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Abstract

We examine space–times which are described by a metric of the form ds2 = V 2(X)dT 2 −
U2(X)dX2 − dY 2 − dZ2 in which V = V (X) and U = U(X) are continuous functions of X
only and which admit diffeomorphisms into Minkowski space–time. It is shown that such
space–times are associated with rigidly accelerating frames of reference by appeal to the notion
of a fundamental observer. The condition for the existence of the diffeomorphism is derived
from first principles and some special cases of coordinates are discussed.

1. Introduction

The Rindler coordinates (η, ξ, Y, Z), defined by the transformation equations

x = ξ cosh(αRη) ∀αR 6= 0 , (1)

t = ξ sinh(αRη) ∀αR 6= 0, (2)

y = Y, z = Z, (3)

where (t, x, y, z) are the standard Minkowski coordinates, have proved to have
considerable heuristic value. Although previously used by a number of authors
(Einstein and Rosen 1935; Bergmann 1964; Møller 1972) these coordinates are so
named because it was Wolfgang Rindler who discussed the existence of the analogy
between the Kruskal (1960) diagram for ‘extended’ Schwarzschild space–time
and the Minkowski diagram for a rigidly accelerating rod. This property of the
Rindler coordinates has been employed in conjunction with Einstein’s principle
of equivalence to provide a flat space–time model which shares some of the
properties of curved space–times, but is technically simpler. In particular the
analogy between the static exterior region of a spherically symmetric black
hole covered by Schwarzschild coordinates and the Rindler coordinates has been
valuable in the study of some of the quantum theoretical properties of black
holes (Davies 1975) and in other calculations dealing with the generalisation of
quantum field theory to include cases involving accelerating particle detectors
(Unruh 1974, 1976). The utility of the Rindler coordinates for the description of
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accelerated phenomena arises because the world-lines ξ = constant are hyperbolic
in Minkowski space–time.

The Rindler coordinates cover only a region (wedge) of Minkowski space–time
which is bounded by future and past event horizons. These event horizons play
the part of the event horizon of the black hole in the analogy mentioned above.
It is therefore sometimes useful to distinguish this sub-manifold from Minkowski
space–time and to regard it as an independent space–time. In this work we look
at a generalisation of such a space–time, which we will call ‘the space–time of
constant proper-acceleration’, and find its general coordinatisations. We will be
dealing, in particular, with static space–times described by a metric of the form

ds2 = V 2(X)dT 2 − U2(X)dX2 − dY 2 − dZ2 , (4)

in which V = V (X) and U = U(X) are continuous positive functions of coordinate
X only and which admit a diffeomorphism into Minkowski space. The requirement
that there exist coordinate transformations into Minkowski space–time imposes
a condition on the forms of the functions U and V and is sufficient to ensure
that the resulting space–times have zero curvature. The admissable forms of the
functions U and V are, therefore, equally well determined by the requirement
that the space–time is flat.

The diffeomorphisms into Minkowski space–time which result from this procedure
fall into two categories. One of these may be identified as generalised Poincaré
transformations while the other consists of transformations into coordinate systems
which cover the space–time of constant proper-acceleration. In the later category it
will be shown that, as with the Rindler coordinates, the general inverse coordinate
transformations always have a domain which is restricted to a quadrant, or wedge,
in Minkowski space–time. On the other hand, the range of the inverse coordinate
transformations is dependent upon the specific forms of the functions U and V .

Throughout this work quantities which are associated with the coordinate
system in which the metric has the standard form of equation (4) will be denoted
by capital letters and referred to as coordinate quantities , or sometimes as
accelerating coordinate quantities. These lie in the image of the inverse coordinate
transformation. On the other hand quantities associated with the domain of the
inverse coordinate transformation will be referred to as inertial quantities and
written in lower case letters.

2. Conditions for the Existence of Coordinate Transformations

Given a metric of the general form of equation (4) it will be assumed that
there exists a diffeomorphism

t = t(T,X), x = x(T,X), y = Y, z = Z , (5)

whereby the coordinates of an event in the space–time described by equation (4)
may be expressed in terms of the inertial coordinates (t, x, y, z) in Minkowski
space–time. The metric expressed in equation (4) is assumed to be induced from
the standard Minkowski metric

ds2 = dt2 − dx2 − dy2 − dz2 ,
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by the diffeomorphism which is the inverse of equation (5).
In this section this property will be used to find the conditions which must be

met by the functions U and V in order that the coordinate transformations exist.

Proposition 1: The coordinates of an event (T,X, Y, Z) in the space–time
described by a metric of the general form ds2 = V 2(X)dT 2−U2(X)dX2−dY 2−dZ2

are related to the coordinates of the event in Minkowski space–time (t, x, y, z) by
a coordinate transformation if and only if the derivative of the function V with
respect to X is proportional to U .

Proof: Under the assumed coordinate transformations the inertial coordinate
differentials, dxµ, are easily found. These may then be substituted into the
Minkowski metric and the resulting equation compared to equation (4) to give
the conditions

(
∂x

∂X

)2

−
(
∂t

∂X

)2

= U2 , (6)

∂t

∂X

∂t

∂T
=

∂x

∂X

∂x

∂T
, (7)

(
∂t

∂T

)2

−
(
∂x

∂T

)2

= V 2 . (8)

Partial differentiation of equation (6) with respect to T and substitution of
equation (7) gives

(
∂x

∂T

)−1
∂

∂X

∂x

∂T
−
(
∂t

∂T

)−1
∂

∂X

∂t

∂T
= 0 , (9)

where it has been assumed that x and t are continuous functions of T and X
with continuous partial derivatives so that the order of the mixed partials may
be reversed.

Equation (9) may now be integrated to give the relationship between ∂x/∂T
and ∂t/∂T, and thus via equation (7) between ∂x/∂X and ∂t/∂X, i.e.

∂t

∂X
=

∂x

∂X
vF (T ) , (10)

∂x

∂T
=

∂t

∂T
vF (T ) , (11)

where vF (T ) is an arbitrary function of T which results from the integration.
The notation vF is used for consistency with later notation. Using equations
(10), (11), (6) and (8), it can easily be shown that
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∂x

∂X
=

U(X)√
1− v2

F (T )
, (12)

∂t

∂X
=
U(X)vF (T )√

1− v2
F (T )

, (13)

∂t

∂T
=

V (X)√
1− v2

F (T )
, (14)

∂x

∂T
=
V (X)vF (T )√

1− v2
F (T )

. (15)

Equation (12) may now be differentiated partially with respect to T to yield

∂

∂T

∂x

∂X
= U(X) vF (T ) [1− v2

F (T )]−3/2 ∂

∂T
vF (T ) , (16)

while equation (15) is differentiated partially with respect to X to yield

∂

∂X

∂x

∂T
= vF (T ) [1− v2

F (T )]−1/2 ∂

∂X
V (X) . (17)

Equations (16) and (17) are now identified after reversing one of the mixed
partial derivatives to give that

[1− v2
F (T )]−1 ∂

∂T
vF (T ) =

1
U(X)

∂

∂X
V (X) . (18)

Since the left-hand side of equation (18) is a function of T only, while its
right-hand side is a function of X only, both sides must be constant, say αR,
and hence using the right-hand side gives

∂

∂X
V (X) = αR U(X) (19)

as required.
Equation (19) is the only restriction on the forms of the functions U and

V , other than the obvious conditions of differentiability and positivity defined
above, so we are free to choose V, use equation (19) to find a suitable form
for U , or vice versa, and then substitute into equation (4) to find the equation
for the metric. Since the resulting metric describes a space–time for which
a coordinate transformation into Minkowski space–time exists, the use of the
coordinate transformation which induces this metric guarantees that the mapping
is an isometry and therefore preserves curvature. The resulting space–times are,
therefore, flat.
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3. The Coordinate Transformations

An explicit form for the general transformation between the two space–times
can now be found after evaluating the function vF by equating the left-hand side
of equation (18) to αR and integrating with respect to T to give

vF (T ) = tanh(αRT + ψ) , (20)

where ψ is a constant of integration.
Using the result obtained in equation (20), equations (12), (13), (14) and (15)

become

∂x

∂X
= U(X) cosh(αRT + ψ) , (21)

∂t

∂X
= U(X) sinh(αRT + ψ) , (22)

∂x

∂T
= V (X) sinh(αRT + ψ) , (23)

∂t

∂T
= V (X) cosh(αRT + ψ) . (24)

Integration of equations (23) and (24) gives respectively that

x =
V (X)
αR

cosh(αRT + ψ) +M(X), ∀αR 6= 0 , (25)

t =
V (X)
αR

sinh(αRT + ψ) +N(X), ∀αR 6= 0 , (26)

where M and N are arbitrary functions of X introduced via the integration.
These functions may be evaluated by differentiating both equations partially
with respect to X and then comparing the resulting equations to (21) and (22)
respectively. From equation (25)

∂x

∂X
=

1
αR

∂V (X)
∂X

cosh(αRT + ψ) +
∂M(X)
∂X

= U(X) cosh(αRT + ψ) +
∂M(X)
∂X

, (27)

while from equation (26)

∂t

∂X
=

1
αR

∂V (X)
∂X

sinh(αRT + ψ) +
∂N(X)
∂X

= U(X) sinh(αRT + ψ) +
∂N(X)
∂X

, (28)
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where in both cases equation (19) has been used. Comparing equations (27) and
(28) to (21) and (22) respectively gives that ∂M(X)/∂X = ∂N(X)/∂X = 0 so
that both M and N must be constants. Substitution into equations (25) and
(26) gives the coordinate transformations in the cases for which αR 6= 0,

x =
V (X)
αR

cosh(αRT + ψ) +M, ∀αR 6= 0 , (29)

t =
V (X)
αR

sinh(αRT + ψ) +N, ∀αR 6= 0 . (30)

The metric independent constants M , N and ψ are determined by the particular
choice of inertial coordinate system. In particular, the constants M and N
depend upon the relative positions of the origins of the two coordinate systems.
Without loss of generality let the inertial system be chosen so that

(T,X, Y, Z) = (0, 0, 0, 0)⇔ (t, x, y, z) = (0, x0, 0, 0) . (31)

This choice implies that coordinate time is synchronised to the inertial standard
time at t = T = 0, and that by changing the value of x0 it is possible to effect
a translation of the origin of the moving coordinate system along the inertial
x-axis.

Substituting the conditions given by equation (31) into (29) and (30) gives
the final forms for the coordinate transformations when αR 6= 0, i.e.

x =
V (X)
αR

cosh(αRT + ψ)− V (0)
αR

coshψ + x0, ∀αR 6= 0 , (32)

t =
V (X)
αR

sinh(αRT + ψ)− V (0)
αR

sinhψ, ∀αR 6= 0, (33)

and y = Y, z = Z.

The αR = 0 Case

In the case αR = 0, equation (19) implies that V (X) must be a constant. It will
be seen that the function V in the metric determines, among other characteristics,
the ratio of the rate of proper-time to accelerating-coordinate time at the position.
If we now require that there should exist an accelerating-coordinate position, say
X = R, at which this ratio is unity then V (R) = 1 and so if V (X) is a constant
it must also be unity. In this case equations (23) and (24) become

∂x

∂T
= sinhψ , (34)

∂t

∂T
= coshψ . (35)

Integration of equations (34) and (35) gives that

x = [T +M(X)] sinhψ , (36)

t = [T +N(X)] coshψ (37)
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respectively, where once again M and N are arbitrary functions of X which
have been introduced via the integration. Partial differentiation of these two
equations with respect to X, comparison with (21) and (22) respectively, and
then integrating gives that

M(X) = Ũ(X) cothψ + p , (38)

N(X) = Ũ(X) tanhψ + q , (39)

where p and q are constants of integration and Ũ(X) is defined so that Ũ(0) = 0.
Substituting equations (38) and (39) into (36) and (37) respectively, and introducing
two new constants, P and Q, such that P = p sinhψ and Q = p coshψ, gives the
required coordinate transformations when αR = 0:

x = Ũ(X) coshψ + T sinhψ + P , (40)

t = T coshψ + Ũ(X) sinhψ +Q . (41)

Once again the constants P and Q are determined by the relative positions of
the origins of the coordinate systems. Using the choice of inertial frame given
by (31), equations (40) and (41) give that

x = Ũ(X) coshψ + T sinhψ + x0, if αR = 0 , (42)

t = T coshψ + Ũ(X) sinhψ, if αR = 0 (43)

for the final forms of the coordinate transformations when αR = 0.

4. Inverse Coordinate Transformations

The following inverse coordinate transformations when αR 6= 0 are easily
obtained:

V (X) = αR

[(
x− x0 +

V (0)
αR

coshψ
)2

−
(
t+

V (0)
αR

sinhψ
)2] 1

2

, (44)

T =
1
αR

tanh−1

(
t+ [V (0)/αR] sinhψ

x− x0 + [V (0)/αR] coshψ

)
− ψ

αR
, (45)

and y = Y, z = Z.
For αR = 0 the inverse transformations are

Ũ(X) = (x− x0) coshψ − t sinhψ , (46)

T = t coshψ − (x− x0) sinhψ , (47)

and Y = y, Z = z, where the final forms for equations (44) and (46) can be
obtained once V (X) and U(X) are known.
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It is interesting to note at this stage that from equation (45)

tanh(αRT + ψ) =
t+ [V (0)/αR] sinhψ

x− x0 + [V (0)/αR] coshψ
,

and therefore ∣∣∣∣t+
V (0)
αR

sinhψ
∣∣∣∣ < ∣∣∣∣x− x0 +

V (0)
αR

coshψ
∣∣∣∣ . (48)

In the αR 6= 0 case, therefore, the inverse coordinate transformations have a
domain which is only that region of Minkowski space–time described by equation
(48). This region is bounded by the ‘light cones’ represented by the straight
lines with slopes ±1 passing through the event,

(t, x) =
(
− V (0)

αR
sinhψ, x0 −

V (0)
αR

coshψ
)
,

which, therefore, dissect the Minkowski space–time into the four distinct wedges

Region (I) x− x0 +
V (0)
αR

coshψ >
∣∣∣∣t+

V (0)
αR

sinhψ
∣∣∣∣ ,

Region (II) t+
V (0)
αR

sinhψ >
∣∣∣∣x− x0 +

V (0)
αR

coshψ
∣∣∣∣ ,

Region (III) x− x0 +
V (0)
αR

coshψ < −
∣∣∣∣t+

V (0)
αR

sinhψ
∣∣∣∣ ,

Region (IV) t+
V (0)
αR

sinhψ < −
∣∣∣∣x− x0 +

V (0)
αR

coshψ
∣∣∣∣ .

Of these, only regions (I) and (III) satisfy equation (48). By convention we shall
adopt the right-hand wedge, region I, as the region of Minkowski space–time to
which the coordinate transformations map events from the (T,X, Y, Z) coordinate
system.

An observer in region (I) can send light signals to observers in region (II) but
not to regions (III) and (IV). Similarly observers in region (I) can detect signals
sent from region (IV) but not from regions (II) and (III). It follows from this
that no communication is possible between observers in regions (I) and (III),
and further that the light cones represent event horizons for observers in these
regions. In terms of the (T,X, Y, Z) coordinate system the equation for the event
horizon becomes simply X = E, where E is a constant satisfying

V (E) = 0 . (49)

It is possible to choose V so that equation (49) is satisfied only at −∞, for
example, so it does not follow from the existence of the event horizons in
Minkowski space–time that there exists an event horizon at a finite position in
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a flat space–time described by equation (4). This depends, instead, on the form
of the function V .

5. Properties of the Space–time

In this section some of the properties of the flat space–time of constant proper-
acceleration will be examined by looking at the properties of the fundamental
observers of this space–time. By the term ‘fundamental observers of a space–time’
we have in mind the usual idea employed in cosmology. In cosmology a space–time
can be regarded as a model universe by specifying a family of observers which
follow world-lines which are characteristic of the average motion of matter in
the universe being modeled (Martin 1988; Bondi 1952; Weinberg 1976). Such
world-lines are then referred to as fundamental world-lines and observers following
these world-lines are fundamental observers of the model universe.

We can regard the space–time of constant proper-acceleration as a model
universe and take the fundamental observers of this space–time to correspond to
the observers composing a frame of reference. Such a space–time can then be
said to be naturally adapted to the description of this frame of reference. By a
frame of reference we shall mean an ensemble of physical observers with well
determined physical inter-relationships which are equipped with an ideal standard
clock, and an ideal standard measuring rod. We shall use the coordinates derived
above to define the fundamental observers of the space–times under consideration
by taking the equation for the world-line of a fundamental observer to be the
straight line

(X,Y, Z) = (F, FY , FZ), ∀T ,

where (F, FY , FZ) is a constant. It also proves convenient to distinguish one of
these fundamental observers located at X = R where V (R) = 1, and call this the
reference observer of the space–time.

It will be seen that the characteristics of fundamental observers in the
space–times under consideration fall into two categories determined by whether
or not αR vanishes. It is therefore convenient to consider the cases αR 6= 0 and
αR = 0 separately. In what follows we use the fact that the Y and Z coordinates
are identifiable with the corresponding Minkowski coordinates, y and z, and
simplify the notation by suppressing these coordinates in the calculations. The
results are true on an arbitrary (T,X) hypersurface.

(5a) The αR 6= 0 Cases

Let xF denote the spatial coordinate in Minkowski coordinates of the fundamental
observer located at X = F . Substituting into the coordinate transformations
and solving simultaneously gives the following equation for the world-line of
fundamental observers:(

xF − x0 +
V (0)
αR

coshψ
)2

−
(
t+

V (0)
αR

sinhψ
)2

=
V 2(F )
α2
R

. (50)

Since x0, αR, V (0) and V (F ) are all constants, this is the equation of a
hyperbola. The fundamental observers of the space–time, therefore, follow
hyperbolic world-lines with respect to the inertial coordinate system and therefore
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have constant proper-acceleration (Rindler 1977) regardless of the form of the
function V . Any two such space–times can, therefore, only be distinguished by
the values of proper-acceleration assigned to different fundamental observers.

The term ‘flat space–time of constant proper-acceleration’ is not meant to imply
that all of the fundamental observers have the same value of proper-acceleration.
In fact, it will be shown that it is not possible to find a flat space–time described
by a metric of the form of equation (4) in which all fundamental observers have
one and the same value of proper-acceleration, unless that proper-acceleration is
zero. It will also be shown that the zero proper-acceleration case corresponds to
the αR = 0 case to be discussed later in this section.

Solving equation (50) for xF , differentiating with respect to t and substituting
from (47) gives that

vF = tanh(αRT + ψ) = vF (T ) . (51)

The function vF (T ), therefore, which was introduced in equations (10) and (11)
as an arbitrary function resulting from an integration is precisely the velocity
of the accelerating fundamental observer with respect to the inertial coordinate
system. Note also that at time T = 0 the velocity becomes simply vF = tanhψ,
so the constant ψ determines the velocity of the fundamental observers at this
time. It is interesting that vF is independent of the accelerating coordinate
position F of the fundamental observer in accelerating coordinates.

The acceleration aF of the fundamental observers can also be found relative
to the inertial coordinate system by differentiating equation (51) once again with
respect to t. Thus

aF = αR sech2(αRT + ψ)
dT

dt
. (52)

The derivative dT/dt is found by differentiating equation (33) with respect to T
after letting X = F and inverting to give

dT

dt
=

1
V (F )

sech(αRT + ψ) . (53)

Substituting this equation into (52) gives the acceleration of the fundamental
observers relative to the inertial coordinate system, i.e.

aF =
αR

V (F )
sech3αRT + ψ . (54)

Note that the acceleration of the fundamental observers reaches a maximum at
T = −ψ/αR and then approaches zero as T tends to infinity.

(5b) Proper-time for the Fundamental Observers (αR 6= 0)

In general the standard proper-time τF as determined by a fundamental
observer at F is not the same as coordinate time. The relationship between the
accelerating-coordinate time and proper-time for a fundamental observer located
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at X = F will be found after first finding the relationship between the proper-time
at F and the inertial standard time. This is done by starting with the standard
special relativistic result

dt = γdτ , (55)

where γ = (1− u2)−1/2 and u is the velocity determined by the inertial observer
at rest, of the inertial frame of reference with respect to which the moving
observer remains at rest. It follows from the standard clock hypothesis of special
relativity that the velocity of the momentarily co-moving inertial frame (MCIF)
of the accelerating standard clock in equation (51) can be substituted for u, so

γF (T ) = cosh(αRT + ψ) , (56)

and substitution into (55) gives that

dt = dτF cosh(αRT + ψ) .

The inertial time differential may be eliminated from this equation by use of the
inverse of equation (53) so that V (F ) = dτF /dT or upon integration

τF = V (F )T , (57)

where we have used the added condition that accelerating-coordinate time is
synchronised to standard proper-time at τF = T = 0.

This important and interesting result provides a physical interpretation for the
function V . The function V evaluated at F is the ratio of the rate of proper-time
to accelerating-coordinate time at the position X = F .

(5c) Proper-distance for the Fundamental Observers (αR 6= 0).

In addition to a standard clock each fundamental observer is equipped with a
standard measuring rod by means of which the fundamental observer located at
X = F can determine the proper-distance to events in its immediate neighbourhood.
The total proper rod-distance between two points in the accelerated space–time
can then be found by disposing along the X-axis fundamental observers who
lay down standard measuring rods end to end. In general, the proper-distance
from a fundamental observer to a neighbouring point will not be the same as
the accelerating-coordinate distance. By analogy to the method used earlier for
proper-time the relationship between the proper-distance differential, dσF , at
X = F and the inertial coordinate differential, dx, will be found first, by using
the standard special relativistic result,

dx = dσ/γ. (58)

Once again, it follows from the definition of a standard measuring rod, that u
may be identified with the velocity of the MCIF of the fundamental observer.
Thus from equation (56), equation (58) becomes

dx = dσF sech(αRTm + ψ) , (59)
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where Tm denotes the accelerating coordinate time when the measurement is
carried out.

The relationship between the accelerating-coordinate differential dX and the
inertial-coordinate differential can be found after first noting that any measurement
by an inertial observer of the length of a moving interval requires a determination of
the position of the ends of the interval at the same inertial time, tm. Substituting
t = tm in the inverse coordinate transformation, equation (44), and differentiating
implicitly with respect to x gives that

dx = dX U(X)sech(αRTm + ψ) , (60)

where equation (19) and the coordinate transformation equation (29) have been
used. Finally, comparing equations (59) and (60) gives that dσF /dX = U(X) or
upon integration that

σF =
V (X)
αR

− V (F )
αR

, (61)

where σF denotes the proper-distance interval from the fundamental observer at
F to the point X.

Equation (61) provides a physical interpretation for the function U(X) in the
metric. It is the ratio of the proper-distance differential to accelerating-coordinate
differential at position X.

(5d) Proper-acceleration for the Fundamental Observers (αR 6= 0)
The proper-acceleration αF of the fundamental observer at X = F is by

definition the acceleration determined with respect to the MCIF at F . It is
related to the acceleration determined with respect to the inertial coordinate
system by the usual result of special relativity, αF = aF γ

3
F , which from equation

(56) becomes

αF = aF cosh3(αRT + ψ) .

Using equation (54) gives finally

αF =
αR

V (F )
. (62)

As expected, the proper-acceleration is dependent on the position of the
fundamental observer but is independent of time. Note also that in order for the
proper-acceleration to take the same value for all fundamental observers, i.e. to
be independent of F , the function V must be a constant, which from equation
(19) above implies that αR = 0, and thus from (62) that the proper-acceleration
vanishes. Thus, as mentioned earlier, with the exception of the trivial case in
which αF vanishes, it is not possible to find a flat space–time described by a
metric of the form of equation (4) in which all of the fundamental observers have
one and the same value of proper-acceleration.

Note also that equation (62) may also be evaluated at the position of the
reference observer which shows that the constant of proportionality αR introduced
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in (19) may be identified as the proper-acceleration of the reference observer.
This result may be used to provide a second interpretation for the function V

in the metric. From equation (62) V (F ) = αR/αF so the value of the function
V at F is the ratio of the proper-acceleration of the reference observer to the
proper-acceleration of a fundamental observer located at X = F .

(5e) The αR = 0 Cases

Once again let xF denote the inertial-coordinate position of the fundamental
observer located at X = F . Using the coordinate transformations for the αR = 0
cases and solving we obtain that the equation of the world-lines for the fundamental
observers is

xF = t tanhψ + Ũ(F )sechψ + x0 . (63)

This is the equation of a straight line with slope tanhψ. In the αR = 0 case,
therefore, all of the fundamental observers of the space–time described by the
metric in equation (4) travel at the same constant velocity

vF = tanhψ (64)

with respect to the (t, x, y, z) coordinate system.

(5f) Proper-time for the Fundamental Observers (αR = 0)

Once again the relationship between the time shown by moving coordinate
clocks, keeping coordinate time T , and moving standard clocks, keeping proper-
time, can be found after first finding the relationship between the proper-time
and the inertial standard time. Substituting equation (64) into (55) gives that

dt = dτF coshψ . (65)

Differentiation of equation (45) with respect to T , however, shows that dt = dT coshψ
so (65) becomes simply dT = dτF . In this special case, therefore, the coordinate
clocks and the moving standard clocks keep the same time. The relationship
between the proper-time of the fundamental observers and the inertial standard
time may be easily derived from equations (64) and (65), and becomes

t = τF coshψ =
τF√

1− v2
F

, (66)

which is the standard time-dilation of special relativity.
In the αR = 0 case, therefore, all of the fundamental observers move with the

same velocity along the x -axis and the (T,X, Y, Z) coordinate system is inertial.
The only effect of the function Ũ(F ) is to define a scale for the X-axis. This
axis may be chosen to have a linear scale simply by letting U(X) = 1 so that
Ũ(X) = X, in which case the coordinate transformations reduce to the standard
Poincaré transformations of special relativity.



864 D. Tilbrook

6. Special Cases

It has been shown that space–times described by a metric of the general
form of equation (4) are characterised by fundamental observers all of whom
have constant proper-acceleration and therefore follow hyperbolic world-lines.
Since all fundamental world-lines are hyperbolic any two space–times can be
distinguished only by the values of proper-acceleration which are assigned to
particular fundamental observers by the functions V (X) and U(X) in the metric.
It has also been shown that many of the important properties of these space–times
are generic since they are determined only by the general form of the metric.
Other properties, however, will be determined by the particular choices for V (X)
and U(X). Special cases of the general coordinate systems derived in this paper
have appeared in the literature in other contexts. In this section we consider
two examples and point out a few of the special properties of these coordinates.

(6a) Rindler Coordinates

The Rindler coordinates arise from the work carried out here simply by
requiring that the accelerating coordinate displacement of an object from the
reference observer be precisely equivalent to the proper rod-distance to the object
from the reference observer, i.e. σR = X − R where X denotes the coordinate
position of the object. With this requirement equation (61) yields that

V (X) = αRX − αRR+ 1 . (67)

It follows from equations (67) and (19) that U(X) = 1 and the resulting metric
for the space–time is

ds2 = (αRX − αRR+ 1)2(dT )2 − (dX)2 − (dY )2 − (dZ)2 .

The standard form for the Rindler (1966) metric is obtained by locating the
reference observer at R = 1/αR, in which case the metric becomes

ds2 = α2
RX

2(dT )2 − (dX)2 − (dY )2 − (dZ)2 ,

and the standard Rindler transformations

x = ξ cosh(αRη) ∀αR 6= 0 , (68)

ct = ξ sinh(αRη) ∀αR 6= 0 , (69)

and y = Y, z = Z, result from the general coordinate transformations (32) and
(33). We have also chosen to let the origins of the accelerating coordinate system
and inertial coordinate system coincide, the velocity of the accelerating reference
observer relative to the inertial frame to be zero at time t = 0, i.e.

x0 = 0

ψ = 0

}
at t = T = 0 , (70)
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and we have chosen to write X = ξ and T = η. With this choice and using
equation (49), the event horizon for the Rindler space–time is located at the
origin of the accelerating coordinate system and the fundamental observers have
hyperbolic world-lines.

A commonly employed alternative realisation of the Rindler coordinates results
from locating the reference observer at the accelerating coordinate origin, R = 0,
in which case the metric takes the form

ds2 = (αRX + 1)2(dT )2 − (dX)2 − (dY )2 − (dZ)2 , (71)

and the coordinate transformations become

x =
(
X +

1
αR

)
cosh (αRT )− 1

αR
∀αR 6= 0 ,

t =
(
X +

1
αR

)
sinh (αRT ) ∀αR 6= 0 ,

with y = Y, z = Z, where the conditions given by equation (70) have been
employed. In this case the event horizon is located at −1/αR.

It is interesting to note that for comparison with the results for other space–times
to be discussed below, the coordinate velocity of light in Rindler coordinates is

dXγ

dT
= ±(αRX + 1) , (72)

where the alternative coordinate system described by the metric form in equation
(71) has been adopted. This result is obtained by starting with the equation of
the light cone in inertial coordinates, transforming into accelerating coordinates
and differentiating with respect to coordinate time. The general result takes the
form

dXγ

dT
= ±V (Xγ)

U(Xγ)
, (73)

from which (72) is obtained by the specific choice of the metric, equation (71).
Note that, in general, for the class of space–times we are considering the speed
of light is not constant and is equal to its Minkowski value only at the position
of the reference observer.

(6b) Lass’s Coordinates and the Uniform Gravitational Field

Lass (1963) introduced a coordinate transformation between an accelerating
coordinate system and an inertial coordinate system which is based upon a
relatively simple and compelling set of hypotheses, and which leads to the metric

ds2 = e2αRXdT 2 − e2αRXdX2 − dY 2 − dZ2 .
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An alternative derivation of Lass’s transformations was carried out by Marsh
(1965), while Romain (1964) has analysed the hypotheses employed in Lass’s
derivation. Lass’s metric satisfies equation (19) with V (X) = U(X) = eαRX and
therefore describes a flat space–time of the type discussed in this paper. The
coordinate transformations (which agree with those found by Lass) can be found
from equations (32) and (33) and become

x =
1
αR

eαRX cosh(αRT )− 1
αR

,

t =
1
αR

eαRX sinh(αRT ) ,

once the conditions given in equation (70) are employed. Some of the properties
of these coordinates are discussed in Lass’s paper but it is possible here to call
attention to two particularly interesting properties. Firstly, from equation (73)
the coordinate-velocity of light takes the Minkowski value at all points in this
accelerating space–time. Among the coordinatisations of accelerating frames of
reference in a flat space–time this is a unique property of Lass’s coordinates
and could equally well have been used as the basis for the derivation of the
metric. The requirement that |dXγ/dT | = 1 gives, from equation (73), that
V (X) = U(X) which from (19) implies the exponential form for V and U .

The second particularly interesting property of Lass’s coordinates results
from the coordinate-acceleration of a particle released from rest by one of the
fundamental observers. The world-line of such a freely-falling particle is found
by writing the equation for the particle in inertial coordinates, transforming to
accelerating coordinates and differentiating twice with respect to T to yield

d2Xff (T )
dT 2 = −αR

{
V (Xff (T ))
U(Xff (T ))

sech2(αRT − αRTr)

+
[
V 2(Xff (T )) U

′
(Xff (T ))

αRU
3(Xff (T ))

− V (Xff (T ))
U(Xff (T ))

]
tanh2(αRT − αRTr)

}
, (74)

where

U
′
(Xff (T )) =

dU(Xff (T ))
d(Xff (T ))

,

and Xff (T ) denotes the position of the freely-falling particle in general accelerating
coordinates.

Substituting for V and U in equation (74), using Lass’s metric and evaluating
the resulting equation at the time of release, T = Tr, gives that

d2Xff (T )
dT 2 = −αR .
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In Lass’s coordinates, therefore, the initial coordinate-acceleration of the freely-
falling object has magnitude equal to the proper-acceleration of the reference
observer of the space–time and is therefore independent of position.

It has been shown (Desloge 1989; Takagi 1989) that a suitable form for the
metric of the two-dimensional space–time describing a rigid frame of reference at
rest in a uniform gravitational field takes the form

ds2 = e2αXdT 2 − dX2 .

The essential characteristic of this space–time is that, α, the initial acceleration
of a particle released from rest by an observer at rest in the gravitational field,
is independent of position. This metric does not satisfy equation (19) and the
resulting space–time is not flat, i.e. the space–time of a uniform gravitational
field is still a curved space–time. The space–time described by Lass’s metric,
however, does retain this essential property of a uniform gravitational field while
still being a flat space–time.

7. Conclusion

It has been shown that it is possible to find a general class of rigid accelerating
frames of reference which may be covered by coordinate systems which possess non-
local coordinate transformations to Minkowski space–time. Observers composing
these frames of reference have constant proper-acceleration and are restricted
to wedges in Minkowski space–time. We take the resulting sub-manifolds of
Minkowski space–time to be the ‘space–times of constant proper-acceleration’ and
the observers composing the frames of reference to be the fundamental observers
of the space–times. It has been shown, further, that it is not possible to find
a flat space–time with a metric of the form of equation (4) in which all of
the fundamental observers have one and the same value of proper-acceleration.
The coordinate transformations relating the accelerating-coordinate systems to
an inertial coordinate system have been found for the general case and then
employed to find some of the general properties of these space–times.
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