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Abstract

The quantum electrodynamical process of vacuum pair production in the presence of a focused
laser field is investigated. A coherent states picture of the electromagnetic field in the
focal region is developed which facilitates its inclusion into perturbative S -matrix quantum
electrodynamics. The lowest order differential transition rate with respect to the direction of
the newly created positron is presented for a number of scattering geometries. It is found that
with current technological trends such an event should be detectable in the not too distant
future.

1. Introduction

Recent developments in hard X-ray laser technology may in the near future
provide an environment in which the stimulated vacuum∗ production of electron–
positron pairs becomes an observable event. In this paper we present the lowest
order differential transition rate for the quantum electrodynamical process of pair
creation in the focal region of a hard X-ray laser device.†

Quantum electrodynamics (QED) in the presence of a focused optical laser
field has been investigated extensively since the inception of vacuum QED in
the early fifties (Becker 1991). Typically the wavelength(s) of the non-laser
particles are many orders of magnitude less than that of the laser photons. This
extreme disparity between the interaction region of the non-laser particles and the
near macroscopic inhomogeneities of the image space laser field allows the focal
region to be approximated by a transverse plane wave of infinite extent. From
a theoretical perspective such an approximation facilitates the use of the exact
solution of a Dirac fermion in an external classical transverse plane wave field;
the Volkov (1935) solution, in conjunction with QED in the bound interaction
picture representation (Jauch and Rohlich 1980).

The theoretical predictions of fundamental processes such as stimulated
bremsstrahlung and single photon pair production (Nikishov and Ritus 1967),
stimulated Möller scattering (Oleinik 1967) and Compton scattering (Oleinik 1968)
have met with success for a relatively modern class of experiments (McDonald

∗ In the present context this entails the traditional QED vacuum and the electromagnetic
field.
† This work has been presented in part at ALCOLS 93, University of Melbourne, Australia,
and at LXXX Congresso Nazionale, SIF, Lecce, Italy 1994.
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1992) that employ an intense pulsed optical laser system known as the table top
terrawatt (T3) laser system (Normand et al. 1990; Squire et al. 1991; Sauteret et
al. 1991) which, when focused, can achieve power densities of up to 1018 W cm−2

for a short period of time.
The plane wave approximation is expected to no longer hold for increasing

frequency and more strongly focused systems. Indeed, we have recently reported on
the breakdown of the plane wave approximation for the stimulated bremsstrahlung
differential and total transition rates (Derlet et al. 1995). Moreover, in the present
context, the plane wave approximation must immediately be abandoned since
the creation of a real electron and positron pair is not possible when solely in
the presence of an external transverse plane wave due to the single laser photon
momentum mode available. That is, the energy–momentum conservation rule in
4-vector notation is nk = p+ + p− which reduces to (p+p−) = −m2, a condition
not satisfied by real fermions. Here k is the 4-momentum of the photon, p+ (p−)
is the 4-momentum of the positron (electron) and n is an integer corresponding
to the number of laser photons contributing to the creation process.

However, with a more realistic representation of the focused field, the associated
real space variation of the electric field in the focal region would entail a broad
photon momentum spectrum allowing for example, the lowest order process
involving the four-momentum equation: k1 + k2 = p+ + p− (where k1 and k2 are
the four-momentum of photons from the focused laser field) to be satisfied, thus
facilitating the creation of real electron–positron pairs.

To investigate the stimulated vacuum pair production process, the plane wave
approximation must be replaced with a more realistic description of the focal
region. Unfortunately, the Volkov solution is then no longer applicable and
a necessarily perturbative approach with respect to the external laser field is
needed. Throughout this work the natural system of units is used where the
natural unit is chosen to be the electron volt.

Historically, the stimulated vacuum pair production rate has been investigated
in the limit ωlaser ¿ 2m0, where ωlaser is the laser frequency and m0, the rest
mass of the electron. In this regime, the focal region can be represented by
a constant electric field and an application of Schwinger’s proper time method
results in an analytic expression for the pair creation amplitude (Schwinger 1951;
Brezin and Itzykson 1970) which is non-perturbative with respect to the laser
field. In this regime, the pair creation process is a multi-laser photon process,
whereas in the limit ωlaser À 2m0, it is a few-laser photon process and therefore
amenable to a perturbation expansion with respect to the laser field.

It is known that for a constant (and alternating) electric field in the
intermediate case (ωlaser ∼ 2m0), there exists a non-trivial cross-over between the
above-mentioned limits, for which neither remains valid (Caldi 1992). To date,
there is however no similar detailed understanding for strongly inhomogenous
external laser fields; the evaluation of the vacuum–vacuum transition rate:

〈0|S|0〉 = 〈0|T exp
[
−ie

∫
d4xψ(x)γµψ(x)Aeµ(x)

]
|0〉, (1)

from which the stimulated vacuum–vacuum pair production rate can be derived,
clearly becoming intractable.
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As an initial attempt at obtaining the differential stimulated pair production
transition rate for hard X-ray and strongly focused laser fields, we employ a
perturbation expansion with respect to the laser field. In light of the above
discussion, even though the photon number density in the focal region will be far
from the intense field regime, our present calculation can realistically be regarded
as only an order of magnitude estimate calculation in which we can obtain, for
the first time, the angular distribution of the emerging positrons.

2. QED in a Focused Laser Field

In the present work we represent the laser field in terms of coherent states. This
provides a direct and intuitive relationship between a classical electromagnetic
field and the (momentum) distribution of the corresponding photon field (Glauber
1951, 1963). A generalised coherent state |ψ〉 is given by

|ψ〉 =
∏
~q,r

⊗|ρ~q,r〉 , (2)

where |ρ~q,r〉 is a coherent state satisfying the eigenvalue equation a†~q,r|ρ~q,r〉 =
ρ~q,r|ρ~q,r〉. Here a†~q,r is the creation operator for a photon with wave vector ~q
and spin r, and ρ~q,r an arbitrary complex number whose magnitude squared is
the eigenvalue of the photon number operator of the particular oscillation mode.
More generally |ψ〉 satisfies the eigenvalue equation Aµ(x)|ψ〉 = Aµe (x)|ψ〉, where
Aµ(x) is the QED photon field operator and

Aµe (x) =
∑
~k,r

εµ(~k, r)ρ~k,r√
2V ω~k

[exp(−ikx) + exp(ikx)] , (3)

in which εµ(~k, r) is the photon polarisation vector associated with the wave
vector ~k and spin r. It is the c-numbers, Aµe (x), which we interpret as the vector
potential of the classical external electromagnetic field.

It is straight forward (Eberly 1969) to show that the S -matrix operator
corresponding to an arbitrary generalised coherent state is given as

Sψ =
∞∑
n=0

(−ie)n

n!

∫
V T

d4x1 · · ·
∫
V T

d4xn

×
∑
{ψ}

T[ψ(x1)Â(x1)ψ(x1) · · ·ψ(xn)Â(xn)ψ(xn)] , (4)

where the summation
∑
ψ is over all possible combinations of substituting the

classical vector potential Aµe (x) for the photon field operator Aµ(x).
For a more realistic description of the focal region than a plane wave, we

employ the integral representation∗ developed by Richards and Wolf (Wolf 1959;
Richards and Wolf 1959). This provides the electromagnetic field resulting from

∗ Such an integral representation has also been used as a basis to estimate the total transition
rate for pair production in a focused optical laser field using semi classical Euler–Heisenberg
Lagrangian field theoretic methods (Bunkin and Tugov 1970).
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photons whose momentum distribution is contained within the cone of directions
subtended by the focal point and the aperture of the focusing device. For each
such direction the corresponding photon momentum will be of magnitude kF—the
momentum of the incident (unfocused) object region plane wave. Although Wolf’s
(1959) original derivation exploited some of the approximations contained within
geometrical optics, we may apply such a description to the hard X-ray regime
because such assumptions are a relic of the optical focusing device assumed—a
simple ideal lens. Different methods are used for the focusing of hard X-rays
where similar ray tracing techniques are often used to determine the theoretical
field distribution of a particular device (Wolter 1952; Chapman et al. 1991).
In the present context we regard the Richards and Wolf integral representation
as a possible description containing the essential aspects (inhomogeneities) of a
focused field. Whether or not such a description is an accurate one for a given
hard X-ray focusing device will not be considered in the present work.

The corresponding generalised coherent state for the Richards and Wolf integral
representation is defined via ρ and given by∗

ρ~q = fl0

√
cos θ~q√
2ωF

√
Lδ|~q|,ωF Θ(θ~q − α) , (5)

where f is the focal length and α is the aperture angle of the focusing device, l0
is the incident electric field of the object region (unfocused) plane wave and L is
the side length of the volume V to which the non-laser particles are normalised.
Note that α and f are related via tanα = r/f , where r is the radius of the
aperture exit. Here spherical polar coordinates are used, where the polar axis
is along the optical axis and the azimuthal angle is taken with respect to the
direction of the initial electric field (which is perpendicular to the optical axis).
Note again that all quantities are expressed in natural units.

The form of equation (5) can best be appreciated by considering |ρ~q|2 which
is equal to the photon number for mode ~q. We then have

l20
2ωF

× f2L cos θ~q × δ|~q|,ωF Θ(θ~q − α) , (6)

where the first factor corresponds (in natural) units to the photon number density
in the object region and the second factor, the adjusted image-space photon
normalisation volume determined from the classical geometrical optics intensity
law. Here, as in equation (5), the Kronecker-delta and step functions are used
to define the allowable modes.

If we choose Aµe (x) (equation 3) to be in the radiation gauge, the temporal
part of the polarisation vector is zero and the spatial part is perpendicular to the
corresponding laser photon momentum vector. Upon inspection of the vectorial
properties determined by Richards and Wolf, the associated spatial polarisation
vector in this gauge is given by

~εµ(~q) =
(

cos θ~q + sin2 φ~q(1− cos θ~q), (cos θ~q − 1) cosφ~q sinφ~q,− sin θ~q cosφ~q
)
, (7)

∗ The precise way in which this equation is derived will be detailed in a subsequent publication.
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where ~ε(~q) · ~q = 0 is indeed satisfied.

3. Stimulated Vacuum Pair Production Transition Rate

For stimulated pair production we wish to calculate the transition amplitude

{〈p+, r+| ⊗ 〈p−, r−|}Sψ|0〉 , (8)

where |p+, r+〉 (|p−, r−〉) is the non-interacting occupation number state for a
positron (electron) with momentum p+ (p−) and spin r+ (r−), and |0〉 is the
state describing the non-interacting vacuum external to the laser the field . The
corresponding Feynman diagrams for the expansion of this operator to second
order in the electron charge and the laser field are shown in Fig. 1. The normally
ordered integral Sψ operator for the second (lowest) order process is given by

S
(2)
ψ = ie2

∫ ∫
V T

N[ψ(x1)Âe(x1)SF (x1 − x2)Âe(x2)ψ(x2)]d4x1d
4x2 . (9)

Fig. 1. Feynman diagrams corresponding to the lowest order
process contributing to the vacuum pair production process
in the presence of an arbitrary external electromagnetic field.
Here the photon lines beginning with a cross represent laser
photons.

Using the usual finite space–time (V T ) Fourier representations of the fermion
field operators and propagator (Mandl and Shaw 1988), the pair production
amplitude can be written as

{〈p+, r+| ⊗ 〈p−, r−|}S(2)
ψ |0〉 = µr~p− (~p−)M(~p+, ~p−)vr~p+ (~p+) , (10)

where

M(~p+, ~p−) =
ie2mδE~p++E~p− ,2ωF

(V T )2√
4E~p+E~p−ω

2
FV

4

∑
~q1

ρ~q1ρ~p++~p−−~q1

× ε̂(~q1)
1

p̂− − q̂1 −m
ε̂(~p+ + ~p− − ~q1) . (11)

Here the hat notation (e.g. q̂) represents the Feynman slash vector. Note the
energy conserving Kronecker-delta and the remaining laser photon momentum
summation which includes all allowable laser momentum contributions to the
pair creation process.
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The unpolarised finite volume differential transition rate is

∆Γ(~p+, ~p−) =

∑
r~p− ,r~p+

|µr~p− (~p−)M(~p+, ~p−)vr~p+ (~p+)|2

T

V 2∆3~p+∆3~p−

(2π)6 , (12)

which for equation (11) is proportional to L4 and thus divergent for V →∞. This
is a consequence of treating the incident laser beam as a plane wave of infinite
transverse extent rather than a finite photon flux through the aperture plane.
Two factors of L2 are obtained since equation (12) calculates the pair creation
rate arising from two laser photons. This divergence can be corrected for, by
replacing each remaining factor of L2 with the aperture exit area (πf2 tan2 α).
Hence by multiplying equation (12) by (πf2 tan2 α)2/L4, we now obtain a finite
differential transition rate in the limits V →∞ and T →∞. In its evaluation,
the electron and positron spin summation is replaced by a trace calculation in
the usual way.

We wish to calculate the differential transition rate with respect to the direction
of the final positron and therefore integrate equation (12) over ~p− and |~p+|. This
results in a nine-dimensional integral∗ because the effect of the trace calculation
is to mix the ‘square’ of the laser momentum integration (summation) contained
in equation (11). These integrals are determined numerically via an adaptive
integration procedure.

Fig. 2. Focused field differential transition rate for the vacuum pair creation process. The
polar angle of the positron ranges between −90◦ and 90◦, and its azimuthal angle is 0◦. The
aperture angle ranges between 20◦ and 80◦ and the focused field laser photon energy is 1 MeV.

∗ |~p+| integration is trivial via the energy conserving delta function.
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Fig. 3. Focused field differential transition rate for the vacuum pair creation process. The
polar angle of the positron ranges between −90◦ and 90◦, and its azimuthal angle is equal
to 90◦. The aperture angle ranges between 20◦ and 80◦ and the focused field laser photon
energy is 1 MeV.

Fig. 4. Focused field differential transition rate for the vacuum pair creation process. The
azimuthal angle of the positron ranges between 0◦ and 360◦, and its polar angle is 45◦. The
aperture angle ranges between 20◦ and 80◦ and the focused field laser photon energy is 1 MeV.

4. Results

Figs 2 to 4 display the differential transition rate for a range of final scattering
directions of the newly created positron for a focused laser field consisting of
1 MeV photons with aperture angles equal to 20◦, 40◦, 60◦ and 80◦. All differential
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transition rates are in terms of the factor 1
4π

2f8l40 tan4 α (in natural units) giving
the vertical axis units of electron volts. Again spherical polar coordinates are
used with the polar axis along the optical axis and the azimuthal angle taken
from the direction of the incident electric field.

Fig. 2 is for an azimuthal angle of 0◦ (in the plane parallel with the incident
electric field) and Fig. 3 is for an azimuthal angle of 90◦ (in the plane perpendicular
to it). For both figures the polar angle continuously ranges between −90◦ and
90◦. For Fig. 4 the polar angle is held constant at 45◦ and the azimuthal angle
is varied between 0◦ and 360◦.

As expected the dominant direction which the positron emerges is along the
optical axis. We see that for small aperture angles (∼ 20◦), a twin peak structure
is apparent which is more prominent for the azimuthal angle of 0◦. For an
azimuthal angle of 90◦ such a structure is lost for the larger aperture angles
(becoming a central peak directed along the optical axis), whereas for an angle
of 0◦ the twin peak structure is maintained up to an aperture angle of nearly
60◦, above which, a central peak emerges similar to that for an azimuthal angle
of 90◦. These observations are also reflected in Fig. 4 where, as a function of
the azimuthal angle, an oscillatory differential transition rate arises from the
alternating central peak and twin peak structure.

The precise origin of the directional dependence is complicated and a result
of internal laser photon momentum integrals over a large trace integrand. The
general structure is nevertheless strongly dependent on the angular dependence
of the laser photon number density. Inspection of equation (5) reveals that
the photon number density |ρ~q|2 falls off as cos θ~q. Consequently the amplitude
squared of the process will be roughly dependent on the square of this
[see equations (11) and (12)] indicating a peak centred along the optical
axis.

The alternating twin peak and central peak structure reflects an asymmetry
with respect to the azimuthal angle which can only be due to the incident plane
polarised electric field and thus the distribution of laser photon polarisation
vectors in the image space region. Since the positron can interact with the laser
photon polarisation vectors via its spin, the trace calculation will produce 4-vector
products between p+ and ε(~q), giving the trace a non-trivial dependence on the
cosine of the angle between ~p+ and ~ε(~q) [and implicitly between ~p− and ~ε(~q)].

For low aperture angles there exists a dominant direction of polarisation in
the focal region that would be in the direction of the incident (object region)
polarisation vector (along l0); i.e. the laser photon polarisation vectors will have
an average azimuthal angle of 0◦. If the final positron has an azimuthal angle of
0◦ (Fig. 2), its polar angle will be equivalent to the angle the positron direction
makes with the dominant polarisation direction. The differential transition rate
will therefore be a strong function of the trace integral as the positron’s polar
angle is varied. This is in addition to the angular dependence incurred from
the directional dependence of the laser photon number density. However, if
the azimuthal angle is 90◦ (Fig. 3), there is little variation of the dominant
polarisation angle with respect to the positron’s polar angle and the angular
dependence of the differential transition rate will be primarily dependent on the
directional dependence of the laser photon number density and no twin peak
structure occurs.
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For larger aperture angles, the range of available laser photon momentum
directions, and thus laser polarisation vectors, is increased and the above effects
are averaged out in the internal laser momentum integrals. This is apparent in
the similarities between Figs 2 and 3 for large aperture angles and the almost
constant dependence of the differential transition rate as a function of positron
azimuthal angle in Fig. 4 for an aperture angle of 80◦.

Fig. 5. Focused field differential transition rate for the vacuum pair creation process. The
polar angle of the positron ranges between −90◦ and 90◦, and its azimuthal angle is equal
to 0◦. The aperture angle is equal to 40◦ and the focused field laser photon energy is 0 ·6,
1, 5 and 10 MeV. The error bars are derived from the numerical errors associated with the
evaluation of the trace integral.

Fig. 5 displays the differential transition rate, with a similar angular range
to that of Fig. 2, for the laser photon energies 0 ·6, 1, 5 and 10 MeV, for an
aperture angle of 40◦. We see that the rates with 0 ·6 and 1 MeV laser photons
differ by three orders of magnitude whereas, above twice the electron mass, there
is not such a great variation. We also see that the 10 MeV rate is less than the
rate for 1 and 5 MeV laser photons. This arises because for a given intensity
(i.e. a particular object region electric field), the laser photon density decreases
as the photon energy increases. We therefore would expect the transition rate
to begin to decrease at some stage as the laser energy is increased.

5. Discussion

As it stands, our transition rate is in the natural unit of electron volts. To convert
to units of inverse seconds we employ the ratio equality 1 eV/h̄ = s−1/6 ·58×10−16
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giving the differential transition rate in SI units as dΓSI = 1 ·52× 1015dΓNU. To
evaluate our differential transition rate for a particular experimental configuration
we use the compact laser synchrotron source (CSS) (Sprangle et al. 1992). Such
a system produces a coherent source of pulsed hard X-rays in the 30 to 1200 keV
range, by the Thompson backscattering of photons originating from a T3 laser
system off a beam of high energy electrons accelerated by an RF linac device.
The resulting number of photons emitted is 6× 109 photons per pulse and with a
repetition rate of ∼ 1 kHz, the average photon flux becomes 6× 1012 photons per
second. The angular spread of the emerging beam ranges between 2 to 10 mrad.
Therefore for the beam to attain a radius of 10 cm it must traverse at least a
distance of approximately 20 m. At this distance the photon flux per unit area
is 1 ·91× 1014 m−2 s−1 corresponding to a power of 1 ·91× 1020 eV m−2 s−1 for
1 MeV photons. If we choose the focal length of our focusing device to be equal
to 10 cm (i.e. an aperture angle of 45◦), the parameter fl0 in natural units is
equal to 50 ·132 eV using the conversion equality h̄c = 1 ·97× 10−7 eV m.

Because the CSS is a pulsed system, the meaningful quantity which can be
extracted from our calculation is the probability of the pair creation process
occurring per laser pulse. For the CSS, the temporal duration of the pulse
is 1 picosecond and to obtain the probability per laser pulse we multiply the
transition rate (now in s−1) by 1× 10−12 s. To obtain the differential transition
rate per laser pulse for the pair creation process we thus multiply the vertical
axis of Figs 2, 3, 4 and 5 by the factor

(1 ·52× 1015)f4π2 tan4 α
(fl0)4

4
(1× 10−12) = 1 ·57× 1033 . (13)

From Fig. 3, the central peak has an average height of approximately 4×10−52 eV.
Hence the differential probability per pulse is approximately 6 ·29× 10−19. With
a repetition rate of ∼ 1 kHz this is increased to 6 ·29× 10−16 emerging positrons
per second. To gain an order of magnitude estimate of the total probability, we
use the data from Figs 3 and 4 for α = 40◦ to fit a two-dimensional function
(in terms of the polar and azimuthal angle of the positron) which is integrated
over all directions. This gives a total average number of positrons emitted per
second of 3 ·21× 10−14. If we were to increase the average photon flux by three
orders of magnitude this would become an average of 10−8 to 10−9 positrons
per second—a more amenable (albeit still microscopic) rate to measure.

6. Concluding Remarks

In conclusion, we have presented the quantum electrodynamical differential
transition rate for pair creation in a focused hard X-ray laser field which allows
an order of magnitude estimate of the stimulated vacuum pair creation rate.
This has been made possible by going beyond the plane wave approximation to
the focused field and calculating the lowest order contribution with respect to
the focused laser field. By extrapolating today’s hard X-ray laser and focusing
technology to parameter regimes that may be accessible in the near future, we
have demonstrated that, in principle, it could be possible to detect the presence
of newly created positrons (and indeed electrons) from the centre of a focused
laser field.
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