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Abstract

Magnetic neutron scattering is very closely connected to the fundamental magnetic quantities
of magnetisation and susceptibility. This is because, to a very high degree of approximation
which becomes exact at long neutron wavelengths, the interaction of the neutron magnetic
dipole moment is with the local magnetic induction in the magnetic material. The strength
of neutron scattering for the investigation of magnetic materials lies in this and the facility
of the technique to probe Fourier components of the moment and the susceptibility with
wavelengths down to atomic distances, as well as to probe susceptibility fluctuation time
scales the same as those that are thermally excited. This paper provides a concise account
of the formal connection between neutron scattering cross sections and more familiar bulk
magnetic parameters.

1. Introduction

The magnetic properties of materials are rich and varied and no one technique is
sufficient to probe the whole range of behaviour. Nevertheless, neutron scattering
comes closest to universal applicability. Spatial correlations are an important
aspect of magnetic materials. For some techniques spatial information can only
be inferred indirectly from the data, for instance by assuming that the largest
effects are most probably from first neighbour atoms. Spatial information is built
directly into neutron scattering experiments because of the neutron wavelength.
The accessible length scale is from atomic dimensions to distances of hundreds
of Ångstroms, a very useful range for correlations which involve single atoms or
clusters of atoms.

The direct sensing of the magnetic induction is the other great advantage of
neutron scattering for magnetic materials. There are other techniques, some of
which may in particular circumstances be more sensitive, but for which there is
a long chain of modelling of the interaction before a magnetic property, such as
a magnetic moment value, can be inferred. One of the purposes of this paper
will be to draw out the direct relationship between the neutron cross section and
the magnetisation and susceptibility of magnetic materials.

∗ Refereed paper based on a contribution to the Sixth Gordon Godfrey Workshop on Recent
Developments in Magnetism and Magnetic Materials, held at the University of New South
Wales, Sydney, in October 1996.
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2. Interactions

The interaction of the neutron with the nucleus can be parametrised by the
potential

V̂ (r) =
(

2πh̄2

m

)
(b+BÎ . σ̂) δ(r −R) , (1)

where the nucleus is located at R. The delta function reflects the extremely
small size of the nucleus with respect to the wavelengths of thermal neutrons.

The interaction of the neutron with the magnetisation of magnetic materials is
via the magnetic dipole moment of the neutron. The magnetic moment operator
of the neutron can be written

µ̂ = γµN σ̂ , (2)

where σ̂ is the Pauli spin matrix for spin 1
2 particles, µN is the nuclear magneton,

and γ = −1 ·91 is the gyromagnetic ratio for the neutron. The interaction can,
within a long wavelength approximation, be written in terms of the local magnetic
induction B(r) and is given by

−µ̂ . B(r) = −γµN σ̂ . B(r) . (3)

This approximation, in which the sum of all the magnetic dipoles in the material
is represented by the magnetic induction B(r), is useful when the variations
being probed have a scale much larger than the individual dipoles. In cases
where there is considerable orbital moment and the scale is intra-atomic (i.e.
smaller than the atomic wavefunctions) the interaction with the spin and orbit
of individual electrons must be considered (Lovesey 1984). However, it is in this
approximation, which in many situations is very accurate, that very powerful
comparisons of neutron scattering cross sections with bulk magnetic quantities
like magnetisation and susceptibility can be made.

The total interaction of the neutron at a point r in a target is

V̂ (r) =
(

2πh̄2

m

)[
bδ(r −R) +

{
BÎδ(r −R)− 1

4π

(
eγ

h̄c

)
B̂(r)

}
. σ̂

]
, (4)

where the terms have been grouped according to the interaction with the neutron
spin, and smaller terms such as those involving the velocity of the neutron and
the electric field gradient have been ignored (Lovesey 1984).

In the first Born approximation the neutron cross section is given by(
dσ

dΩ dE

)
k,k′

=
k′

k

(
m

2πh̄2

)2∑
q′

∑
q

pq
∣∣〈k′s′q′|V̂ (r)|ksq〉|2δ(h̄ω − Eq′ + Eq) , (5)

where the neutron goes from spatial plane wave state k to plane wave state k ′,
and from spin state s to s′. At the same time the specimen goes from state q
to state q′.
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We firstly consider the transition between neutron spatial states. The matrix
element may be written

〈s′q′|
∫

dr
(

2πh̄2

m

){
b̂δ(r −R) +Bσ̂ . Îδ(r −R)

− 1
4π

(
eγ

h̄c

)
σ̂ . B̂(r)

}
ei(k−k′) . r|sq〉 , (6)

and after inserting the plane wave states for k and k ′ becomes(
2πh̄2

m

){∑
R

[b̂(R) +B(R)Î(R) . σ̂]eiκ .R − V

4π

(
eγ

h̄c

)
σ̂ . B̂(κ)

}
, (7)

where κ = k′ − k, and

B̂(κ) =
1
V

∫
dr B̂(r) e−iκ . r , (8)

with V the specimen volume. In the absence of an external field B(κ) is

B̂(κ) = 4πM̂⊥(κ) , (9)

where M(κ) is the Fourier transform of the magnetisation distribution. The
components of M(κ) parallel to κ are not reflected in B(κ) because of the
requirement that ∇ . B = 0. This is illustrated in Fig. 1 where the effect on B
of magnetic dipoles alternating in sign along the moment direction is contrasted
with the effect when the sign change is transverse to the moment direction. This
can be used very effectively to define the direction of magnetisation in magnetic
materials, such as antiferromagnets, with no gross external magnetic effects.

Fig. 1. Staggered magnetic dipole moments: (a) the result in zero magnetic induction if the
directions of moment and staggering are the same; (b) the result in a staggered magnetic
induction if the moment direction is perpendicular to the direction of staggering.
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The matrix element can then be written(
2πh̄2

m

)
〈s′q′|b(κ) + Â(κ) . σ̂|qs〉 , (10)

in which b(κ) is the Fourier transform of the scattering length density, and

Â(κ) =
∑
R

B(R) Î(R) eiκ .R +
(
eγ

h̄c

)
M̂⊥(κ) , (11)

with M̂ (κ) the Fourier transform of the total magnetic moment operator for the
specimen.

3. Neutron Spin Transitions

At this point it is useful to consider the neutron spin transitions which are
induced by the magnetic interaction. Among other uses a measurement of whether
the neutron spin is flipped in a scattering event is an indication of whether the
scattering event is magnetic or not.

If we evaluate the matrix element Uss
′

of equation (10) we have, for instance,

U+− = (01)
(

2πh̄2

m

)
〈q′|

{
b+Ax(κ)

(
0 1

1 0

)
+Ay(κ)

(
0 −i

i 0

)

+Az(κ)

(
1 0

0 −1

)}
|q〉
(

1

0

)
, (12)

with the matrices the x , y and z components of the Pauli spin matrix and
the down and up spin states of the neutron indicated by the row and column
matrices fore and aft. This gives

U+− =
(

2πh̄2

m

)
〈q′|[Ax(κ) + iAy(κ)]|q〉 . (13)

Similarly

U++ =
(

2πh̄2

m

)
〈q′|[b+Az(κ)]|q〉 . (14)

It can be seen that only the x and y components of the nuclear spin and magnetic
moment incorporated in A(κ) contribute to the neutron spin–flip amplitude,
whereas the z components of the nuclear spin and the magnetic moment and the
nuclear scattering amplitude contribute to the amplitude in which the neutron
spin direction does not change. Put simply, components of nuclear spin and
magnetic moment transverse to the neutron spin direction flip the neutron spin
and components along the neutron spin direction and the nuclear scattering
length preserve the neutron spin state. If the neutron spin direction is placed
along the scattering vector, the cross section in which the neutron spin is not
flipped consists only of the nuclear parts coming from the scattering length and
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the z component of the nuclear spin. The component of magnetic moment along
the scattering vector does not scatter (9). All the magnetic scattering is then
in the neutron spin–flip cross section and this is a useful device for isolating
magnetic scattering.

A fuller analysis of neutron spin transitions involves transitions to neutron
mixed spin states in which the final state spin precesses about the quantisation
direction. This can be used to detect magnetic structures with a chiral component.
Two alternative approaches to this problem can be found in Lovesey (1984) and
Hicks (1995).

4. Elastic Scattering

The elastic scattering is obtained by requiring that the initial and final states of
the scatterer, q and q′, are the same and that the neutron’s energy is unchanged.
Putting q′ = q in the expressions in the previous section restricts the matrix
element to be an expectation value. In particular the magnetic component is
the expectation value of the magnetic moment 〈M⊥(κ)〉. Inserting this into (5)
and integrating over the neutron energy change delta function gives

dσ
2dΩ

= 〈b̂∗(κ)〉 〈b̂(κ)〉+
(
eγ

h̄c

)2

〈M̂∗
⊥(κ)〉 〈M̂⊥(κ)〉

+
∑
R,R′

B(R)B(R′)〈Î(R)〉 〈Î(R′)〉 ei(R−R′) , (15)

in which the bar is the thermal average obtained from the sum over target
state probabilities in (5). No cross terms between the three sources of scattering
occur because they sum to zero in averaging over the neutron spin states in the
unpolarised incident beams. The magnetic part of this is the thermal average
of the square of the expectation value of the κth Fourier component of the
magnetic moment. In particular, for a magnet with only long range order,
magnetic scattering occurs only for particular values of κ equal to the reciprocal
lattice vectors for the particular order. The intensity of the resulting Bragg peaks
is then directly proportional to the thermally averaged square of the moment
amplitude of the order.

5. Inelastic Scattering

One of the coincidences which makes neutron scattering a powerful tool in
the study of condensed matter is that the energy of neutrons with wavelengths
comparable to atomic spacings is similar to the energy of the thermal excitations
of the matter being probed. Thus, the energy gained or lost by the neutrons
in the interaction is generally a large fraction of their total energy and easily
measurable. This results, in the magnetic case, in the ability to measure the
magnetic excitations as a function of both wavevector and energy. The quantity
measured is the absorptive or ‘imaginary’ part of the wavevector and energy
dependent susceptibility; a most fundamental quantity in magnetism. We now
explore the connection between the neutron cross section and the absorptive part
of the generalised susceptibility.
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The uniform frequency dependent susceptibility χαα(ω) is defined as

Mα(t) = 1
2V [χαα(ω)H0α e−iωt + χ∗αα(ω)H∗0α eiωt] , (16)

where Mα(t) is the total moment resulting from the impressed oscillating field

Hα(t) = 1
2 (H0α e−iωt +H∗0α eiωt) , (17)

and V is the specimen volume. The lag in response is described by the relative
magnitudes of the real and imaginary parts of

χαα(ω) = χ′αα(ω) + iχ′′αα(ω) , (18)

and the rate of energy gain in the specimen is

dE
dt

= −Mα
dHα

dt
, (19)

so that the average rate of energy gain is

dE
dt

= 1
2V H

∗
0αH0α ωχ

′′
αα(ω) . (20)

The power can also be calculated within first order perturbation theory as
follows:

dE
dt

=
∑
q

∑
q′

pqWqq′(Eq′ − Eq) , (21)

with pq the probability that the system is in state q, and with Eq′ and Eq the
energies of the two states. The transition probability is given by

Wqq′ =
π

h̄
H∗0αH0α|〈q′|Mα|q〉|2δ(h̄ω − Eq′ + Eq) . (22)

But ∣∣〈q|Mα|q′〉
∣∣2 =

∣∣〈q′|Mα|q〉
∣∣2 , (23)

and the nett rate in energy gain, i.e. absorption minus stimulated emission, is
thus

dE
dt

= 1
2

∑
q

∑
q 6=q′

π

h̄
H∗0αH0α

∣∣〈q′|Mα|q〉
∣∣2pq

×
{

1− exp(−βE′)
exp(−βE)

}
(Eq′ − Eq) δ(h̄ω − Eq′ + Eq)

= 1
2

∑
q

∑
q′ 6=q

πH∗0αH0α

∣∣〈q′|Mα|q〉
∣∣2pq ω(1− e−βh̄ω) δ(h̄ω − Eq′ + Eq) , (24)
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with 1
2 compensating for double counting in the sum over the states, and omitting

q′ = q because it involves no change in energy. Finally, by equating energy rates
calculated in the two ways we have

χ′′αα(ω)
π(1− e−βh̄ω)

=
1
V

∑
q

∑
q′ 6=q

pq
∣∣〈q′|Mα|q〉

∣∣2δ(h̄ω − Eq′ + Eq) . (25)

The cross sections may be obtained by recognising that 〈q′|Mα|q〉 in this relation
is part of the matrix element defined in (10) and can be related to the cross
section through (5). The result for an unpolarised beam is(

d2σ

dΩ dE

)
k,k′

=
V

π

k′

k

(
eγ

h̄c

)2 ∑
α

χ′′αα(κ, ω)
1− e−βh̄ω

, (26)

with the sum over the two cartesian directions perpendicular to the scattering
vector. In this way the inelastic neutron scattering cross section is directly
proportional to the absorptive or ‘imaginary’ part of the susceptibility.

This relationship can be made really useful for a comparison of the neutron
cross section with a bulk susceptibility measurement by use of the Kramers–Kronig
relations which connect the real and imaginary parts of the susceptibility. The
generalised susceptibility may be written

χ(κ, ω) =
∫ ∞

0

dt X(κ, t)eiωt , (27)

in which X(κ, t) is defined only for t > 0. Then

χ′(κ, ω) =
∫ ∞

0

dt X(κ, t) cosωt , χ′′(κ, ω) =
∫ ∞

0

dt X(κ, t) sinωt , (28)

∫ ∞
−∞

dω
χ′′(κ, ω)

ω
=
∫ ∞

0

dt X(κ, t)
∫ ∞
−∞

dω
sinωt
ω

= πχ′(κ, ω = 0) , (29)

which is a special case of the Kramers–Kronig relationships. If we now integrate
the cross section over energy we have

dσ
dΩ

=
∫ ∞
−∞

h̄ dω
(

d2σ

dΩ dE′

)
≈
∫ ∞
−∞

h̄ dω
(
eγ

h̄c

)2
V

πβh̄ω

∑
α

χ′′αα(κ, ω) , (30)

and for h̄ω ¿ 1/β and k′ ≈ k,

dσ
dΩ

= V

(
eγ

h̄c

)2

kB T
∑
α

χ′αα(κ, 0) ,

using the Kramers–Kronig relationship derived above. This is the quasielastic
approximation for the magnetic cross section and is useful for comparison of the
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neutron cross section with bulk susceptibility measurements. As can be seen,
subject to the conditions above, the energy integrated cross section is directly
related to the zero frequency or truly dc susceptibility which for κ = 0 is measured
on a magnetometer. This can be important to check whether a magnetometer
is measuring the true dc susceptibility which will be further discussed in the
following paper (Hicks 1997, present issue p. 1119).

6. Conclusions

The purpose of this paper was to demonstrate the close relationship between the
magnetic neutron scattering cross section and the magnetisation for elastic scattering
and the susceptibility for inelastic scattering. From a practical, experimental
point of view the least this analysis does is to allow the experimentalist to
include an extra κ = 0 point in his/her neutron scattering data. The reward,
however, is more than this. It permits the experimentalist an extra insight into
his/her neutron data and suggests modelling which comes from the treatment of
magnetisations and susceptibilities. This will be illustrated with concrete and
recent neutron data in the following paper (Hicks 1997).
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