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Abstract

By casting the Hamiltonian of pure SU(3) in 3+1 space–time dimensions into approximate
tri-diagonal form we study the glueball spectrum of the system. In particular we obtain
estimates for the ground state energy density, the string tension σ, and the masses of the
lowest lying 0++, 1+− and 2++ glueballs. These initial calculations lead to estimates of
various mass ratios in general agreement with other studies of the spectrum.

1. Introduction

The particle spectrum of quantum chromodynamics (QCD) is inherently
nonperturbative, making its calculation difficult to perform. To study this low
energy aspect of the theory a nonperturbative gauge invariant cut-off is required.
One such cut-off, as first set out by Wilson (1974), is the introduction of a lattice,
where space–time coordinates are discretised and strong coupling calculations can
be performed. Physical predictions are extracted from this lattice gauge theory
by taking the spacing of the lattice to zero, which corresponds to the coupling
g approaching zero as required by asymptotic freedom. Physical quantities, such
as particle masses, are expected to match onto renormalisation group forms in
this continuum limit so that their ratios become independent of the coupling.

As an important step on the way to calculating the full spectrum of QCD
an investigation of the pure SU(3) gauge field theory has been undertaken by
many authors. The low lying colourless particle excitations predicted by the
theory, called glueballs, have been fairly well established by various studies,
either based upon Wilson’s Lagrangian formulation or upon the Hamiltonian
formulation developed by Kogut and Susskind (1975). Monte Carlo treatments
in the Lagrangian formalism require great amounts of computer time, and whilst
they provide good estimates for the hadron spectrum of QCD the glueball
spectrum is not as well determined, the more recent works being Bali et al .
(1993), Gupta et al . (1991), Vohwinkel and Berg (1989) and Michael and Teper
(1989). In another work, a variational ansatz combined with Hamiltonian Monte
Carlo methods has been used by Chin et al . (1988) to estimate the mass ratio
of the two lightest glueballs, the 0++ and the 2++ glueballs.

Analytic techniques have also been applied to the problem. Hamiltonian strong
coupling expansions for various glueball masses were intially carried out by Kogut
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et al . (1976), and later extended by Hamer (1989). There is however a need
to extrapolate the perturbative results obtained in the strong coupling region
into the weak coupling region by various approximants. The t expansion method
(Horn and Lana 1991) provides nonperturbative expressions for the glueball
masses in terms of analytically calculated Hamiltonian moments with respect to
a well chosen trial state. The computation is in the infinite lattice limit, but
still requires an extrapolation of results, this time in the t→∞ limit.

The plaquette expansion method (Hollenberg 1993), upon which this work
is based, is a non-perturbative technique which has previously been applied to
various lattice spin systems (Tomlinson and Hollenberg 1994) and lattice gauge
theories (Hollenberg 1994a, 1994b; Hollenberg and Witte 1994), including the first
order (analytic) application to the vacuum properties of SU(3) and the calculation
of the particle spectrum of full QCD. In this paper the expansion in the vacuum
sector is taken beyond the first order calculation performed previously. Also
calculations for the string tension and the lowest lying glueballs in the scalar,
axial and tensor sectors of the pure SU(3) Hilbert space are carried out beyond
first order.

2. The Plaquette Expansion

The plaquette expansion is based upon the Lanczos method, which involves
casting the Hamiltonian into tri-diagonal form by choosing a trial state |v1〉, and
constructing an orthogonal basis using the Lanczos recursion relation,

|vn〉 =
1

βn−1

[(H − αn−1)|vn−1〉 − βn−2|vn−2〉] . (1)

The non-zero terms of the Hamiltonian matrix defined by this basis are the
diagonal and the first off-diagonal terms, αn = 〈vn|H|vn〉 and βn = 〈vn+1|H|vn〉,
which depend upon the moments of the Hamiltonian with respect to |v1〉, 〈Hm〉 ≡
〈v1|Hm|v1〉, where m ranges from 1 to 2n − 1 for αn and 1 to 2n for βn. By
choosing an appropriate trial state the low-lying energy states of the system
may be studied by stopping the Lanczos recursion after l iterations, putting the
Hamiltonian in the approximate form,

H → Tl =


α1 β1

β1 α2
. . .

. . . . . . βl−1

βl−1 αl

 . (2)

As l is increased the eigenvalues of Tl are found to converge to the eigenvalues
of the original Hamiltonian. However, the analytic evaluation of the α and β is
usually severely restricted due to the difficulty in calculating higher moments.

It is now known (Hollenberg 1993) that progress can be made for lattice
systems, if the terms of the matrix are initially rewritten in terms of connected
Hamiltonian moments (Horn and Weinstein 1984), which depend simply upon the
number of plaquettes of the lattice, Np. In particular, for the Kogut–Susskind
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(1975) lattice Hamiltonian of the SU(3) pure gauge theory in 3+1 dimensions,
given by

H =
g2

2

∑
l

E2
l +

1
g2

∑
p

(
6− trUp − trU†p

)
, (3)

where El is the colour electric flux operator on the link l, trUp is the magnetic
flux operator of a plaquette p and g is the coupling constant, connected moments
have been calculated by Horn and Lana (1991) for use in the t expansion. Using
strong coupling trial states in various sectors of the Hilbert space these connected
moments all have the form

〈Hn〉c ≡ cnNp + bn, (4)

where the cn and bn are independent of the number of plaquettes.
The plaquette expansion, anticipating theNp →∞ limit, now involves expanding

the α and β in 1/Np. This was originally performed (Hollenberg 1993) for the
case where the connected moments are purely extensive (bn = 0). A pattern is
seen to develop for the smaller values of n, from which general expressions for
the elements of the matrix can be written down. The same procedure can be
performed for the more general moments (4) leading to the general expansions:

αn = [c1Np + b1] + (n− 1)

[
c3

c2
Np +

(
b3c2 − c3b2

c22

)]
1
Np

+ · · · ,

β2
n = n

[
c2Np + b2

]

+ 1
2n(n− 1)

[(
c2c4 − c23

c22

)
Np

+
(
c22b4 − 2c2c3b3 + 2c23b2 − c2c4b2

c32

)]
1
Np

+ · · · . (5)

For the case where the connected moments are purely extensive the first two
terms in these expansions have been rigorously established (Witte and Hollenberg
1994). At this stage the validity of the further terms is assumed for all n based
upon a direct calculation of the first few iterations. The above expansions are
quite general in form, the physics of the problem contained in the determination
of the cn and bn. Also, as can be seen, the first terms in the expansions depend
only upon the lower Hamiltonian moments, those up to 〈H6〉c being used in
the above expressions. Further moments are only required as more terms of the
expansion are included.

The general procedure now for handling Tl is to expand each of the elements
out to order 1/Nr

p for some set r and diagonalising the matrix for the lower
eigenvalues. If the moments are purely extensive and only the first two terms
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in each of the expansions in (5) are kept (the r = 0 calculation), an analytic
expression for the lowest eigenvalue E0 in the infinite lattice limit has been
obtained (Witte and Hollenberg 1994):

lim
Np→∞

E0

Np
= c1 +

c22
c2c4 − c23

[
(3c23 − 2c2c4)

1
2 − c3

]
. (6)

We now return to the explicit Hamiltonian moments calculated by Horn and
Lana. Their initial trial state is the vacuum in the strong coupling limit, |0s〉,
from which they have calculated the connected Hamiltonian moments up to 〈H9〉c.
The moments are purely extensive and by direct substitution into equations (5),
we obtain with y = 2/g2,

αn = 3yNp + (n− 1)
[
16
3y
− y

2

]
+ 1

2 (n− 1)(n− 2)
[

4
3y

+
y

4

]
1
Np

+ (n− 1)(n− 2)
[(

1
6y

+
y

32

)

+ (n− 3)
(
− 2192

243y5 +
92

81y3 −
106
729y

− 293y
2592

)]
1
N2
p

+ · · · ,

β2
n = n

[
y2

2

]
Np + 1

2n(n− 1)
[
− y2

4

]

+ 1
6n(n− 1)(n− 2)

[
161y2

432
+ 2

3 +
40
3y2

]
1
Np

+ n(n− 1)(n− 2)
[(

53y2

10368
− 1

12 +
7

27y2

)

+ (n− 3)
(

931y2

20736
+ 185

972 +
10030
6561y2 −

1000
243y4 +

10972
729y6

)]
1
N2
p

+ · · · . (7)

This form of the Hamiltonian may now be used to study the vacuum sector of
the Hilbert space, in particular the ground state energy density, E0 ≡ E0/Np,
and the lowest lying scalar glueball, which has quantum numbers 0++ in the
continuum limit (van den Doel and Horn 1987). Its mass is given by the difference
between the two smallest eigenvalues, MS ≡ E1 − E0.

As the connected moments are extensive, equation (6) is appropriate for
providing the zeroth order (r = 0) estimate of the ground state energy density
as Np →∞ (Witte and Hollenberg 1994),

E0 =
1
3y

(
6y2 + 32− (1024− 192y2 + 27y4) 1

2

)
. (8)
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Fig. 1. Ground state energy density, E0/Np, as a function of Lanczos matrix size l for the
various expansion orders, r = 0 to r = 2, for values Np = 500 and y = 2

Fig. 2. Convergence of the ground state energy density, E0/Np, for increasing number of
plaquettes, Np, for orders r = 1 and r = 2 at y = 2.
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Higher order estimates require numerical diagonalisation but these however
take less effort than the Monte Carlo simulations. Firstly, Tl is diagonalised
for fixed values of y, Np and l. The size of the matrix is increased and the
convergence of the eigenvalues investigated, as shown in Fig. 1. For values of y
greater than y = 1 ·7 using the r = 2 expansion the convergence of the eigenvalues
is incomplete, as n becomes large enough, so that the last term in the expansions
becomes significant in the diagonalisation. In this case the estimate is taken to
be the value corresponding to the point of inflection, an appropriate procedure
as can be seen, by repeating the process for higher values of Np at the fixed
value of y. As Np is increased the estimates for the ground state energy density
for all values of y for all orders is found to converge (see Fig. 2), providing the
final infinite lattice estimates.

The calculation of MS is numerical for all orders and follows the above
procedure. However, the r = 2 estimate for the scalar mass is restricted to those
values of y ≤ 1 ·7, as it is found that its value does not converge beyond this
point if the difference between the eigenvalues is taken at the point at which
either the first or the second eigenvalue breaks down.

The connected Hamiltonian moments with respect to trial states in the axial,
tensor and string sectors of the Hilbert space were also calculated by Horn and
Lana (1991). These trial states are of the form Ω|0s〉, where Ω is an operator
such that the trial state has the appropriate quantum numbers associated with
the sector of interest. The Hamiltonian moments are read off directly from the
t-expansion expressions, and the form of the various trial states leads to non-zero
bn. The cn in the moments are just the contributions from the vacuum, the same
as used previously to study the vacuum sector. By taking the difference between
the lowest eigenvalue of the Hamiltonian matrix developed by using these various
non-vacuum moments and the ground state energy found previously, estimates of
the lowest axial glueball mass (1+−) MA, the lowest tensor glueball mass (2++)
MT , and the string tension σ are found. Calculations are performed retaining
terms in the expansion to a given order, leading to r = 0, r = 1 and r = 2
estimates as previously.

3. The Results

The ground state energy density for the various orders is presented in Fig. 3.
At strong coupling (small y) it is seen that the plaquette expansion has already
converged at order r = 0, as all orders are in agreement below y ' 1 ·5. For
values of y beyond this point up to approximately y = 2 ·3 there are slight
discrepancies between the orders but they are still consistent to within a few per
cent. However, it is also noted that the sequence of results is not monotonic
as the order is increased, with the r = 0 closer than the r = 1 curve to the
r = 2 calculation over most of this range. At higher values the first two order
calculations, r = 0 and r = 1, turn downwards after reaching a value of 5 ·3
at approximately y = 2 ·6 and y = 2 ·4 respectively. These values represent the
extremes at which these results can be considered at all reliable. By including
the next order terms, r = 2, the situation is improved. The gradient at no stage
is negative and the ground state energy density agrees with the results of the
t expansion (Horn and Lana 1991) for a greater range of y, with both techniques
producing curves that pass through 5 ·6 at y ' 2 ·6. As the continuum limit
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Fig. 3. Ground state energy density as a function of y for the various orders. Also plotted
is the r = 2 estimate of the specific heat.

Fig. 4. A plot of log(MS) as a function of y for the various orders. Included is the scaling
form that matches onto the r = 2 (CM = 257) calculation.
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is approached this calculation unfortunately also becomes no longer valid as it
shows no indication of levelling off to a constant value, as the ground state
energy density should do.

Also plotted in Fig. 3 is the specific heat, defined as −d2E0/dy2, for the
case r = 2. The peak seen is sharper and higher than that obtained using the
t expansion, but its position, y ' 1 ·7, is consistent with that of the various
t expansion approximants which peak in the region y = 1 ·5 to 1 ·7. This specific
heat peak indicates the position of a transition region between strong coupling
and weak coupling, with predictions of physical quantities expected to match
onto various scaling forms beyond this point.

The scaling form for any physical quantity which has the dimension of mass
is (Politzer 1973; Gross and Wilczek 1973)

m(g) ≈ C(β0g
2)−β1/2β

2
0 exp

(
− 1

2β0g
2

)
, (9)

where β0 and β1 are the lowest coefficients in the Callan–Symanzik β-function
(Caswell 1974; Jones 1974):

β0 =
11

16π2 , β1 = 34
3

(
3

16π2

)2

. (10)

We plot MS versus y in Fig. 4 to determine if the results from the plaquette
expansion match onto this weak coupling form beyond the transition region.
Again, the plaquette expansion converges quickly in the strong coupling region,
before the results start to diverge as the transition region is approached. As the
order of the calculation is increased there is a decrease in the value of MS , with
the r = 0 and r = 1 expansions consistent with one another well into the weak
coupling region. They do not however show any sign of turning over onto the
scaling form. By including the next terms, the r = 2 calculation, it is seen that
these curves are already different from the lower orders well before the transition
region and continue to diverge beyond this point. Although there is no extended
region in which these curves approximate the scaling form (9) they may be
matched onto the scaling form at a point within the weak coupling region at
y = 1 ·65 corresponding to a value of CMS

= 257.
The quantity σ

1
2 also has the dimensions of mass and thus is also expected to

match onto the weak coupling form (9) with a corresponding value for C
σ

1
2
. A

ratio such as MS/σ
1
2 should then become independent of the coupling constant

in the continuum limit. This ratio is plotted in Fig. 5 for the various orders.
Again there is no clear monotonic behaviour of the ratio as the order is increased,
and the r = 2 calculation varies significantly from the lower orders in the weak
coupling region. There is also no clear sign of the ratios levelling out to a
constant value, but at the start of the transition region, y = 1 ·5, the MS/σ

1
2

ratio decreases from 3 ·3 for the r = 1 calculation to a value of 3 ·0 for the r = 2.
Having obtained this value for the ratio it is possible to use the string tension
to renormalise the theory as its value, σ = (420 MeV)2, can be determined from
slopes of Regge trajectories. This gives an approximant range of 1260 MeV to
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1400 MeV for the mass of the lowest scalar glueball. These values may now be
compared to other recent analyses. Within the transition region the t expansion
estimate for MS reaches a value of about 3σ 1

2 (Horn and Lana 1991), whilst the
various curves obtained by extrapolating the strong coupling expansion series by
Hamer (1989) give a value of 2 ·4± 0 ·5 for the MS/σ

1
2 ratio. The most recent

Monte Carlo calculation by Bali et al . 1993 produces a slightly higher value of
1550± 50 MeV for the scalar mass.

Fig. 5. The ratio MS/σ
1
2 as a function of y for the various orders, r = 0 to r = 2.

Finally, in order to obtain estimates for the glueball mass ratios, the ratios
MT /σ

1
2 and MA/σ

1
2 are plotted in Figs 6 and 7 respectively. For the tensor

case the ratio at the transition region increases as the order of the calculation is
increased, from a value of 3 ·2 for r = 0 to 3 ·9 for r = 2 at y = 1 ·5. The spread
in the axial ratio over the various orders, 4 ·75 to 4 ·85, is less than either of the
other two glueball mass ratios, as can be seen in Fig. 7, with all MA/σ

1
2 ratios

reaching a minimum close to the start of the transition region.
With these estimates the various glueball mass ratios can now be estimated.

The MT /MS and MA/MS ratios start off from 1 at y = 0 as all trial states
are made from single plaquette wave functions. The MT /MS ratio remains
very close to 1 throughout the strong coupling region, with the tensor and
scalar glueballs degenerate over the entire range at order r = 0 as the connected
moments required at this order are the same for both. The ratio starts to
rise as the transition region is approached reaching values in the range 1 ·05
to 1 ·3 for the various orders, these numbers having being obtained from the
corresponding string tension curves, which provide estimates that are consistent
with other works. The t expansion (Horn and Lana 1991) provides an estimate
of 1 ·06 < MT /MS < 1 ·3, whilst the strong coupling expansion curves (Hamer



44 M. P. Wilson and L. C. L. Hollenberg

Fig. 6. The ratio MT /σ
1
2 as a function of y for the various orders, r = 0 to r = 2.

Fig. 7. The ratio MA/σ
1
2 as a function of y for the various orders, r = 0 to r = 2.
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1989) rise from about 1 ·2 at y = 1 ·5 to a value of approximately 1 ·5 at y = 2.
The ratio of Chin et al . (1988) rises more slowly over this range reaching a
value of 1 ·2 at y = 2, whilst Bali et al . (1993) give a value of about 1 ·46.
The MA/MS ratio is greater than 1 even within the strong coupling region and
rises to a greater value at the transition region. The various curves give an
estimate in the range 1 ·4 to 1 ·65. These may once more be compared to the
results for the t expansion which give 1 ·4 < MA/MS < 1 ·8, the strong coupling
expansion results, 1 ·5 at y = 1 ·5 and 2 at y = 2 for MA/MS , and the numerical
calculations of Bali et al . (1993), MA/MS = 1 ·9.

The above numbers for the various mass estimates can only be considered
approximate at best, there still being various issues related to the technique that
must be resolved. In particular the lack of convergence within the scaling region
is disappointing. Although there are no observable scaling ratios observed, when
compared to the results obtained by other techniques it appears as though the
plaquette expansion results are reaching the transition region without the need
for any extrapolation. It may well be that the choice of the strong coupling state
as a trial state, although facilitating computation of moments, may be completely
inappropriate in the scaling region. Higher order calculations in progress will
determine this. However, progress towards an understanding of lattice gauge
theory using this technique may be made by considering exponential states as
used in variational studies.
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