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Abstract

A brief review is given of the ‘effective Lagrangian’ approach of Leutwyler, Hasenfratz and
others, which describes the behaviour at low energies or temperatures, or large distances, in
lattice systems which undergo a first-order transition involving spontaneous breakdown of a
continuous symmetry. Universal predictions can be given, based on a continuum field theory
of the massless Goldstone bosons generated by the breakdown of the symmetry, which control
the behaviour in these regimes. In particular, the finite-size scaling behaviour can be predicted,
in a way very similar to the predictions of conformal invariance for a two-dimensional system
at a critical point. Conversely, measurements of the finite-size scaling behaviour can give
estimates of the parameters of the Goldstone bosons. These points are illustrated using data
for the O(2) Heisenberg spin model in (2+1) dimensions, and the XXZ antiferromagnet on a
square lattice.

1. Introduction

For the past twenty or thirty years, there has been an extremely fruitful
exchange of ideas between the disciplines of quantum field theory and statistical
mechanics. This has stemmed partly from the recognition that the ‘generating
functionals’ in both cases, namely the Feynman path integral on one hand and the
partition function on the other, are essentially equivalent mathematical objects.
Physically, it also stems from the fact that when a lattice system is at a second or
higher order critical point, the correlation length diverges, fluctuations occur on
all length scales, and the microscopic details of the lattice become unimportant.
The behaviour of the system at large distances or low energies is then dominated
by the lowest mass excitations of the system, which can be described by a
continuum field theory. In this paper we will be particularly interested in lattice
spin models of magnetic systems, such as the Heisenberg model. We will also
restrict our attention to phenomena in the neighbourhood of a phase transition,
where most of the physical interest lies.

From the basis above, there has sprung a succession of important theoretical
concepts:
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(1) Scale invariance and universality (Kadanoff, Fisher et al.);
(2) The renormalisation group (Wilson);
(3) Conformal invariance (Polyakov et al.);
(4) The ‘effective Lagrangian’ approach (Hasenfratz and Leutwyler 1990;

Hasenfratz and Niedermayer 1993), which will be the subject of the
present paper.

The arguments and results which we shall review can apply almost unchanged
to either a classical spin model at a critical temperature, or to a quantum spin
model at a critical value of the coupling constant, provided we make the following
correspondences (Barber 1983):

Classical spin model, T = Tc Quantum spin model, T = 0, J = Jc
(d dimensions) (1 time, d−1 space dimensions)

Partition function Feynman path integral
Thermal fluctuations Quantum fluctuations

Correlation length Inverse mass gap
log[transfer matrix] Quantum Hamiltonian

Free energy Ground state energy

e.g. classical O(N ) e.g. S = 1
2 Heisenberg AF

Heisenberg ferromagnet

2. Finite-size Scaling

The theory of finite-size scaling, as formulated originally by Fisher (1972),
Barber (1983) and others, concerns the way in which the behaviour of a system
of finite size approaches its bulk limit. Heuristically, the argument runs that in
the neighbourhood of a critical point, there is only one scale that matters in the
problem, set by the correlation length ξ. In that neighbourhood we expect the
correlation length to diverge as

ξ ∼ (T − Tc)−ν ; T → Tc , (1)

while for instance the susceptibility is

χ ∼ (T − Tc)−γ ∼ ξγ/ν . (2)

But for a finite system of size L, the correlation length cannot be greater than
the size of the system. Thus we expect at the critical point

ξ ∼ L, L→∞ (3)

or the mass gap

m ∼ 1/L (4)

and

χ ∼ ξγ/ν ∼ Lγ/ν . (5)
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These arguments were placed on a more systematic footing by Suzuki (1977) and
Brézin (1982), using the renormalisation group.

Now these observations are not of much use experimentally, because hardly
any physical systems are small enough for the finite-size corrections to be visible.
They turned out to be of great importance theoretically, however, because:

• Most numerical methods of calculation, such as exact diagonalisation
(Lanczos), Monte Carlo simulations, or density-matrix renormalisation
group calculations, for example, give results for finite systems only.
Finite-size scaling theory tells us what the expected finite-size corrections
are, and how the finite-lattice results may be scaled or extrapolated to
the bulk limit.

• Also, the finite-size scaling behaviour (3)–(5) can be exploited to obtain
accurate estimates of the critical parameters (Barber 1983; Nightingale
1977; Nightingale and Blote 1980; Hamer and Barber 1980, 1981). An
example appears in Table 1. This has become a large theoretical industry
in recent years.

Table 1. Sequence approximants to the critical index 1/ν for the Z3 spin model in (1+1)
dimensions (Hamer and Barber 1981)

The left-hand column lists ‘raw’ values obtained from lattices of 2,3,.., 10 sites, and the other
columns list successive extrapolations of the finite-lattice sequence to the bulk limit, obtained

using a VBS algorithm. The expected exact value is 1 ·2

1 ·723515
1 ·476662 1 ·341853
1 ·389470 1 ·295290 1 ·200474
1 ·344194 1 ·271839 1 ·200392 1 ·200593
1 ·316345 1 ·257646 1 ·200252 1 ·199889 1 ·2000015
1 ·297457 1 ·248115 1 ·200151 1 ·200156
1 ·283798 1 ·241267 1 ·200156
1 ·273459 1 ·236109
1 ·265362

3. Conformal Invariance

The scaling hypothesis states that a critical system is ‘self-similar’ (or scale
invariant) at all distance scales; for instance, correlation functions behave as

G(r) ∼ 1
r2−d+η

, r →∞ , (6)

so that

G(br) ∼ b−(2−d+η)G(r) , (7)

or in other words the correlation function is covariant under scale transformations.
Polyakov (1970) generalised the hypothesis of scale invariance to include

conformal invariance, and boldly conjectured that this might actually determine
the critical exponents (on the general principle that increased symmetry implies
increased constraints on the system). Belavin et al. (1984) and Friedan et
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al. (1984) showed that this program actually works in the special case of two
dimensions:

• The conformal group in two dimensions includes local rescalings and
rotations without shear (i.e. preserving angles). Uniform rescalings
are a sub-group. Field theories containing only dimensionless coupling
parameters are conformal invariant, unless the symmetry is ‘spontaneously
broken’. Maxwell’s equations provide a well-known example.

• There exists an associated ‘Virasoro algebra’ involving a constant c called
the ‘central charge’ or ‘conformal anomaly’. Each theory is characterised
by its value of c, and all the critical exponents are related to it.

• If c < 1, the critical exponents lie in a discrete set, labelled by an integer
m ≥ 3, due to the requirement of unitarity (or reflection positivity):

c = 1− 6
m(m+ 1)

, m = 3, 4, 5, ... (8)

• The asymptotic behaviour of all correlation functions is determined by
conformal invariance.

Conformal invariance has important implications for the finite-size scaling
properties of the system, as shown by Cardy (1987, 1988) and Christe and Henkel
(1993). It turns out that the finite-size scaling amplitudes at the critical point are
universal numbers, related to the scaling indices; e.g. for a quantum Hamiltonian
system of size L in (1+1)D , with periodic boundary conditions, one finds that
the ground-state energy per site behaves as (Affleck 1986; Blote et al. 1986):

ε0(L)− ε0(∞) ∼ −πcv
6L2 , L→∞ , (9)

where v is the spin-wave velocity, or ‘speed of light’. Hence the conformal
anomaly c can be determined. An example is shown in Fig. 1.

The mass gaps behave as (Cardy 1984):

Ei − E0 ∼
2πxiv
L

, (10)

where xi is the corresponding scaling index . An example is shown in Fig. 2.
Measurement of these finite-size scaling amplitudes thus provides a powerful

tool for estimating the scaling indices xi, and fixing the universality class of the
system. The finite-lattice eigenvalue spectrum in fact forms a representation of
the conformal group.

This is all very fine in two dimensions; but what about higher dimensions?
Some limited results have recently become available, as we shall see below.

4. Effective Lagrangian Theory

At a first-order transition, in a model with a continuous symmetry group, in
dimension d > 2, we expect that:
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Fig. 1. Ground-state energy density ε0 for the O(2) quantum spin model in (1+1)D , plotted
as a function of 1/L2, where L is the lattice size, for various couplings x . Straight line fits
are shown (Wang and Hamer 1993). This model has a critical line at large x .

Fig. 2. Finite-lattice mass gap for the O(2) model in (1+1)D , plotted as a function of
coupling x for various lattice sizes L (Wang and Hamer 1993). It can be seen that at large x
the mass gap is almost precisely equal to 1/L, indicating critical behaviour.
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• The symmetry is spontaneously broken;
• The system develops Goldstone bosons (Goldstone’s theorem).

An example is the famous ‘Mexican hat potential’. If an underlying O(2)
symmetry is spontaneously broken, one Goldstone mode is developed; for the
case with O(3) symmetry, two Goldstone modes are developed; and for O(N )
symmetry, (N−1) Goldstone modes occur. These are simply the ‘magnons’ or
spin-waves of the theory.

The ‘effective Lagrangian’ hypothesis (Hasenfratz and Leutwyler 1990; Hasenfratz
and Niedermayer 1993) postulates that the behaviour of the system at large
distances and low energies is that of an effective continuum field theory of massless
Goldstone bosons. One can write an effective Lagrangian for the Goldstone
bosons, which respects the original symmetry of the theory; and hence develop a
systematic large-volume or low-energy expansion, which gives universal formulae
for the leading finite-size corrections (and also the leading low temperature or
low field corrections), in terms of a few unknown parameters characteristic of the
Goldstone bosons. This situation is very reminiscent of the conformal invariance
results in two dimensions. The effective theory is generally infrared convergent,
but ultraviolet divergent and non-renormalisable; this does not affect its ability
to provide a systematic expansion at large sizes or volumes. This approach had
its origins in chiral perturbation theory in QCD, where low-energy effects can be
described in terms of low-mass pi-mesons and other pseudo-Goldstone excitations:
the true underlying theory is presumably QCD itself, a renormalisable theory of
quarks and gluons, but the effective pion theory is more useful for describing
certain classes of low-energy or long-distance phenomena.

Predictions

(A) Models with O(N) symmetry, in d > 2, e.g. the classical Heisenberg ferromagnet

In the first-order transition region, a finite-size or large-volume expansion is
obtained in powers of 1/Ld−2 (where the volume V = Ld). The parameters
involved are the spin-wave helicity modulus or spin-wave stiffness

ρs = Υ , (11)

and the bulk magnetisation per spin in the bulk Σ. The effective Lagrangian
density is

Leff = 1
2ρs(∂µS.∂µS)− Σ(H.S) + ... (S.S = 1) . (12)

The predictions obtained include the magnetisation for a small magnetic field:

MH(V )→ 1
N

Σ2HV ρ2, H → 0 , (13)

ρ = 1 +
(N − 1)β1

2ρsLd−2
+O(L2d−4) , (14)

and the susceptibility
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χ‖(H=0, V ) =
V Σ2

N
+
L2(N − 1)Σ2β1

Nρs
+O(L4−d) (15)

(β1 is a geometrical structure constant with value 0 ·226 in d = 3). These
predictions have been nicely confirmed by the numerical calculations of Dimitrovic
et al. (1991), for the case of the O(3) Heisenberg model in three dimensions.

(B) The S = 1
2 quantum Heisenberg antiferromagnet at T = 0 on a square lattice.

Here the quantum Hamiltonian is

H = J
∑
〈ij〉

Si.Sj . (16)

The terms in the Hamiltonian do not commute, and quantum fluctuations occur.
The Hamiltonian possesses rotational O(3) symmetry, which is spontaneously
broken. The model has been much studied recently, because of its possible
connections with high-Tc superconductivity. Hasenfratz and Niedermayer (1993)
have made a number of predictions for the finite-size corrections in this model,
and its behaviour at low temperatures and small magnetic field. The parameters
are the helicity modulus ρs, the spin-wave velocity v , and the magnetisation per
unit volume Σ. These are not predicted by the theory. The effective Lagrangian
density is a slight generalisation of the previous one:

Leff = 1
2ρs

[
1
v2 ∂tS.∂tS +

∑
i=1,2

∂iS.∂iS
]
− Σ(H.S) + ... (S.S = 1) , (17)

to allow for space–time anisotropy. For the more general case with O(N )
symmetry, the following predictions are obtained.

Predictions

(1) Low-temperature corrections (T 6= 0, V →∞)

Correlation length:

ξ(T ) =
eve2πρs/T

16πρs

[
1− T

4πρs
+O(T 2)

]
. (18)

Specific heat:

C(T ) = (N − 1)
3ζ(3)
πv2 T 2 +O(T 4) [ζ(3) = 1 ·2020...] , (19)

arising from the free energy of N−1 massless, free bosons (where N = 3 for the
XXZ antiferromagnet). The predicted behaviour of the correlation length agrees
very well with experimental data (e.g. Greven et al. 1994).

(2) Finite-size corrections (T = 0, finite L)
Ground-state energy per site:
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Fig. 3. Ground-state energy density of the O(2) quantum spin model in (2+1)D (Wang and
Hamer 1993), plotted as a function of 1/L3 for various couplings x. Straight line fits are
shown. This model has a first-order transition line at large x.

Fig. 4. Finite-lattice mass gap of the O(2) model in (2+1)D , plotted as a function of x for
various lattice sizes L (Wang and Hamer 1993). It can be seen that the mass gap is almost
equal to 1/L2 at large x, in agreement with effective Lagrangian theory.
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ε0(L)− ε0(∞) = − (N − 1)1 ·4377...v
2L3 +

(N − 1)(N − 2)v2

8ρsL4 + ... (20)

Mass gaps:

Ej − E0 =
j(j +N − 2)v2

2ρsL2

[
1− (N − 2)v

ρsL

3 ·9003
4π

+ ...

]
. (21)

The leading terms in these expansions were previously obtained by Neuberger
and Ziman (1989), and Fisher (1989). These predictions are in excellent agreement
with numerical Monte Carlo data for the XXZ Heisenberg antiferromagnet (Runge
1992), and the quantum Hamiltonian version of the classical O(2) spin model
(Wang and Hamer 1993) — see Figs 3 and 4.

The values of ρs, v and Σ are not predicted by the effective Lagrangian
approach, but they can be estimated using the spin-wave expansion of Anderson
and Kubo, applied to the original Hamiltonian. These approaches are of course
compatible, since both involve spin waves or magnons (Zheng and Hamer 1993;
Hamer et al. 1992). A comparison between the values obtained from the
theoretical spin-wave expansion, and from numerical Monte Carlo and series
calculations for the XXZ model on the square lattice is shown below. It can
be seen that the different estimates generally agree very well, and thus provide
strong confirmation of the theoretical scenario above.

Quantity Spin-wave expansionA Monte CarloB SeriesC

ε0(∞)/J −0 ·670 −0 ·66934(3) −0 ·6694(1)
Σ 0 ·307 0 ·3075(25) 0 ·307(1)
ρs 0 ·175 0 ·199(2) 0 ·182(5)
v 1 ·67 1 ·55(4) 1 ·655(12)

A Zheng et al. (1991), Zheng and Hamer (1993), Hamer et al. (1992, 1994), Igarashi (1992)
and Canali et al. (1992).
B Runge (1992) and Makivic and Ding (1991).
C Zheng et al. (1991), Hamer et al. (1992), Singh (1989) and Singh and Huse (1989).

5. Conclusions

In higher dimensions (d > 2), for first-order transitions in models with
spontaneous breakdown of a continuous symmetry, finite-size scaling again
provides a powerful tool for extracting parameters of the effective continuum field
theory. Universal forms again emerge from the effective Lagrangian approach,
although the parameters involved are ρs, v and Σ, for instance, rather than
scaling dimensions.

One is left with the final question: what is the finite-size scaling behaviour
at a second-order transition in higher dimensions; and what can it tell us about
the effective field theory at the transition?
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