995).
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