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Abstract

In the framework of a generalisation of linear gravitation to the case when the gravitons have
nonzero rest mass, we obtain a result analogous to that obtained by Regge and Wheeler, that
is, the energy of the gravitational waves is trapped in the ‘material’ (interior) metric of the
curved space–time. We show that the concept of a nonzero rest mass graviton may be defined
in two ways: (i) phenomenologically, by introducing of a mass term in the linear Lagrangian
density, as in Proca electrodynamics, and (ii) self-consistently, by solving Einstein’s equations
in the conformally flat case. We find that the rest mass of the graviton may be given in terms
of the three fundamental constants (gravitational, Planck, and light velocity constants) and
it is a function of the density of cosmic matter.

1. Introduction

Some years ago, Droz-Vincent (1959, 1966) proposed a slight additional term
in Einstein’s equations in order to take into account a possible nonzero mass of
the graviton. In the present work we follow an inverse simple way. We start
from the unique generalisation of the linear gravitational equations that can
admit nonzero mass gravitons, and only a posteriori we look for a solution of
the Einstein equations.

Thus, a straightforward generalisation of linear gravitoelectromagnetics is
parametrised by a constant Λg = (h̄/mgc) which can be interpreted as a measure
of the Compton wavelength of a massive vectorial spin-one graviton (gravinon)
associated to some components of the gravitational field in linear gravitation. The
interaction potential is of the Yukawa type and finite range, with a range ∼Λg.
The conclusion is that the conventional linear massless gravitoelectromagnetics
would be inapplicable over distances exceeding Λg.

We first consider space as flat, and we introduce the linear gravitational field
that interacts with matter or other fields in an appropriate way, so that the
analogy with the electromagnetic field is maintained as complete as possible. This
‘field picture’ of gravitation seems worth investigating, because it might lead to
the idea of new gravitational experiments based on well-known electromagnetic
phenomena.
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Then, by considering the coupling of the gravitational waves with a curved
space–time, we find that the energy of the gravitational waves is trapped in the
metric of the curved space–time in the presence of matter. This result is similar
to that obtained by Regge and Wheeler (1957) who, investigating the behaviour
of a Schwarzschild singularity subjected to a small nonspherical perturbation,
found that ‘geons derive all their mass and energy from gravitational waves
trapped in the metric’.

Finally, a screened gravitational potential of the Proca–Yukawa type is directly
obtained from Einstein’s equations, as a conformally flat solution.

2. Maxwell-type Equations of the Gravitational Field

When four-dimensional space–time is split into space plus time, the electro-
magnetic field tensor Fαβ breaks into two parts, the electric field E and the
magnetic field B. Analogously, the general relativistic gravitational potential field,
the space–time metric tensor gαβ breaks into three parts: an electric-like part
g00, whose gradient is the Newtonian acceleration g or gravitoelectric field Eg, a
magnetic-like part g0i, whose curl is the gravitomagnetic field Bg, and a spatial
metric gij , whose curvature tensor is the curvature of space.

Although there are theoretical arguments and experimental evidence for the
conventional view that the gravitational acceleration of antimatter must be as
that of matter (Goldman et al . 1986; Ericson and Richter 1990), the concept
of a gravitational field (or at least some components of the gravitational field)
analogous to the electromagnetic field is supported, for example, by the following
reasons (Ciubotariu 1991; Ciubotariu et al . 1993):

(A) For the case of a weak field (linear approximation):

(i) Newton’s law of gravity is analogous to Coulomb’s law.
(ii) The linearised Einstein equations have the same form as the Maxwell

equations.
(iii) The geodesic equations have the same form as the Lorentz equation of

motion.
(iv) Shapiro et al . (1988) claimed to have confirmed the existence of

gravitomagnetic geodetic precession of the orbit of the moon to within
2 ·0% using laser-ranging data [see (vii) below].

(B) For the case of a strong field (nonlinear exact solutions):

(i) There exists a class of solutions of the linearised field equations which is
also a solution of the exact nonlinear field equations (Gürses and Gürsey
1975; Baekler and Gürses 1987).

(ii) When two gravitational waves collide they tend to focus each other as
is the case in the nonlinear optics of strong laser radiations.

(iii) The gravitational field of axially symmetric and reflection-symmetric
systems, in the near-field approximation, has a structure very similar to
the electric-type solutions of electromagnetic theory. In particular, the
first effect of a variable gravitational field is to induce a magnetic-like
field.
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(iv) There exists a gravitational analogue of the electromagnetic Faraday
rotation.

(v) Some theories of quasars and galactic nuclei rely on the gravitomagnetic
field of a supermassive black hole for energy storage, power generation,
jet formation, and jet alignement (Thorne 1983).

(vi) The axes of inertial frames, placed near a massive spinning source, precess
with respect to points far away from the source (‘Lense–Thirring effect’,
see Mashoon et al . 1984).

(vii) The spin axis of a gyroscope, freely falling in the gravitational field of a
spinning body, is dragged due to the angular momentum of the central
source, since the central body is thought of as dragging the metric with
it to some extent (Schiff 1960). This effect has also been interpreted as
a spin–spin interaction in analogy to the phenomenon in atomic physics.

So far nobody has observed gravitational waves and thus these waves, as
a linearised effect, are important in the same measure in which the Maxwell
equations are important for linear optics. Should we detect any first-order
gravitational waves, interest in the nonlinear characteristics of propagation and
the exact solutions will certainly grow.

A thorough investigation on the possible linear theories of a tensor field by
Weyl (1944) showed that the linear theory is incapable of explaining the correct
advance of the perihelion of Mercury. But, considerable support was provided for
the flat space interpretation when Papapetrou (1948) discovered that the exact
equations of general relativity can be brought into a form in which the linear part
is supplemented by the energy–momentum tensor of the gravitational field as a
source in the field equations. Adopting the De Donder condition, Papapetrou
succeeded in putting Einstein’s equations in the simpler form

∂2γαβ

∂xµ∂xµ
≡ Mγαβ = κ2Θαβ , γαβ =

√
− det (gµν)γαβ , (1)

where Θαβ is the energy–momentum tensor of the whole system including the
gravitational field itself. Taking the field equations for a free gravitational field
as

∂2γαβ

∂xµ∂xµ
= 0 , (2)

we can regard the entire interaction as caused by Θαβ .
Peng (1983, 1990) discussed a set of Maxwell-like linear equations that arise in

the slow-motion v/c¿ 1 weak-field limit of Einstein’s field equations. In this case,
the equations of general relativity can be written in terms of separate space–time
coordinates, and one can introduce the gravitoelectric (Eg) and gravitomagnetic
(Bg) fields. The set of governing equations may be called gravitoelectromagnetics
and they are (with G = c = 1)

∇×Bg = −4πjm +
∂Eg

∂t
, (3)
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∇×Eg = −∂Bg

∂t
, (4)

∇ ·Bg = −4πρm , (5)

∇ ·Bg = 0, Bg = ∇×Ag , (6)

where j = ρmv is the mass current density, ρm = nm is the proper mass
density, Ag = Aig ≡

(
1
4h

01
, 1

4h
02
, 1

4h
03)

(see Ciubotariu 1991 for notation) is the
gravitomagnetic vector potential, and

Eig = G00i ≡ 1
4

(
h

00,i − h0i,0
)

= 1
4

(
− h00

,i − h
0i

,0

)
. (7)

If we choose 1
4h

00

,i = φg so that

Eg = −∇φg −
∂Ag

∂t
, (8)

then the gravitational 4-vector potential can be introduced by

Aαg ≡ (φg,Ag) , (9)

Fαβg =
∂Aβg

∂xα
−
∂Aαg

∂xβ
, Fgαβ =

∂Agβ

∂xα
− ∂Agα

∂xβ
≡ Agβ,α − ∂Agα,β (10)

with Fαβg describing the gravitoelectromagnetic field tensor.
For instance, the gravitomagnetic field induced by the rotation of the Earth,

at a geographical latitude of 45◦, is given by [see e.g. Ljubicic and Logan 1992,
eq. (1), where G 6= c 6= 1]

|Bg| =
∣∣∣∣ GI2cR3

[
ω − 3(ω ·R)R

R2

]∣∣∣∣ ' 20 ·4× 10−6 m s−2

' 10−14 s−1 (G = c = 1 units) , (11)

where G is the gravitational constant, R is the radius of the Earth, I is the
moment of inertia of the Earth about an axis through its centre, and ω is the
angular velocity associated with the Earth’s rotation.

Quantitatively, the linearising approximation is extremely well justified on the
surface of any plane in our solar system. Even on the surface of a white dwarf,
the deviation of g00 from unity does not exceed a value of the order of 10−5.
Therefore, we can postulate, ab initio, the Maxwell-type gravitational equations
for linear gravitation.
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3. Gravitoelectromagnetics in a Curved Space–Time

We consider a space–time manifold described by the ‘material’ (interior) metric
tensor gαβ . In addition, we allow a gravitational wave (‘free’ gravitational
field) characterised by the gravitational 4−vector potential Agα ≡ (φg, Ag) to
travel through and, also, interact with that tensor field. If we assume that the
gravitational wave does not disturb the metric, the Lagrangian density for this
system can be written as

L = − 1
16π
√
−gFgαβFgαβ +

1
k

√
−ggαβRαβ

+ χ
1
k

√
−ggαβRαβAgµAgµ , (12)

where the first term refers to the free gravitoelectromagnetic field, described by
the gravitoelectromagnetic field tensor Fgαβ , the second term is the Lagrangian
of the curved space–time with Rαβ being the Ricci tensor, and the last term
specifies the coupling, with χ being the proportionality constant. If the metric
tensor gαβ is varied in the Lagrangian density, we obtain the equations of motion
(field equations) in the form(

1 + χAg
µAgµ

)
Gαβ + χ

[
RAgαAgβ − gαβM

(
Ag

µAgµ

)
+
(
Ag

µAgµ

)
;α;β

]

= −kTgαβ ≡ −
8πG
c4

Tgαβ , (13)

where Gαβ is the Einstein tensor,

Tgαβ =
1

16π
Fg

µνFgµνηαβ − FgµαFgνβηµν (14)

is the stress-energy tensor of the gravitoelectromagnetic field, and the semicolon
denotes the covariant derivative. Taking the trace of this equation we find

R = −3χM (AgµAgµ) . (15)

On the other hand, performing the variation of the Lagrangian (12) with
respect to the gravitational 4−vector potential Agα we obtain the equations
of gravitomagnetics in the curved space–time described by the metric tensor
gαβ :

Fg
αβ

;β +
χ

k
RAg

α = 0 (16)

or

Fg
αµ

;µ −
3
k
χ2Ag

α
M (AgµAgµ) = 0 , (17)
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and the resulting nonlinearity due to the coupling of the gravitational radiation
with curvature of space–time is clearly exhibited. In other words, we split the
gravitational field into linear and nonlinear parts. We treat the linear part as a free
gravitational field, while the nonlinear part is regarded as the direct interaction
between the gravitons and matter. Thus, interacting gravitons become massive
gravitons. We note that whilst the gauge invariance holds for Minkowskian (flat)
gravitoelectromagnetics (equations 3–6) in the case of the coupling with the
curvature tensor (equation 16) this invariance is excluded.

4. Massive Gravitoelectromagnetics

Discussions about gravitoelectric and gravitomagnetic fields on astrophysical or
atomic distance scales involve the tacit assumption that it is valid to extrapolate
Maxwell-like equations for gravitoelectromagnetics to arbitrarily large or small
distance scales. Of course, it is important to investigate whether other versions
of non-Maxwellian gravitoelectromagnetics have implications for gravitational
phenomena. In this work, a novel approximation in the linear gravitation based
on gravitoelectromagnetics with massive vector is presented.

We define a model of the universe (a gravitating system) as a collection of
dust particles and nonzero rest mass gravitons which exhibits collective mode
behaviour. The required field equations are of the Proca type (see e.g. Byrne
1977, and references therein) which we adapt to our gravitational case with c 6= 1:

∇×Bg = −4π
c

jm +
1
c

∂Eg

∂t
− 1

Λ2
g

Ag , (18)

∇×Eg = −1
c

∂Bg

∂t
, (19)

∇ ·Eg = −4πρm −
1

Λ2
g

φg , (20)

∇ ·Bg = 0 , (21)

where Eg and Bg are related to φg and Ag just as in Maxwell-type equations of
the gravitational field, and

Λg =
h̄

mgc
(22)

is the reduced Compton wavelength of the graviton. In contrast to the Maxwell-type
theory of linear gravitation, the potentials φg and Ag are directly measurable
quantities so that gauge invariance is not possible, and the Lorentz gauge condition

∇ ·Ag +
1
c

∂φg

∂t
= 0 (23)
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is required in order to conserve mass. Since mg 6= 0 is not consistent with
gauge invariance, the Proca generalisation of gravitoelectromagnetics could be
aesthetically defective in the eyes of many theoretical physicists. However, the
only certain statements about the value of mg that can be made must be based
on experiment. We note that in the full nonlinear theory (Deser 1971) the
presence of massive gravitons breaks coordinate invariance just as it breaks gauge
invariance in our massive linear gravitoelectromagnetics.

Another distinctive contrast between Maxwell’s gravitoelectromagnetics and
that of Proca is that the latter admits nonzero mass and current densities even
in the absence of gravitational fields; for example

ρm = − 1
4πΛ2

g

φg 6= 0 and jm = − c

4πΛ2
g

Ag 6= 0,

with Eg = −∇φg−∂Ag/∂t = 0 and Bg = ∇×Ag = 0 are solutions of equations
(18)–(21). Hence, there are large regions of the universe containing currents
or mass densities that contain no gravitational fields. Furthermore, the perfect
cosmological principle that the universe should be homogeneous and locally
isotropic throughout the course of time becomes now a natural property of the
massive gravitoelectromagnetics.

As the Coulomb force is due to the exchange of a virtual quantum, or photon,
in our theory the gravitational force between particles is likewise due to a
massive vectorial graviton, a quasiparticle which we call gravinon, of effective
mass mg and maximum speed c. Massive gravitoelectromagnetics becomes
conventional Maxwell’s gravitoelectromagnetics in the limit mg → 0. For mg 6= 0
equations (18)–(21) predict fields which are different from those predicted by
the Maxwell gravitoelectromagnetics. For example, in the case of a static point
mass placed at the origin, the gravitostatic potential is given by a Yukawa–Proca
potential

A0
g ≡ φg =

const
r

exp

(
− 1

Λg
r

)
(24)

in spherical coordinates. Equation (24) implies a finite range (Λg) type interaction
for this type of gravitoelectromagnetics, and masses interact only with other
masses within this range. Hence, if the homogeneous mass is spread over a large
distance D À Λg, isotropy of masses guarantees that the gravitational field, and
thus the gravitostatic force, vanishes everywhere.

We note that by solving the Schrödinger equation with the screened potential
(24) (Hook and Hall 1991), we find that the bound states exist only if the
screening length Λg is greater than the ‘gravitational Bohr radius’ ag0. If
we consider that the gravinon mass is equal to the best available upper limit
on the photon rest mass (mphoton = 3 × 10−53 g, Byrne 1977), we find that
Λg is of the order of the diameter of Pluto’s orbit (Λg ≈ 1015 cm). This
result is in agreement with the idea of possible evidence for gravitational
Bohr orbits as a cosmic version of ordinary quantum mechanics (DerSarkissian
1985).
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The wave corresponding to the massive spin-one field is dispersive in a vacuum,
that is

ω2 =

(
k2 +

1
Λ2
g

)
c2 . (25)

Then, from its definition, the group speed is

vgroup = c

(
1− c2

Λ2
gω

2

) 1
2

(26)

and thus, the velocity of energy propagation is frequency dependent.
At this point we ask: How could we solve Einstein’s field equations so that

their solution in the weak-field approximation coincides with the solution of
equations (18)–(21) of massive Proca gravitoelectromagnetics where the massive
gravitons are introduced as a supplimentary hypothesis (see Section 6).

5. Absorption of Gravitational Waves

Since the graviton is assumed to have a non-vanishing mass, a mass term has
to be added to the Lagrangian density describing the massless graviton. Thus,
the Lagrangian density in the absence of matter becomes

L = − 1
16π

Fg
αβFgαβ +

1
8πΛ2

g

Ag
αAgα . (27)

The field equations then follow from the Euler–Lagrange equations of motion

Fg
αβ
,β +

1
Λ2
g

Aαg = 0 . (28)

It should be noted that these are the only possible linear generalisations of linear
gravitation. As already indicated, as a result of the inclusion of the ‘coupling
constant’ (1/Λg), the potentials φg, Ag now acquire real physical characteristic,
i.e. they now become observable. Another conclusion is that there would be
three states of polarisation for massive gravitons. Apart from two transverse
polarisations, there also exists a longitudinal one, and the faster the longitudinal
graviton moves, the weaker is the associated gravitoelectric field Eg. As was
argued above, the gravitoelectric field diminishes exponentially with distance
and the corresponding flux lines fade away, even in vacuo. Furthermore, the
gravitomagnetic field Bg is also affected and the associated lines are compressed
around the equator (see Novak 1989).
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If we compare equation (16) of gravitoelectromagnetics in curved space–time
to equation (28) of massive gravitoelectromagnetics defined in flat space–time,
we see that the similarity between these is rather striking. Thus, it is reasonable
to write the relation

m2
g

c2

h̄2 ≡
1

Λ2
g

=
χ

k
R . (29)

It follows that the mass of a gravinon vanishes if R = 0, that is, if the curvature
constant (scalar) of the four-dimensional curved space–time is zero. Hence, in
a non-empty curved space–time, but not only with pure electromagnetic field
(when Tα

α = R = 0), a graviton acquires a mass as a result of its interaction
with surroundings. In other words, the mass of the graviton is directly related
to the curvature scalar of space–time. As the range of the massive graviton is
finite (see Section 4), we obtain a result analogous to that obtained by Regge
and Wheeler (1957), that is, the energy of the gravitational waves is trapped in
the metric of curved space–time.

6. Massive Gravitons as a Direct Consequence of Einstein Equations

One of the authors (Ciubotariu 1991) has shown that the gravitational
waves may be absorbed by a background cosmic fluid (a ‘false vacuum’) with
negative pressure, and described by an energy–momentum density tensor of the
form

Tαβ =

(
ρ+

p

c2

)
δ0
αδ

0
β −

p

c2
gαβ ≡ −

p

c2
gαβ , p = −ρc2 . (30)

Now, we want to solve the Einstein field equations

Rαβ − 1
2gαβR = −8πG

c4
Tαβ ≡ −

8πG
c4

ρgαβ (31)

in the weak-field approximation. Since we intend to obtain a solution ‘with mass’
of the Proca–Yukawa type, and the conformal relativity is a theory of mass
(see, for example, Ingraham 1978a, 1978b, 1978c, 1978d , 1978e), we consider a
space–time which is conformally flat and has the metric tensor

gαβ = eψηαβ , (32)

where ψ is some function of the coordinates. By conformally flat we mean that
the Weyl conformal curvature tensor vanishes, i.e.

Cαβγδ ≡ Rαβγδ + 2g[α[γ

(
Rδ]β] − 1

6gδ]β]R
)

= 0 , (33)
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where the brackets enclosing a pair of indices act as antisymmetrisers. Here Rαβ
is the Ricci tensor, computed to be

Rαβ =
∂2ψ

∂xα∂xβ
− 1

2

∂ψ

∂xα
∂ψ

∂xβ
+ 1

2ηαβη
µν

(
∂2ψ

∂xµ∂xν
+

∂ψ

∂xµ
∂ψ

∂xν

)

' ∂2ψ

∂xα∂xβ
+ 1

2ηαβη
µν ∂2ψ

∂xµ∂xν
, (34)

where

Rα
β =

∂2ψ

∂xα∂xβ
+ 1

2δ
β
α

∂2ψ

∂xµ∂xµ
, R = 3Mψ, Mψ ≡ ∂2ψ

∂xµ∂xµ
. (35)

Now, Einstein’s equations (31) become

∂2ψ

∂xα∂xβ
+ 1

2ηαβη
µν ∂2ψ

∂xµ∂xν
− 3

2gαβMψ = −8πG
c4

ρgαβ (36)

or

∂2ψ

∂xα∂xβ
+ 1

2δ
α
β

∂2ψ

∂xµ∂xµ
− 3

2δ
α
βMψ = −8πG

c4
ρ(1 + 2ψ)δαβ . (37)

It follows, therefore, that

Mψ − 64πG
3c4

ρψ =
32πG
3c4

ρ , (38)

that is, in the static case

∇2ψ − 64πG
3c4

ρψ =
32πG
3c4

ρ . (39)

If we compare this equation with the Maxwell’s equation (20) we may write

∇2ψ − 1
Λ2
g

ψ =
1

2Λ2
g

,
1

Λ2
g

≡ m2
g

c2

h̄2 =
64πG
3c4

ρ , (40)

and thus we have obtained the Proca–Yukawa scalar field equation.
We notice immediately that the graviton can have a non-zero rest mass

(mg 6= 0) only as a result of the interaction with matter (ρ 6= 0). We have for
the first time an expression for the rest mass of the graviton in terms of the
gravitational constant G and the mean density of matter in the universe:

mg =
8h̄
c3

(
πG

3
ρ

) 1
2

. (41)
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Since the curvature scalar R = gαβRαβ is expressible in terms of the density
ρ [see equations (30) and (31)],

R =
32πG
c4

ρ , (42)

we readily obtain

m2
g

c2

h̄2 = 2
3R , (43)

which is in complete agreement with the relation (29) obtained by another
approach. This proves that our theory is consistent.

7. Concluding Remarks and Comment

The main point of this work has been to show how the inclusion of the Compton
wavelength of the graviton in linear gravitoelectromagnetics leads to nonlinear
gravitons, whose mass is directly related to the curvature scalar which means
the presence of matter. A gravitational wave propagating through a medium
is influenced by the latter and this effect is manifested via the generation of
massive gravitons. In other words, the medium (matter) generates the scalar of
curvature which is proportional to the square of the mass of graviton. Thus, we
have a geometric interpretation of the mass of a graviton.

On the other hand, we deal with two metric tensors: a flat-space a priori
given metric corresponding to linear gravitational waves, and the ordinary metric
tensor corresponding to an interior solution (with R 6= 0) of Einstein equations.
The physical situation which describes the interaction between the two metrics
is the following: Freely running gravitational waves generate massive gravitons
by the interaction with an interior gravitational field of the matter that they
encounter.

In the final part of the work we obtained a conformally flat solution of
Einstein’s equations which, in a linear approximation, describes a Proca–Yukawa
potential.

Of course, the rest mass of the graviton is very small, but study of the
interaction of gravitons with cosmic matter and other gravitational fields in the
first approximation is motivated in part by the fact that the graviton reaches us
from the most distant galaxies after a time ∼1017 s. During this long interval,
even a very weak interaction might lead to observable effects over such an
extremely long time.

Quantisation of the exact general theory relativity may lead to some important
consequences, but this is a very difficult program. While it is being carried out,
in this work we have attempted to extract new physics out of an approximate
treatment using existing mathematical procedures.

As we have seen above, in the linear approximation of Einstein’s gravitational
field equations, the metric tensor satisfies the same type of equations as those
of electromagnetic potentials. Accordingly, in the quantisation procedure, there
will be many analogies between the gravitational and electromagnetic fields. In
the classical theory of the electromagnetic field, the field quantities are composed
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of two parts: the transverse part for which energy and momentum form a
four-vector and behave like the energy and momentum of particles as regards
its transformation properties, and the part for which this is not the case. In
the quantum electromagnetic field theory, only the first part is subjected to a
quantisation, giving rise to photons which behave like particles, while the second
remains unquantised. The latter part composed of longitudinal and scalar parts,
in the presence of matter, gives rise to the Coulomb interaction between charged
particles both in the classical and in the quantum electromagnetic theories.
Similarly, in the gravitational field it is reasonable to quantise in such a way
that the unquantised part gives the gravitational potential corresponding to the
Newtonian potential or to the Proca–Yukawa potential in the case of massive
gravitons. We note that the unquantised part has the same form for both
macroscopic and microscopic phenomena.

Further developments of this work will refer to the use of the formalism for the
gauge theories. It may be shown how a graviton can acquire a nonvanishing mass
using the effect of spontaneous symmetry breaking in analogy to the Higgs model,
and the mass generation of gravitons as a result of dynamical symmetry breaking.
In addition, the introduction of a gravitational superconductivity concept where
the graviton acquires a mass, thus manifesting a Meissner gravitational effect
(Ciubotariu 1996), may also be considered.
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