
C S I R O P U B L I S H I N G

Australian Journal 
of Physics

Volume 50, 1997
© CSIRO Australia 1997

A journal for the publication of 
original research in all branches of physics 

w w w. p u b l i s h . c s i r o . a u / j o u r n a l s / a j p

All enquiries and manuscripts should be directed to 
Australian Journal of Physics
CSIRO PUBLISHING
PO Box 1139 (150 Oxford St)
Collingwood Telephone: 61 3 9662 7626
Vic. 3066 Facsimile: 61 3 9662 7611
Australia Email: peter.robertson@publish.csiro.au

Published by CSIRO PUBLISHING
for CSIRO Australia and 

the Australian Academy of Science

http://www.publish.csiro.au/journals/ajp
http://www.publish.csiro.au


Aust. J. Phys., 1997, 50, 975–1009 .

Aspects of Optical Properties in Conventional

and Oxide Superconductors∗

F. MarsiglioA,B,C,D and J. P. CarbotteB,C

A Neutron & Condensed Matter Science, AECL, Chalk River Laboratories,
Chalk River, Ontario K0J 1J0, Canada.
B Department of Physics & Astronomy, McMaster University, Hamilton,
Ontario L8S 4M1, Canada.
C Canadian Institute for Advanced Research, McMaster University, Hamilton,
Ontario L8S 4M1, Canada.
D Present address: Department of Physics, University of Alberta,
Edmonton, Alberta T6G 2J1, Canada.

Abstract

We review the effect of elastic and inelastic scattering on the normal state infrared conductivity,
and describe modifications to the real and imaginary parts which result from a transition to an
s-wave superconducting state. The zero frequency limit of the imaginary part is related to the
temperature-dependent penetration depth and, at finite frequency, provides information about
the superconducting gap. In the high Tc cuprates the gap appears to have d-wave symmetry.
This profoundly modifies both the real and the imaginary parts of the optical conductivity.
After describing these modifications we introduce the conductivity-derived scattering rate,
which directly probes the inelastic scattering processes, and is much larger in the oxides than
in conventional superconductors. This quantity is also significantly modified by the d-wave
symmetry of the gap.

1. Introduction

In this paper we will review some of the properties of the optical conductivity
of normal metals and superconductors. We begin with a brief discussion of the
Drude model, which applies to free electrons in the normal state that undergo
scattering off static impurities, with a constant (i.e. temperature and momentum
independent) elastic scattering rate 1/τ . In the more realistic situation there will
also be inelastic scattering processes, for example due to the electron interaction
with lattice vibrations. At any finite temperature lattice vibrations (phonons) will
be thermally excited and, like impurities, can scatter electrons. However, such
processes are dependent on the thermal phonon population, which is strongly
temperature dependent. This leads to an effective Drude width 1/τ(T ), which
decreases rapidly as the temperature is lowered and approaches zero as T → 0.
In addition phonon-assisted absorption is possible, whereby the incoming photon
energy and momentum are taken up by an excited electron plus phonon. Such
phonon-assisted processes arise even at zero temperature, albeit with a threshold
energy required equal to the minimum phonon energy. Since the phonon density
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of states varies as ω2 in the Debye regime this absorption onset will be gradual,
and will extend over the entire phonon energy scale. Thus at low temperature
there will be two distinct regions. The first will be a low energy rapidly narrowing
Drude contribution, and the second will be a relatively temperature-independent
phonon-assisted region, extending over the phonon energy domain; there will be
little overlap of the two regions if the inelastic scattering rate is not very strong.
As the electron–phonon spectral density increases in strength the overlap also
increases. Too strong an impurity scattering rate can also blur the distinction
between the two regions.

Next we consider the modifications introduced when a transition to a
superconducting state occurs. For an isotropic s-wave superconductor the real
(absorptive) part of the conductivity becomes gapped up to twice the value of the
single-particle gap ∆ at T = 0. The missing spectral weight is transferred to the
superfluid, which produces a delta function contribution at zero frequency. At
finite temperature some normal fluid remains and some absorption in the form
of a Drude-like peak of reduced weight and width is also present. Nonetheless,
the finite temperature gap value remains clearly visible in the conductivity. The
product of the frequency times the imaginary part of the conductivity also carries
information about the gap and shows a clear cusp-like structure at a frequency
equal to 2∆ for finite values of 1/τ in the BCS limit. This structure is gradually
smeared and slightly shifted in frequency as 1/τ increases. The cusp remains
clearly visible even at finite temperature.

When inelastic scattering is included the BCS results become modified. In the
special case of 1/τ = 0 (i.e. the clean limit) neither the real nor the imaginary
part of the conductivity shows a clear onset at 2∆, although both are affected
by the superconducting transition. When impurities are introduced, however, a
sharp absorption edge and a cusp are restored to the real and imaginary parts
of the conductivity, respectively.

In the case of d-wave superconductivity the situation is very different. The
single-particle excitation spectrum has nodes at the Fermi surface, so the
conductivity tends to resemble that of the normal state. There is no clear
characteristic absorption edge that can be associated with the growth of a
superconducting order parameter. Similar remarks apply to the conductivity-
derived frequency-dependent scattering rate 1/τ(ν), to be defined in the next
section. The low frequency part of this rate provides a signature of the gap
symmetry, with qualitatively different behaviour for s- and d-wave symmetry.
The high frequency part reflects inelastic scattering processes, and so may provide
information about the superconducting mechanism.

2. Normal State Conductivity

The complex Drude conductivity σ(ν) is given as a function of frequency ν
by the well-known expression (Ashcroft and Mermin 1976)

σ(ν) =
ne2

m

1
1/τ − iν

, (1)

where n, e, and m are the free electron density, charge magnitude, and mass,
respectively, and τ (1/τ) is an electron relaxation time (scattering rate). The
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relaxation time can come from a variety of sources; the simplest is ordinary elastic
impurity scattering. The scattering rate 1/τ is then independent of temperature,
and here we assume it is independent of momentum. Note that there are two
simple ways (Dolgov et al. 1991; Shulga et al. 1991) to infer the scattering rate
from equation (1),

1/τ =
ne2

m
Re

(
1

σ(ν)

)
, (2)

which requires independent knowledge of the prefactor ne2/m, and

1/τ = νσ1(ν)/σ2(ν) , (3)

where σ1(ν) and σ2(ν) denote the real and imaginary parts of the conductivity.
This latter means has the obvious advantage of not requiring independent
knowledge of the plasma frequency ωP , where ω2

P ≡ 4πne2/m. The function
σ1(ν) (σ2(ν)) has a maximum (minimum) at ν = 0. They both have widths at
half-maximum equal to 1/τ . Sketches are provided later (in Figs 6–9). In the
asymptotic limit (ν →∞) σ1(ν) approaches zero as 1/ν2 and νσ2(ν) approaches
the constant ne2/m. In the clean limit there is very little impurity scattering
and 1/τ approaches zero. This implies a narrow Drude form for σ1(ν) and σ2(ν).
Conversely in the dirty limit (1/τ → ∞) the Drude form becomes broad. One
can easily see from (1) that mathematically in the clean limit σ1(ν) approaches
a delta-function at the origin, indicating that at zero frequency the clean metal
(i.e. without impurities) is a perfect conductor while at finite frequency it is a
perfect reflector (no absorption).

Equations (2) and (3) apply to the Drude model. However, following Dolgov
et al. (1991) and Shulga et al. (1991), we generalise these definitions to include
inelastic scattering processes, thereby defining 1/τ(ν) (equation 2) and 1/τ∗(ν)
(equation 3), respectively. As we shall see later in this review, 1/τ(ν) in particular
can be used to extract meaningful characteristics in the superconducting state
as well.

We have mentioned the plasma frequency ωP . One means of extracting this
quantity is the conductivity sum rule (Kubo 1957),∫ ∞

0

σ1(ν)dν =
ω2
P

8π
, (4)

which requires a measurement of the real part of the conductivity over all
frequencies. In practice one is often interested in the electronic properties of a
particular band near the Fermi surface. One should then terminate the frequency
sum before the region involving interband transitions is reached. Then, of course,
the free electron density in the definition of the plasma frequency corresponds
to the electron density associated with this particular band.

As an aside we should add some remarks concerning the measurement of the
complex conductivity. A common method is to measure the reflectance (Timusk
and Tanner 1989; Tanner and Timursk 1992) as a function of frequency, usually
at normal incidence. Possible alternatives are transmission measurements, which
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can be used for thin films, and absorption measurements which can be performed
using bolometry. Here we focus on the reflectance R(ν), which is defined as the
absolute ratio squared of reflected over incident electromagnetic wave amplitude
(Ziman 1972). The complex reflectivity is defined as

r(ν) ≡ R 1
2 (ν) exp (iθ(ν)) , (5)

where θ(ν) is the phase, and is obtained through a Kramers–Kronig relation
(Timusk and Tanner 1989; Tanner and Timusk 1992)

θ(ν) =
ν

π

∫ ∞
0

lnR(ν′)− lnR(ν)

ν2 − ν′2
dν′ . (6)

The reflectivity is related to the complex index of refraction N(ν):

r(ν) ≡ N(ν)− 1
N(ν) + 1

, (7)

which in turn is simply related to the dielectric function ε(ν), or complex
conductivity σ(ν):

ε(ν) ≡ N2(ν) = ε∞ +
4πiσ(ν)

ν
. (8)

Here ε∞ in principle approaches unity at infinite frequency; in practice it
takes on some value greater than unity beyond the intraband frequency regime,
and this value is used in (8). We note that the Kramers–Kronig relation
requires knowledge of the reflectance for all frequencies. In practice extrapolation
functions (Hagen–Rubens form at low frequency and some power law decay at
high frequency) are utilised to complete the integral. While these procedures
introduce some uncertainty into the ‘measured’ conductivity, for the purpose of
this review we view the real and imaginary parts of the conductivity (which
follow on an equal footing from equation (8)) as the ‘raw data’. For completeness
we illustrate in Fig. 1 the reflectance one expects to measure as a function of
frequency for a hypothetical metal which has a Drude conductivity give by (1).

Note the Hagen–Rubens form R(ν) ≈ 1−
√

8
ωP τ

ν
ωP

at lower frequency, and the

relatively constant regime followed by a sharp plasma edge for the cases where
1/τ ¿ ωP .

At finite temperature other imperfections arise: thermal fluctuations displace
an ion of an otherwise perfect lattice off its equilibrium position. An electron can
scatter off this imperfection as in the case of an impurity, except that now the
scattering is inelastic, and the energy of the scattered electron changes. Overall
energy is conserved, with the remaining energy difference taken up by the phonons.
The number of thermally excited phonons is strongly dependent on temperature,
so that the phonon-induced electron scattering rate is strongly temperature
dependent, and vanishes as T → 0. The degree of scattering will clearly depend on
the density of phonon states, usually denoted F (ω). More precisely the electron
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scattering from these states will be weighted by an electron–phonon matrix
element, so that the relevant function is a weighted density of states sometimes
called the electron–phonon spectral density α2F (ω) (also called the Eliashberg
function in the Soviet literature). A more explicit form will be provided later.

One of the recurring themes of this paper is that there are many ways of
characterising the electron scattering rate. We have already mentioned one in the
context of impurity scattering, which is to use the electron transport properties, in
this case the optical conductivity. A second means is through the single-particle
propagator, whose pole acquires a finite imaginary part. This demonstrates that
an electron can decay, i.e. scatter into another state. As will be discussed in
the following paper (Marsiglio and Carbotte 1997, present issue p. 1011), the
imaginary part of the electron self-energy gives the electron (i.e. quasiparticle)
inverse lifetime (see, for example, Grimvall 1981; Allen and Mitrović 1982):

Γ(ω, T ) ≡ −2ImΣ(ω, T ) . (9)

For example, the inverse quasiparticle lifetime, Γe−i for impurity scattering is
simply

Γe−i = 1/τ , (10)

which is identical to that inferred from the conductivity (Mahan 1981, 1987)∗. For
electron–phonon scattering, the result at the Fermi surface (ω = 0) is (Grimvall
1981; Allen and Mitrović 1982)

Γe−ph(T ) =
4π

1 + λ∗(T )

∫ ∞
0

α2F (ω)csch(βω)dω , (11)

where β ≡ 1/kBT is the inverse temperature. Here h̄ has been set to unity,
as is the Boltzmann constant kB . The mass enhancement parameter λ∗(T ) is
fully described later. To infer the low temperature behaviour of the quasiparticle
lifetime (due to phonon scattering) we adopt a Debye model, applicable to most
metals for sufficiently low frequency, so that α2F (ω) ∝ ω2 and

ΓDebye(T ) ∝ T 3 . (12)

Equation (12) is applicable only at the Fermi surface, as are the following
expressions for the inverse lifetime. In the marginal Fermi liquid (MFL) model
(Varma et al. 1989, 1990; Nicol et al. 1991) with coupling to charge and
spin fluctuations the effective spectral density α2F (ω) is approximated by the
functional form

α2F (ω) ≈ tanh(βω/2) , (13)

∗ Strictly speaking we should distinguish between τ and τtr, the latter being the transport-
related scattering time, while the former is defined to mean a general scattering time,
unweighted by the direction of scattering. However, for s-wave electron-impurity scattering,
the two are equal. Similarly, there is a distinction between the electron–phonon spectral
function α2F (ω), and α2

trF (ω), which is used for transport properties. These two functions
are often very similar, and for present purposes, the distinction will be ignored.
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Fig. 1. Drude reflectance as a function of frequency normalised to the plasma frequency,
for various values of the elastic scattering rate 1/τ . Note that the well-defined plasma edge
occurs for 1/τ ¿ ωP .

so that

ΓMFL(T ) ∝ T . (14)

Such a temperature dependence is characteristic of various transport properties
in the cuprate materials in the normal state, and has led in part to the
popularity of the MFL model. In the nearly antiferromagnetic Fermi liquid model
(NAFLM) (Millis et al. 1990; Monthoux and Pines 1993) electron scattering
occurs by exchange of antiferromagnetic spin fluctuations. At low frequency
the spin fluctuation spectral function is linear, α2F (ω) ≈ ω, so that the inverse
quasiparticle lifetime is

ΓNAFLM(T ) ∝ T 2 . (15)

These examples illustrate that the quasiparticle inverse lifetime can acquire
very different temperature dependences, depending on the model boson which
is the source of inelastic scattering. The key signature that a boson interacts
strongly with electrons is a broad Drude width at high temperature which narrows
considerably as the temperature is lowered to zero temperature.

The lack of scattering mechanisms makes absorption of incoming photons
impossible, since momentum and energy conservation laws cannot be fulfilled
simultaneously. With impurity scattering electrons can be promoted from below
the Fermi surface to above with the required change in momentum taken up
by the impurity site. The presence of inelastic scattering allows an electron to
make a transition from below the Fermi surface to above through the creation
of a phonon which takes up both the momentum and energy imbalance. Such a
process is referred to as a Holstein or phonon-assisted absorption process. More
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generally we refer to such a process as boson-assisted absorption. This absorption
occurs even at zero temperature at frequencies beyond the minimum phonon
energy (Ron 1963).

The derivation of the optical conductivity for a metal with these various
scattering processes is given in several texts and reviews (Mahan 1981, 1987).
Two routes can be followed, one based on a Boltzmann equation and the other
based on the Kubo formula. We refer the reader to the references for such a
derivation, and simply quote the final result, valid for an s-wave superconductor
(Nam 1967; Lee et al. 1989; Bickers et al. 1990; Marsiglio et al. 1992) (in Marsiglio
et al. the derivation for the phonon self-energy at q = 0 applies to the optical
conductivity)

σ(ν) =
i

ν

(
Π(ν + iδ) +

ne2

m

)
, (16)

where Π(ν + iδ) is the paramagnetic response function given by

Π(ν + iδ) =
ne2

m

{
− 1 +

∫ ∞
0

dω tanh(βω/2)
(
h1(ω, ω + ν)− h2(ω, ω + ν)

)
+
∫ D

−ν
dω tanh(β(ω + ν)/2)

(
h∗1(ω, ω + ν) + h2(ω, ω + ν)

)}
, (17)

with

h1(ω1, ω2) =
1−N(ω1)N(ω2)− P (ω1)P (ω2)

2(ε(ω1) + ε(ω2))
,

h2(ω1, ω2) =
1 +N∗(ω1)N(ω2) + P ∗(ω1)P (ω2)

2(ε(ω2)− ε∗(ω1))
,

N(ω) =
ω̃(ω + iδ)
ε(ω + iδ)

P (ω) =
φ(ω + iδ)
ε(ω + iδ)

,

ε(ω) =
√
ω̃2(ω + iδ)− φ2(ω + iδ) , (18)

where D is a large cutoff to be taken to infinity for large electronic bandwidth.
These equations require knowledge of the pairing and renormalisation functions

φ(ω) and ω̃(ω), respectively. In the superconducting state these are determined
by solving the Eliashberg (1960) equations, which are provided for convenience
in the following paper. For the moment we proceed with the normal state, so
that φ(ω) = 0. Then

Re ω̃n(ω + iδ) = ω −
∫ ∞

0

dνα2F (ν)Re
[
ψ

(
1
2 + i

ν − ω
2πT

)
− ψ

(
1
2 − i

ν + ω

2πT

)]
,

(19)

Im ω̃n(ω + iδ) = π

∫ ∞
0

dνα2F (ν)Re
[
2N(ν) + f(ν + ω) + f(ν − ω)

]
+

1
2τ

,

(20)
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where the subscript ‘n’ denotes normal state, ψ(x) denotes the digamma function
and N(ν) and f(ω) are the Bose and Fermi functions respectively. Note that the
renormalisation function is simply related to the electron self-energy discussed
earlier:

ω̃n(ω + iδ) ≡ ω − Σ(ω) . (21)

We have also included the contribution from impurity scattering, in the Born
approximation, which gives the last factor in (20). As is clear from these equations,
the electron–phonon spectral function α2F (ω) determines the renormalisation due
to the electron–phonon interaction given by the Hamiltonian

He−ph =
∑
k,k′
σλ

gk,k′;λc
†
kσck′σ

[
ak−k′;λ + a†−k+k′;λ

]
, (22)

in which gk,k′;λ is the coupling for electron scattering from wave vector k′ to k
through the emission (a†) or absorption (a) of a phonon. The electron spin is
σ, the phonon branch index is λ, and the phonon momentum is ±(k− k′). In
terms of gk,k′;λ the electron–phonon spectral function has the form

α2F (ν) =
∑

kk′ |gk,k′;λ|2δ
(
ν − ωλ(k− k′)

)
δ(εk)δ(εk′)∑

kδ(εk)
, (23)

where N(0) ≡
∑

k δ(εk) is the density of electron states at the Fermi surface.
In fact, (23) gives a momentum independent function because the electron wave
vectors have been averaged over the Fermi surface. Further justification of this
procedure for most metals is found in Allen and Mitrović (1982).

In much of this review we will focus on measurements taken on the cubic
perovskite Ba1−xKxBiO3, which has a superconducting critical temperature
Tc = 29 K. To model this material we will utilise an electron–phonon spectral
function based on the generalised density of phonon states G(ω) obtained from
neutron scattering (Loong et al. 1989, 1991), and scale the spectrum to yield a
mass renormalisation parameter λ equal to unity. The more desirable procedure
of using tunneling to extract α2F (ω) (McMillan and Rowell 1969) has some
difficulties (Huang et al. 1990; Zasadzinski et al. 1991; Sharifi et al. 1991). The
mass renormalisation parameter is given by

λ = 2
∫ ∞

0

α2F (ω)
ω

dω (24)

and also corresponds to the zero temperature limit of λ∗(T ) introduced earlier. We
then parametrise the Coulomb repulsion through a structureless pseudopotential µ∗,
as is usual. A value close to zero (µ∗ = 0 ·018) is required to give Tc = 29 K. We show
a plot of this model α2F (ω) in Fig. 2. The important thing to note is the maximum
phonon energy scale, 70 meV. [Regarding units, they are used interchangeably
in the literature, with the convention 1 meV = 11 ·605 K = 8 ·1 cm−1. Also,
conductivity will sometimes be computed to be in meV (cm−1 or s−1). These
numbers are to be divided by 0 ·592 (4 ·77 or 9×1011), respectively to convert
to practical units, (ohm cm)−1.]
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Fig. 2. Electron–phonon spectral function for BKBO, as determined by scaling the density
of phonon states measured by Loong et al. (1991) using neutron scattering techniques.

Fig. 3. Real part of the normal state conductivity (in units of ne2/m) versus frequency in
the clean limit (1/τ = 0), plotted for various temperatures. Here Tc = 29 K. Because we are
in the clean limit the conductivity is entirely due to phonon-assisted absorption. However, at
any non-zero temperature, a Drude-like component is present.

Using this model for α2F (ω) we show the real part of the conductivity in
the normal state in Fig. 3 for various temperatures referenced to the critical
temperature (Marsiglio and Carbotte 1995) (hereafter we show conductivity in
units of ne2/m). We have included only the electron–phonon scattering and so
refer to such cases as the clean limit (1/τ = 0). Note that at essentially any
nonzero temperature a Drude-like peak centred at the origin exists. At the
highest temperature shown (T/Tc = 10, long dash-dotted curve) the Drude peak



984 F. Marsiglio and J. P. Carbotte

is very broad, which occurs because of the large inelastic scattering rate as given
by (11). In contrast, at the lowest temperature shown, a very narrow Drude
peak is barely visible near the origin. At T = 0 no peak would be present, and
all that would remain is the phonon-assisted conductivity at higher frequencies.
Thus at any finite temperature, thermally populated phonons behave much like
normal impurities as far as the optical conductivity is concerned.

This correspondence can be quantitatively demonstrated. By performing low
frequency expansions we have previously shown (Marsiglio and Carbotte 1995)
that the low frequency conductivity can be written in a Drude-like form

σ1Drude =
ne2

m

1
1 + λ̃

(
1/τ̃

ν2 + (1/τ̃)2

)
, (25)

where λ̃ and τ̃ are given by the expressions

1/τ̃2 ≡

∫ ∞
0

βdω

2
sech 2(

βω

2
)

τ∗(ω)
1 + λ∗(ω)∫ ∞

0

βdω

2
sech 2(

βω

2
)
τ∗(ω)3

1 + λ∗(ω)

, (26)

1
1 + λ̃

≡ 1
τ̃

∫ ∞
0

βdω

2
sech 2 βω

2
τ∗(ω)

1 + λ∗(ω)
. (27)

In these definitions we have used the quantities

1/τ∗(ω) ≡ 1/τ + 2Im ω̃n(ω + iδ)
1 + λ∗(ω)

, 1 + λ∗(ω) ≡ ∂Re ω̃n(ω + iδ)
∂ω

. (28)

These expressions apply for the normal state, with both electron-impurity and
electron–phonon scattering included. They have been derived without fitting
parameters. To examine how well they characterise the low frequency conductivity,
we show results in Fig. 4 for various temperatures and impurity scattering rates.
It is clear that over some frequency range (which increases as the temperature
increases) the approximate results from equation (25) shown as dotted curves
agree very accurately with the full results from (16), shown as solid curves. To
further understand the significance of the Drude parameters, we note that the
conductivity sum rule, applied to (25), gives∫ ∞

0

dνσ1Drude(ν) =
π

2
ne2

m

1
1 + λ̃(T )

. (29)

Note that λ̃ reduces to the mass renormalisation parameter λ (equation 24)
as T → 0. The missing area in (29) is accounted for by the boson-assisted
contribution not included in (25), and is proportional to λ̃. Thus, to estimate
the electron–phonon coupling strength one would measure the low frequency part
of the conductivity, and evaluate the area under the Drude fit to determine the
partial contribution given by (29). To obtain λ̃ one requires an independent
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Fig. 4. A plot of σ1n(ν) versus ν for (a) 1/τ = 0 and (b) 1/τ = 25 meV. The solid curves
are the full numerical results, while the dotted curves are given by the Drude fit, equation
(25). These are accurate at low frequency for all temperatures and impurity scattering rates.

estimate for the bare plasma frequency, say from penetration depth measurements
(Basov et al. 1995). A more self-contained procedure is to measure the area
at various temperatures, and in particular at high temperature. At very high
temperature the electrons are essentially ‘undressed’ from the phonons, so λ̃

approaches zero. The area will then approach the value π
2
ne2

m
. In Fig. 5a we

plot the Drude area normalised to this value as a function of temperature for
various values of the impurity scattering rate 1/τ . Also shown on the same
plot is the value of λ̃(T ) for the same impurity scattering rates. These latter
curves fall to zero as T increases, while the area approaches unity due to
the normalisation discussed above. As already mentioned the electron–phonon
‘undressing’ at high temperatures occurs because the phonons appear as static,
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Fig. 5. (a) Normalised Drude weight (in units of π
2
ne2

m
), ADrude versus temperature for

various impurity scattering rates, 1/τ = 0 ·01 (solid), 1 ·0 (dotted), 5 ·0 (dashed), 25 ·0
(dot-dashed), and 100 ·0 (short-dashed long-dashed) meV. Also shown is the inferred ‘coupling
strength’ (using equation 29) λ̃(T ) for the same impurity scattering rates. The experimental
measurements of ADrude from Puchkov et al. (1994) are indicated by the filled circles. The
data are not consistent with the temperature dependence of the calculated Drude areas. (b)
Fitted scattering rate 1/τ̃(T ) (in units of meV) versus temperature, for the same impurity
scattering rates used in (a). Also shown is the high temperature result, 2πλT , and the
experimental data of Puchkov et al. Their data are clearly incompatible with a coupling
strength of order unity.

like normal impurities, and thus they become part of the Drude-like peak. As
can be seen from the figure the influence of the actual static impurity scattering
rate is minor, so analysis of conductivity data to infer λ̃ appears feasible. Thus,
the temperature dependence of the Drude area gives us a good idea of the
size of electron–phonon coupling. Since the area is defined to be unity at high
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temperature, and approaches 1/(1 + λ) at low temperatures, then if λ is small,
for example, there will be very little temperature dependence in the area under
the Drude-like peak. The fitted experimental results from Puchkov et al. (1994)
are also shown in Fig. 5a for comparison with the theoretical curves. We have
normalised their results to unity at their highest temperature, 300 K. Clearly
the measured temperature dependence of the Drude area implies a very small λ.

Puchkov et al. (1994) actually monitored the Drude-like width as a function
of temperature. In Fig. 5b we show the fitted scattering rate 1/τ̃ versus
temperature, for various impurity scattering rates. Also shown is the high
temperature asymptotic behaviour 1/τ̃(T ) → 2πλT obtained from (27) at high
temperature. Note that asymptotic behaviour is not achieved on the scale of
this plot (which extends to ≈ 450 K) so one must be cautious in using this
well-known asymptotic formula. For unphysically large impurity scattering rates
(long-dashed short-dashed curve) this asymptotic behaviour is never achieved.
For more moderate impurity scattering rates the contribution from the phonons
at least dominates by room temperature. Puchkov et al. (1994) analyse their data
using the asymptotic behaviour noted above. (We have plotted their data points
as the circles in Fig. 5b.) While our more detailed analysis leads to quantitative
corrections their general conclusion is correct: the data are only consistent with
a small electron–phonon coupling constant. We found (Marsiglio and Carbotte
1995) that the data imply a small electron–phonon coupling, λ ≈ 0 ·1− 0 ·2, as
found in Puchkov et al. (1994). In this case the mechanism for superconductivity
must clearly be non-conventional. This is an important result because it implies
that a non-phonon mechanism drives superconductivity in this compound even
though the gap clearly has s-wave symmetry, and other similarities to BCS theory,
as will be noted below.

3. Superconducting State

When the electrons undergo a phase transition to the superconducting state
a gap ∆(T ) develops in the excitation spectrum and at zero temperature
electromagnetic radiation cannot be absorbed at frequencies below the optical gap
value of 2∆(0). The optical gap is twice the single-particle gap because a photon
must excite an electron–hole pair, each of which is a single-particle excitation.
For purposes of clarity we first review the conductivity in the superconducting
state for a ‘BCS’ model (Bardeen et al. 1957; Mattis and Bardeen 1958). By this
we mean some unspecified mechanism has led to superconductivity, but otherwise
only electron-impurity scattering is present. There is no inelastic scattering, and
thus no boson-assisted conductivity, thus simplifying the results considerably.
[Technically, the gap function ∆(ω) ≡ ωφ(ω)/ω̃(ω) becomes independent of
frequency and is a real number.] The real part of the conductivity is shown in
Fig. 6 at zero temperature and near the clean limit (1/τ = 1 meV) (Zimmerman
et al. 1991). The normal state result (dashed curve) simply comes from the
Drude expression (1). The superconducting state result (solid curve) consists of
two parts; the remaining Drude-like component after the conductivity is gapped
up to ν = 2∆(0), and the delta-function contribution at the origin, which takes
up the missing area to fulfil the sum rule (4) and also accounts for all the key
ingredients of a superconductor (zero DC resistance and Meissner–Ochsenfeld
effect). The zero temperature optical gap, 2∆(0), can clearly be obtained from
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such measurements. In Fig. 7 we illustrate the temperature dependence of the
conductivity in the superconducting state, showing how the area is systematically
removed from the gap region. Coincident with the finite frequency temperature
evolution is a zero frequency delta-function (omitted in Fig. 7) which grows in
strength as the temperature decreases below Tc towards T = 0.

Fig. 6. A plot of σ1(ν) versus ν near the clean limit (1/τ = 1 meV), for the normal state
(dashed curve) and the BCS superconducting state at zero temperature (solid curve plus
delta-function at the origin).

Fig. 7. Frequency dependence of σ1(ν) near the clean limit (1/τ = 1 meV) for various
temperatures in the BCS superconducting state. The appearance of a gap is evident, even at
temperatures close to Tc.
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From this figure it is apparent that the gap value can be measured as a function
of temperature. A Drude-like component remains for any finite temperature,
which has prompted a two-fluid picture (Berlinsky et al. 1993; note there is a
typographical error in their equations 15 and 16), consisting of a superconducting
fluid (the delta-function at the origin) and a normal fluid (the low frequency
conductivity at finite temperature).

Fig. 8. A plot of νσ2(ν) versus ν near the clean limit (1/τ = 1 meV), for the normal state
(dashed curve) and the BCS superconducting state at zero temperature (solid curve plus
delta-function at the origin). Note the obvious signature of an optical gap, as was present in
the real part (Fig. 6).

The usefulness of the imaginary part of the conductivity as a probe for the
gap is much less appreciated. In Fig. 8 we show the function νσ2(ν) versus
frequency for the same parameters as in Fig. 6. It is clear that the gap can
be obtained through an analysis of σ2(ν) as well as σ1(ν). In Fig. 9 we again
show the temperature evolution as in Fig. 7, and as was the case for σ1(ν) the
gap feature is quite apparent for all temperatures below Tc. In addition the zero
frequency limit is directly related to the London penetration depth

1/λ2(T ) = lim
ν→0

4π
c2
νσ2(ν) . (30)

This relation has been used recently by experimentalists (Basov et al. 1995)
to extract the penetration depth from infrared data from an extrapolation to
low frequency. This procedure is most accurate at low temperature and for the
case of Fig. 9 requires measurements of points well below 1 meV at the higher
temperatures shown.

Finally, it is helpful to see the dependence of the real and imaginary parts
of the conductivity on impurity scattering rate. These are shown at very low
temperature in the BCS limit in Fig. 10. In the real part in all cases the onset
of absorption is sharp. The initial trend with increasing impurity scattering is
an increase in conductivity beyond the optical gap. This is because the gap
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opens in a frequency region where the normal state conductivity is still high as
we move away from the clean limit [in the absolute clean limit the gap opens
at a frequency where the normal state conductivity is negligible, so the gap is
invisible (Kamarás et al. 1990)]. However, as the scattering rate increases still
further, the overall scale of the conductivity decreases, so the conductivity near
the optical gap decreases, as is evident from Fig. 10a. In the imaginary part
(Fig. 10b) this decrease in scale is most evident, and of course indicates that the
penetration depth increases with impurity scattering. Furthermore, the cusp-like
minimum near the optical gap becomes very smooth as the impurity scattering
rate increases, so that the gap is far less evident in the dirty limit than for a
low impurity scattering rate.

Fig. 9. Frequency dependence of νσ2(ν) near the clean limit (1/τ = 1 meV) for various
temperatures in the BCS superconducting state. The appearance of a gap is evident in the
imaginary part of the conductivity as well, even at temperatures close to Tc.

The BCS results presented above show fairly sharp cusp-like features at
frequencies corresponding to the optical gap, particularly for small values of 1/τ .
However, as we have already seen in the normal state, inelastic scattering processes
introduce damping effects, so that some of these sharp features may become
somewhat smeared. We turn now to a discussion of the quantitative effects of
inelastic scattering processes, again in the context of the oxide superconductor
Ba1−xKxBiO3 (Marsiglio et al. 1996). In Fig. 11 we show the real part of
the conductivity versus frequency for various temperatures below Tc in the (a)
superconducting and (b) normal states. For the purposes of illustration we have
adopted the clean limit (1/τ = 0) as in Fig. 3 so that the Drude-like parts come
from thermally populated phonons. This is clear in both frames: the Drude part
narrows as the temperature is lowered. Clearly the suppression is more pronounced
in the superconducting state than in the normal state due to the formation of the
condensate and the corresponding reduction in the normal state fluid component.
At zero temperature in the superconducting state the absorption edge starts at
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2∆(0) = 10 ·4 meV. The phonon spectrum (Fig. 2) extends down to zero frequency,
otherwise this edge would be offset further by the minimum phonon energy. In
this case, with no impurity scattering, it is virtually impossible to observe the
optical gap value (compare Fig. 6 or 7). In the normal state the absorption edge
is at zero frequency (at T = 0) so that superconductivity has effectively resulted
in a 2∆(0) frequency shift in the phonon-assisted contribution (of course there is
an additional delta-function at the origin). Otherwise the two results are similar;
in particular both display some modulation of the phonon-assisted contribution
which reflects to some extent the underlying phonon spectrum (Fig. 2).

Fig. 10. (a) A plot of σ1(ν) versus ν in the zero temperature BCS superconducting state
for the various impurity scattering rates indicated. The absorption onset at 2∆(0) remains
sharp independent of the scattering rate. A delta-function contribution (not shown) is also
present at the origin. (b) Same as in (a) except for the frequency times the imaginary part
of the conductivity. The optical gap is a little less evident in the dirty limit.
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Fig. 11. Real part of the conductivity versus frequency for various temperatures in (a) the
superconducting state and (b) the normal state. These results are for the clean limit, 1/τ = 0,
so only inelastic scattering is present, provided by the model phonon spectrum for BKBO
(Fig. 2). The presence of a superconducting gap is not obvious in (a).

When even a small amount of impurity scattering is included the situation
changes significantly. In Fig. 12 we show results for the same phonon spectrum,
but with additional impurity scattering present (1/τ = 2 meV). The gap edge
is now clearly visible, even at finite temperatures, due to impurity-assisted
absorption processes.

As the previous two figures and Fig. 3 indicate, structure is visible in the
conductivity in the phonon energy region (0–70 meV) for the lowest temperatures
shown. This structure in the phonon region was observed many years ago in
superconducting Pb (Joyce and Richards 1970; Farnworth and Timusk 1974).
With the addition of impurities this structure is smeared out in the normal state.
However, in the superconducting state the structure is restored, even in the dirty
limit. As the coupling strength increases, the structure in the conductivity (as
in the tunneling density of states) becomes more pronounced. Puchkov et al.
(1994) noted the absence of structure in their measurements, which they took
as evidence for a lack of electron–phonon coupling. In Fig. 13a we plot the
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Fig. 12. As in Fig. (11a), the real part of the conductivity versus frequency for various
temperatures in the superconducting state, but with 1/τ = 2 meV. Now the presence of a
superconducting gap is evident.

real part of the conductivity in the clean limit for (i) the normal state at Tc
(solid curve), (ii) the normal state at T/Tc = 0 ·1 (dotted curve), and (iii) the
superconducting state at T/Tc = 0 ·1 (dashed curve), using our model spectrum,
Fig. 2 (Marsiglio and Carbotte 1995). This plot serves to clarify some of the
results of previous figures. It is readily seen that even the structure is shifted
by the optical gap in going from the normal to superconducting state. However,
we should emphasise that the normal state conductivity is not usually measured
below Tc. Rather it is the normal state conductivity at Tc (solid curve) that is
measured and, as Fig. 13a indicates, the structure present is barely discernable.
This makes the frequency shift in structure unobservable. In Fig. 13b we show
the same quantities, now with an impurity scattering rate of 1/τ = 25 meV.
While no structure is observable in the normal state either at T/Tc = 1 ·0 or 0 ·1,
it is evident in the superconducting state, albeit far less than in the clean limit.
It is not likely that such structure could be discernable from the measurements
of Puchkov et al., should it be present. One must also keep in mind that in the
presence of normal impurity scattering, the structure is only observable in the
superconducting state, and this is due to the opening of a gap, followed by a
singular density of states. Any intrinsic material property that gives rise to a
smearing of this singularity will also smear the phonon structure, thus rendering
it unobservable.

We now turn to a discussion of the imaginary part of the conductivity in
the presence of inelastic scattering (Marsiglio et al. 1996). In Fig. 14a we plot
νσ2(ν) versus ν for the Ba1−xKxBiO3 spectrum with λ = 1 and Tc = 29 K as
discussed previously. The curves are plotted in the clean limit, i.e. 1/τ = 0, so
the real conductivity plot has already been given in Fig. 11. The very sharp
Drude-like peak present at low temperatures in the real part of the normal
state conductivity manifests itself in the imaginary part of the conductivity as a
sharp inverted Drude-like minimum near the origin, as is visible in the lower left
portion of Fig. 14a. The solid curve is for T/Tc = 0 ·99 while the dotted curve,
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Fig. 13. Real part of the conductivity versus frequency for (a) 1/τ = 0 and (b) 1/τ = 25 meV,
using the BKBO spectral density. Results are shown for the normal state at Tc (solid curve),
normal state at T/Tc = 0 ·1 (dotted curve), and for the superconducting state at T/Tc = 0 ·1
(dashed curve).

which is almost indistinguishable from the solid curve, is for the normal state at
the same temperature. The difference occurs near the origin (not shown) as the
normal state curve goes to zero, whereas the superconducting state curve has an
intercept related to the penetration depth by equation (30). The results at lower
temperature show the effects of inelastic scattering most clearly (compare with
Fig. 8 or 9). First, the sharp structure at ν = 2∆ ≈ 10 ·4 meV is absent. However,
in this case there is no BCS reference, as in the clean limit the corresponding
result would be a constant at value unity (see Fig. 10b). The lack of sharp
structure is also consistent with the lack of an abrupt onset in the real part (see
Fig. 11) since the two are related by a Kramers–Kronig relation.
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Fig. 14. A plot of νσ2(ν) versus frequency, using the BKBO spectrum as in Fig. 13. In (a)
we use 1/τ = 0 (clean limit) and plot the results for the indicated temperatures. The solid
(dotted) curve is for the superconducting (normal) state at T/Tc = 0 ·99. Inelastic scattering
has smoothed the BCS cusp-like minimum at ν = 2∆0 ≈ 10 ·4 meV. In (b) we focus on the
low temperature results (T/Tc = 0 ·2) and show the effect of a small amount of impurity
scattering. The cusp-like minimum at 2∆ is clearly restored.

Another difference is the presence of structure over a frequency range
representative of the phonon energies in the α2F (ω) spectrum, as occurs in the
real part of the conductivity. This leaves open the possibility for the determination
of α2F (ω) by infrared spectroscopy with the imaginary part of the conductivity.

Finally another clear difference occurs in the zero frequency limit, where at
low temperatures the intercept is approximately 0 ·5, i.e. half of the London limit.
This is due to phonon renormalisation effects which, for the most part, amount
to a 1 + λ enhancement of the mass.

In Fig. 14b we show what occurs when the impurity scattering rate is nonzero.
A cusp-like minimum is present, as was the case in the BCS limit (Fig. 10b).
Secondly the penetration depth, given by the zero frequency limit of σ2(ν) (see
equation 30), has increased with the addition of impurities, as discussed in the
BCS limit.

To see the effect of coupling strength on the low frequency imaginary part
of the conductivity, in Fig. 15 we first plot the real part of the conductivity
versus frequency with (a) 1/τ = 2, and (b) 1/τ = 25 meV, for various coupling
strengths as indicated (the Coulomb repulsion µ∗ is adjusted in each case so
that Tc = 29 K), and the quantity νσ2(ν) in (c) and (d) for the same impurity
scattering rates as in (a) and (b), respectively. The decrease in scale with
increasing coupling strength is evident in all four figures. The real part of the
conductivity has a sharp absorption onset at 2∆ independent of the coupling
strength. For the imaginary part the depth and sharpness of the minimum
associated with the optical gap decreases as the coupling strength increases. The
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onset in the real part and the minimum in the imaginary part also shift slightly
to higher frequency, as expected since the zero temperature gap increases with
increasing coupling strength. At higher frequencies phonon structure becomes
more noticeable in all cases as coupling strength increases.

Fig. 15. Real part (a) and (b) and imaginary part (c) and (d) of the conductivity at
essentially zero temperature (T/Tc = 0 ·3) with 1/τ = 2 meV (a and c) and 1/τ = 25 meV (b
and d). In all cases we have used the BKBO spectrum scaled to give the designated value of
λ, while Tc is held fixed at 29 K by adjusting µ∗. Increased coupling strength suppresses both
σ1(ν) and νσ2(ν) and broadens the minimum in the latter at 2∆. Note that 2∆ increases
slightly as the coupling strength is increased.

We earlier discussed Drude-like fits to the real part of the conductivity in
the normal state (see Fig. 4). A similar procedure has been implemented for
the imaginary part of the conductivity (Marsiglio et al. 1996) and the results
are shown in Fig. 16. As before the Drude fits are given by dotted curves and
the full electron–phonon results by solid curves. Similar plots would work with
non-zero impurity scattering. In units of ne2/m, νσ2(ν) as modelled by the
complex Drude form (see equation 25),
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σDrude ≡
ne2

m

1
1 + λ̃

τ̃

1− iντ̃
, (31)

will saturate at high frequencies to a value of 1/(1+λ̃), which is 0 ·43 for the
chosen parameters at Tc. This saturation is seen very clearly in the plots. As the
temperature is increased to T/Tc = 5, the inelastic scattering increases significantly,
consistent with the real conductivity results. Note that limν→∞ νσ2(ν) = 1 in
the full calculation (in units of ne2/m). Thus, one could use νσ2(ν) data to
determine λ̃ and τ̃ independently from the low frequency fit and from the infinite
frequency limit.

Fig. 16. A plot of νσ2(ν) versus frequency for 1/τ = 0 (clean limit) in the normal state,
using the BKBO spectrum, showing the excellent agreement at low frequency between the
full calculations (solid curves) and the Drude fits, as in Fig. 4.

We have already explained how Puchkov et al. (1994) used the real part of the
conductivity in samples of Ba1−xKxBiO3 to conclude that this material cannot
be a conventional electron–phonon superconductor with coupling constant value
λ ≈ 1. This conclusion was further reinforced by the calculations already presented
(Marsiglio and Carbotte 1995), and by examining the imaginary part (Marsiglio
et al. 1996). The plot in Fig. 17 summarises some of the main conclusions
concerning the imaginary part. The experimental spectra were obtained using a
Kramers–Kronig analysis of the reflectivity spectra measured from 25 cm−1 to
40,000 cm−1 (Puchkov et al. 1994) and extrapolated at high frequency in such a
way as to match ellipsometric measurements on the same crystal. The minimum
at approximately 12 meV is striking evidence of an s-wave order parameter in
the Ba1−xKxBiO3 system. Similar results for other dopant concentrations (and
hence Tc values) have also been obtained (Puchkov et al. 1996). This conclusion
has been reinforced by complementary work by Jiang and Carbotte (1996a)
where they investigate the behaviour of the imaginary part of the conductivity
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for a superconductor with order parameter of d-wave symmetry and find that no
minimum occurs in νσ2(ν) at 2∆. These results will be discussed further in the
next section.

Fig. 17. Measured νσ2(ν) versus frequency at T = 9 K and at T = 300 K (solid curves)
(Marsiglio et al. 1996). Also shown are the theoretical fits, using the BKBO spectrum, scaled
so that λ = 0 ·2 (dashed curves). Here Tc is kept fixed to the experimental value with a
negative µ∗. Finally, theoretical fits are also shown with λ = 1 (dotted curves). The latter
curves are clearly incompatible with the experimental results.

Given the normalisation of the experimental data discussed above, Fig. 10b
makes it clear that a considerable amount of impurity scattering is required to
achieve a qualitative agreement between theory and experiment. This observation
is also consistent with the analysis of the real part of the conductivity, although in
that instance a ‘mid-infrared contribution’ of unknown origin was subtracted from
the data first. Then Fig. 15b shows that for λ of order unity, the large amount
of inelastic scattering present at relatively high frequencies (≈25–50 meV) will
reduce the imaginary part of the conductivity, in disagreement with experiment.
This disagreement will be even more significant at higher temperatures.

Theoretical curves are also plotted in Fig. 17 to more clearly illustrate these
remarks. As a ‘good’ representative fit we show results at the two temperatures
using a reduced α2F (ω) for Ba1−xKxBiO3 with λ = 0 ·2 (dashed curves). We have
used 1/τ = 25 meV, a value which is consistent with that obtained experimentally
from σ1(ν) (Puchkov et al. 1994, 1996). It is clear that the fit is quantitatively
good. For comparison we also show the result using the full spectrum, i.e. with
λ = 1. It is obvious that such a fit is poor, and given our previous results, the
reader can appreciate that no amount of parameter adjustment will yield good
agreement with the data at both temperatures while retaining λ of order unity.
This general result is, of course, consistent with the conclusion inferred from the
real part of the conductivity (Puchkov et al. 1994; Marsiglio and Carbotte 1995).
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The analysis of the imaginary part, however, has the advantage that no data
subtraction is required before the analysis. It has the disadvantage that a high
frequency scale is required to normalise the experimental data shown in Fig. 17.

We should briefly summarise the consequences of an s-wave order parameter
along with an inelastic scattering mechanism. Within the BCS model (no inelastic
scattering) the real part of the conductivity shows an onset of absorption at
the optical gap, 2∆. The imaginary part of the conductivity shows a cusp-like
minimum at the same frequency, which is most pronounced for a low impurity
scattering rate. In the presence of impurity scattering strong coupling effects
modify the results by smearing the gap minimum, and renormalising the low
frequency behaviour through a renormalisation 1/τ̃ → 1/τ

1 + λ
. [We have shown

that the renormalisation is actually 1/(1 + λ̃). However, limT→0 λ̃(T ) = λ. Also,
note that the first order effect of adding an additional inelastic scattering process
(electron–phonon coupling) to an elastic scattering process (impurity scattering)
is to reduce the overall scattering rate (at low temperatures). This occurs because
the inelastic scattering reduces the spectral weight of the quasiparticle undergoing
the scattering.] In addition, structure is apparent in the phonon region.

In the clean limit only inelastic scattering occurs and there is no structure
in νσ2(ν) at twice the gap value because absorption across the gap can only
proceed through a phonon-assisted mechanism needed to absorb the necessary
momentum and energy. Thus the onset in the real part of the conductivity
is smooth since the density of phonon states usually has an ω2 dependence at
low frequency. When impurities are added, a qualitative change occurs because
impurity-assisted absorption can now set in quite abruptly at 2∆. This manifests
itself in the imaginary part of the conductivity as a sharp cusp-like minimum in
νσ2(ν).

Application of our calculations to the specific case of Ba1−xKxBiO3 allows us
to conclude that this system is an s-wave superconductor. On the other hand
further analysis suggests that the superconductivity is not phonon-mediated as
others have concluded. The data are consistent with an electron–phonon mass
enhancement parameter of about λ ≈ 0 ·2 and inconsistent with larger values of
order unity suggested in the literature and required to produce Tc ≈ 30 K.

4. The Cuprate Superconductors

Untwinned single crystals of YBaCu3O7−x (YBCO) exhibit a very large inelastic
scattering rate in the normal state of the order of a few Tc at a temperature
T = Tc (Iye 1992). This indicates that some inelastic scattering mechanism should
be included as a fundamental characteristic of the cuprate superconductors if
their properties are to be properly understood. That this scattering is primarily
inelastic is inferred from the strong temperature dependence of the resistivity
above Tc. Extrapolation to below Tc (and measurements on related lower Tc
compounds) show that the residual resistivity is quite low, which leads to a second
important feature—that the cuprates have very little impurity scattering, i.e. they
are in the clean limit. This conclusion is further justified in the superconducting
state since the relevant length scale is the coherence length, which is known to
be very short.
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In addition it has been established with several experimental techniques that
the superconducting gap has d-wave symmetry with nodes on the Fermi surface
(Scalapino 1995). We will not review these varied results; instead we will focus
on one possible mechanism which leads to both strong inelastic scattering and
a d-wave symmetry order parameter, the nearly antiferromagnetic Fermi liquid
model (NAFLM) (Millis et al. 1990; Monthoux and Pines 1993). The NAFLM
is very similar to a phonon mechanism, except that the boson in this case is an
antiferromagnetic spin fluctuation. Thus the spin susceptibility plays the role of
the electron–phonon spectral function, and leads to both inelastic scattering and
pairing. The spectral function is modelled by the simple form (Jiang et al. 1996)

α2F (ω) = b2
ω/ωsf

1 + (ω/ωsf)2 . (32)

Here ωsf sets the scale for typical spin fluctuations—for various reasons we take
it to be ωsf ≈ 30 meV (Schuttler and Norman 1996). The parameter b2 is purely
phenomenological, and will be determined by the requirement that Tc ≈ 100 K.
A cutoff for this spectrum is also required, which we take to be 400 meV.
The ratio Tc/ωsf is indicative of the coupling strength. Here it is 0 ·3, which
is substantial (a similar measure of superconducting Pb gives 0 ·13). Another
important difference with phonon theories is that the spectral function is linear
in frequency at low frequency rather than quadratic.

The cuprate superconductors are also quasi-two-dimensional. Thus the Fermi
surface is modelled by a cylinder, so that the problem is effectively two dimensional,
with a circular Fermi surface in the two-dimensional copper oxide Brillouin zone.
In this discussion we also adopt a single band model, though other complications
arise, in particular for YBCO, where ‘chain’ bands also exist (Atkinson and
Carbotte 1995). Further we adopt a separable model for the pairing interaction,
which leads to the simplified angular dependence of the superconducting gap

∆(θ) = ∆ cos 2θ , (33)

where θ is the angle in momentum space with origin the x -axis (along a nearest-
neighbour bond direction). Then the gap has zeros along the θ = ±45◦ and
θ = ±135◦ directions. Inelastic scattering can be incorporated in a straightforward
way. The relevant Eliashberg equations (see the following paper) will have a
separable spectral function g cos (2θ) cos (2θ′)α2F (ω) in the gap channel and, for
simplicity, an isotropic spectral function α2F (ω), in the frequency renormalisation
channel. The phenomenological parameter g accounts for the possible differences
in the characteristic inelastic scattering form in the different channels of Eliashberg
theory. In general it will differ somewhat from unity, but its precise value does
not have a qualitative effect on the results.

We have avoided writing down the full expressions for the Eliashberg equations
and for the conductivity with the anisotropic gap, equation (33). These expressions
and further discussion can be found in Carbotte et al. (1995) and Jiang and
Carbotte (1996b). We note that the results presented below are all obtained with
Tc = 100 K, ωsf = 30 meV, and g = 0 ·8, and utilise the spectral function (32).



Aspects of Optical Properties 1001

In Fig. 18a we show results for the real part of the conductivity in the
superconducting state, in the clean limit (Jiang et al. 1996). All finite temperature
results display a Drude-like peak at zero frequency, as was the case for an
s-wave gap (Fig. 11). Similarly there is no clearly identifiable signature of a
superconducting gap. Here, however, there is an additional reason for the lack
of a signature, which is the d-wave symmetry of the gap parameter, which has
nodes on the Fermi surface. Thus, the single-electron density of states is non-zero
for all frequencies and, within BCS theory (Zhou and Shultz 1992), has only a
logarithmic singularity at a frequency of about twice the maximum gap value
on the Fermi surface. This singularity is much more easily smeared by finite
temperature and strong coupling effects, compared to the similar s-wave gap.

In addition the linear low frequency behaviour of the spectral function (32)
tends to smear the cross-over region from Drude-like to boson-assisted. This
cross-over leads to a well-defined minimum in Fig. 11a, for example, which is
present in Fig. 18a as well, but more difficult to see.

Fig. 18. Real part of the conductivity versus frequency for various temperatures in a d-wave
superconducting state (a) for the clean limit and (b) with sufficient impurity scattering to
reduce Tc to 80 K (Jiang et al. 1996). In either case there is no optical gap.

The impact of the d-wave order parameter is more evident in comparing
Fig. 18b to Fig. 12. In Fig. 18b we have included impurity scattering which,
in the case of an s-wave order parameter (Fig. 12), led to an abrupt onset in
the real part of the conductivity at a frequency equal to twice the value of the
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single-electron gap. Such behaviour is clearly absent in Fig. 18b, even though
impurity scattering is present and sufficiently strong that the critical temperature
is reduced from 100 K to 80 K.

Similar remarks apply to the imaginary part of the conductivity, as Figs. 19a
(clean limit) and 19b (impurity scattering present) show (Jiang et al. 1996), when
compared to the s-wave case (see, for example, Fig. 14). Here, particularly for
Fig. 19b, there is no cusp-like feature at the optical gap frequency. Such a result
is in qualitative agreement with experiments on YBCO (Jiang et al. 1996), and
lends support to the existence of a gap function with nodes on the Fermi surface.

Fig. 19. Frequency times the imaginary part of the conductivity versus frequency for various
temperatures in a d-wave superconducting state (a) for the clean limit and (b) with sufficient
impurity scattering to reduce Tc to 80 K (Jiang et al. 1996), as in Fig. 18. Here as well there
is no indication of an optical gap.

So far we have discussed the real and imaginary parts of the conductivity. It
is useful to examine the frequency-dependent transport scattering rate as defined
by equation (2) for the superconducting state. Even for a simple Drude model,



Aspects of Optical Properties 1003

Fig. 20. Conductivity-derived scattering rate 1/τ(ν) ≡ Re (1/σ(ν)) versus frequency in the
normal state for pure elastic scattering (dashed line), combined elastic and inelastic scattering
(BKBO spectrum with λ = 1), and pure inelastic scattering using the spin fluctuation spectrum
(32) appropriate to YBCO. Because of the difference in spectral function frequency scales,
the result for YBCO continues to rise with frequency, even at 300 meV.

where 1/τ(ν) so defined would be a constant in the normal state (equation 1), it
would acquire frequency dependence in the superconducting state. When inelastic
scattering is included, further frequency dependence is expected, even in the
normal state. To illustrate this we show in Fig. 20 normal state results for pure
elastic scattering (1/τ = 25 meV) (dashed line), for combined elastic and inelastic
scattering, using the spectral function for BKBO (solid curve as labelled) and for
pure inelastic scattering, using the spin fluctuation model for YBCO (equation
32) (other solid curve). In the BKBO case it is clear that the scattering rate
has almost saturated after an initial rapid rise with increasing frequency. On the
other hand, because of the frequency range of the spin fluctuation spectrum, the
result for YBCO continues to rise, and in fact appears quasilinear over a wide
range of frequency. Scattering rates thus obtained can be compared with the
inverse quasiparticle lifetime (Dolgov et al. 1991; Shulga et al. 1991), defined in
(21) through the single-particle self-energy. As was the case with the temperature
dependence, the frequency dependence of the inverse lifetime is largely determined
by the frequency dependence of the spectral function. In fact, at T = 0 the
inverse lifetime is given as a simple function of α2F (ω):

Γ(ω) = 1/τ + 2π
∫ ω

0

dΩα2F (Ω) . (34)

Thus, for a Debye model, with α2F (ω) ∝ ω2 at low frequency, then (with no
impurity scattering)

ΓDebye(ω) ≈ ω3 (35)
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as ω → 0. It is also apparent from (34) that for a frequency large compared
with the Debye frequency the inverse lifetime approaches a constant. For the
marginal Fermi liquid spectral function, (13),

ΓMFL(ω) ≈ ω , (36)

while for the NAFLM, (32),

ΓNAFLM(ω) ≈ ω2 (37)

for low frequency.
In Fig. 21 we show results for Γ(ω) at zero temperature in the normal state, for

the same cases as discussed in Fig. 20. The two sets of results are qualitatively
similar, but quantitatively very different. Fig. 21 (the inverse quasiparticle
lifetime) saturates much more rapidly with frequency than does the scattering
rate as defined through the optical conductivity, (2).

Fig. 21. Inverse quasiparticle lifetime in the normal state (34) for the three cases given in
Fig. 20. The increase with frequency is considerably more abrupt than in the scattering rate
(Dolgov et al. 1991).

Extension to the superconducting state will be discussed at length in the
following paper. Here we show some results for the scattering rate as obtained
from equation (2). In Fig. 22 we show 1/τ(ν) versus frequency for a BCS model
with an impurity scattering rate (a) 1/τ = 2 meV and (b) 1/τ = 25 meV. The
horizontal dotted line is the simple normal state result shown for reference. The
other curves are for the various temperatures indicated in the figure caption.
Note that the temperature dependence of the gap is discernable in such a plot.
To see what modifications inelastic scattering brings about, we show results
for the BKBO spectrum in Fig. 23 for (a) the clean limit (1/τ = 0) and (b)
1/τ = 25 meV, again for the temperatures as indicated. As occurred in the real
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and imaginary parts of the conductivity, in the clean limit there is no clear
signature for a gap. However, in the presence of elastic impurity scattering the
gap is clearly visible at low temperatures, and to a lesser degree apparent even at
higher temperatures. Finally, we examine 1/τ(ν) for the superconducting state
with a d-wave order parameter, with inelastic scattering present. In Fig. 24 we
show the result obtained with the spin fluctuation spectrum in (a) the clean
limit, and (b) with elastic impurity scattering present. In either case there is no
clear indication of a gap, as expected for a d-wave superconducting state.

Fig. 22. Conductivity-derived scattering rate 1/τ(ν) versus frequency in the BCS s-wave
superconducting state for (a) 1/τ = 2 meV and (b) 1/τ = 25 meV. An abrupt onset of
absorption at the optical gap at temperatures near Tc is more apparent in (a) than in
(b). The temperatures are T/Tc = 0 ·95 (solid), T/Tc = 0 ·9 (dotted), T/Tc = 0 ·8 (dashed),
T/Tc = 0 ·5 (dot-dashed) and T/Tc = 0 ·1 (short-dash–long dashed). The horizontal dotted
line indicates the normal state result.
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Fig. 23. Conductivity-derived scattering rate 1/τ(ν) versus frequency in the s-wave
superconducting state for (a) 1/τ = 0 meV and (b) 1/τ = 25 meV, for temperatures as
indicated. In both cases we used the BKBO spectrum with λ = 1. In (a) there is no signature
for a gap, while one remains at low temperatures in (b).

It is clear from these results that there is a qualitative difference between the
behaviour of superconductors with s- and d-wave order parameters. The low
frequency behaviour of 1/τ(ν) thus provides information about the gap symmetry
while the high frequency regime provides valuable information about the inelastic
scattering processes and therefore possibly the pairing mechanism. In the case of
YBCO the experiments definitely indicate very strong inelastic scattering with
quasilinear frequency dependence, in agreement with the results presented here,
based on a model spin fluctuation spectrum.
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Fig. 24. Conductivity-derived scattering rate 1/τ(ν) versus frequency in the d-wave
superconducting state for (a) Tc = 100 K and (b) Tc = 80 K, reduced due to impurity
scattering. In both cases we used the spin fluctuation spectrum appropriate to YBCO. In
either case, as expected, there is no indication of a gap. The curve legend is the same as
Figs 18 and 19.

5. Summary

We have discussed the optical conductivity in the far-infrared frequency range
for both a normal metal and a superconductor. In either case we have included
both elastic and inelastic scattering processes. In addition we have considered
both an s-wave and a d-wave superconductor. We have adopted the standard
assumptions for wide band metals, i.e. the validity of Migdal’s theorem, the
importance of Fermi surface interactions, and the neglect of vertex corrections
in the optical conductivity. Some of our assumptions can easily be relaxed.
For instance multiband models can be treated with special care devoted to the
quasi-one-dimensional nature of chain-like bands, for example. The retention of
vertex corrections is more difficult to implement; however, this approximation
has been justified to some extent in past studies (Arnold and Swihart 1981;
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Hirschfeld et al. 1993). It is also straightforward to include impurity scattering
beyond the Born approximation (Hirschfeld et al. 1993, 1994).

In studying the optical properties of the highTc oxide materials we have focussed on
three quantities: the real and imaginary parts of the conductivity, and the scattering
rate defined by equation (2). In the normal state the key signature of strong inelastic
scattering has been identified as a strongly temperature-dependent and frequency-
dependent scattering rate. These two independent variables play analogous roles,
as can be appreciated by comparing the inverse lifetimes as a function of frequency,
equations (35)–(37), to their counterparts as a function of temperature, equations
(12)–(15). This means that either DC measurements as a function of temperature,
or zero temperature measurements as a function of frequency, or some combination
of these two can be carried out to probe the inelastic scattering processes.

In the superconducting state the signature of an s-wave gap is clearly evident
in the real part of the conductivity, particularly when impurity scattering is
present. The gap is more difficult to see in the clean limit, especially if there is
no inelastic scattering. For a d-wave order parameter it is virtually impossible to
see the gap develop in the superconducting state. Inelastic scattering does not
alter these conclusions, but adds absorption at higher frequencies with structure
which partially reflects the underlying boson spectrum.

The fact that the signature of an s-wave gap is present in the imaginary part
of the conductivity is not widely recognised. For either strong elastic or inelastic
scattering this signature tends to get smeared. Otherwise the imaginary part can
be used as a gap probe as easily as the real part. In the case of a d-wave order
parameter, the imaginary part is as poor at revealing the order parameter as the
real part is. We have also extended the conductivity-derived scattering rate to the
superconducting state. Its usefulness as a probe of scattering processes and gap
values mimics that of the separate components of the conductivity just described.
This scattering rate will be discussed in more detail in the following paper.
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