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Abstract

A model to describe an unmagnetised plasma in three-dimensional magnetic topology is
presented. Ion trajectories are integrated numerically and all finite-Larmor radius effects are
retained exactly. A velocity-dependent collision term is included in the equations of motion.
Numerical simulations relevant to the low-confinement mode of H1-NF are presented and
discussed.

1. Introduction

A high-confinement mode has been recently observed in the toroidal heliac
H1-NF (Shats et al. 1996). An improvement in the energy and particle confinement
times has been observed when the input heating power P is above the threshold
P ?. Improved confinement is associated with an increase in the (negative) radial
electric field near the plasma edge. Experimental observations suggest that the
power threshold depends (1) on the magnetic field strength and (2) on the
rotational transform of the confining magnetic field (Shats et al. 1996). Typical
plasma parameters for these experiments are n ∼ 1011 cm−3, Ti ∼ 40 − 90 eV,
mi/mp = 40 (where mp is the proton mass), Te ∼ 15 eV and B ∼ 10−1 T.

The plasma magnetisation is described by the parameter δi ≡ ρi/ā, where ρi is
the ion thermal gyro-radius and ā is the average major radius of the configuration.
A magnetised plasma satisfies δi/ā ¿ 1 (Hazeltine and Meiss 1992). With the
above plasma parameters the ion population is unmagnetised (i.e. δi ∼ 1) in
the bulk of the plasma. Fluid (Braginskii 1965; Drake and Antonsen 1984),
gyro-kinetic (Rewoldt and Chen 1982; Antonsen and Lane 1980) and drift-kinetic
(Hazeltine 1973) models rely on the assumption of a magnetised plasma. Such
models are a priori not valid to describe H1-NF plasma with the above parameters
since higher order corrections in δi are not small.

In this paper we consider an unmagnetised plasma in fully 3D geometry. The
equation of motion of a set of ions is integrated numerically. Collisional effects
are taken into account. The fully 3D nature of the confining magnetic field is
retained so that corrections of all orders in δi are treated exactly.

The paper is organised as follows. In Section 2, we specify the equilibrium
magnetic field for the H1-NF configuration. In Section 3, a model describing the
ion population is presented. A velocity-dependent collision term is included in
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the ion motion equation. Numerical results for the H1-NF plasma are presented
in Section 4.

2. The Equilibrium

The equilibrium magnetic field is determined numerically using the VMEC
code (Hirshman and Whitson 1983; Hirshman and Meier 1985; Hirshman and
Lee 1986) from the ideal MHD force balance equation

J ×× B = c ∇p0 , (1)

where J is the current density and p0 is the plasma pressure. The current density
in (1) is computed from Ampere’s law,

4π J = c ∇ ×× B . (2)

Equations (1) and (2) are supplemented with the divergence-free condition
∇·B = 0. Equilibrium magnetic surfaces are assumed to form a family of nested
torii. For 3D stellarator equilibria it is convenient to write the magnetic field
in curvilinear coordinates (s, θ, φ), where s ≡ Ψ/Ψb is the radial label, θ is
an optimised poloidal angle (determined so that the numerical convergence is
improved) and φ is the usual azimuthal angle in cylindrical coordinates (Hirshman
and Betancourt 1991). Here Ψ is the enclosed toroidal flux and Ψb is its
corresponding value evaluated at the plasma boundary. By construction the
radial label s runs from 0 (at the magnetic axis) to 1 (at the plasma boundary).
The existence of magnetic surfaces implies B ·∇s = 0. In these coordinates, the
magnetic field can be written in terms of the covariant basis vectors

B = Bθ eθ +Bφ eφ , (3)

where the covariant basis is defined as eθ ≡ ∂r?/∂θ and eφ ≡ ∂r?/∂φ and where
r? is the local position vector on a magnetic surface. We have made use of the
assumption of the existence of nested magnetic surfaces, B ·∇s = 0. In equation
(3) Bθ ≡ B ·∇θ and Bφ ≡ B ·∇φ, where the contravariant basis vectors are
defined as ∇i = J−1εijk(ej × ek), for (i, j, k) = {s, θ, φ}, where J = es ·(eθ × eφ)
is the Jacobian of the transformation and εijk is the usual Levi-Civita symbol
for permutations (D’haeseleer et al. 1991). In these coordinates the Jacobian of
the transformation scales like a volume. The magnetic field can alternatively be
written as a linear combination of the contravariant basis vectors

B = Bs∇s+Bθ∇θ +Bφ∇φ , (4)

where Bs ≡ B ·es, Bθ ≡ B ·eθ and Bφ ≡ B ·eφ. The VMEC code (Hirshman and
Whitson 1983; Hirshman and Meier 1985; Hirshman and Lee 1986) outputs the
position and shape of the magnetic surfaces in cylindrical coordinates (R,Z, φ).
In particular the coordinates R and Z are specified in terms of Fourier series,

R =
M∑
m=0

n=+N∑
n=−N

cos(µmn), Z =
M∑
m=0

n=+N∑
n=−N

sin(µmn) , (5)
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for a given magnetic surface. Here µmn ≡ mθ +Npernφ and Nper is the number
of field periods. For H1-NF, Nper = 3. The number of poloidal (M) and toroidal
(N) Fourier components describing the equilibrium can be varied until a given
level of accuracy is reached (or depending on the complexity of the magnetic
configuration). The choice M = 7 and N = 14 has been used in this paper. In
order to retain all finite-Larmor radius (FLR) effects with good accuracy the
number of magnetic surfaces (=N s) describing the equilibrium must be chosen
to be relatively large. Therefore we have chosen Ns = 100.

The curvilinear components of the magnetic field are given in terms of Fourier
series similar to equation (5). The equilibrium electron and ion temperatures
(Te and Ti respectively) and the plasma density n are assumed to be flux surface
quantities, i.e. to depend on s only.

3. The Model

As we briefly discussed in the Introduction the plasma magnetisation parameter
δi is of the order of unity for H1-NF plasma conditions (Shats et al. 1997).
Fluid, gyro-kinetic and drift-kinetic models make use of the fact that δi ¿ 1.
Fluid and drift-kinetic models neglect corrections of O(δi), but the gyro-kinetic
model takes into account terms of O(δi). Such models are a priori not valid to
describe the ion population in the H1 argon plasma because corrections of order
O(δ2

i ) and higher can be important.
For example the ion velocity, in the guiding centre approximation, reads (see

for instance Hazeltine and Meiss 1992)

vgci =
c

B
(E× e||) +

v2
||

ωci

(e|| × κ) +
v2
⊥

2ωci

(
e|| ×

∇B
B

)
, (6)

where, for a low-β plasma, the electric field is derivable from an electrostatic
potential E = −∇Φ, e|| ≡ B/B is a unit vector parallel to the magnetic field
direction, κ ≡ e|| ·∇e|| is the magnetic field curvature and ωci ≡ qiB/mic is the
gyro-frequency for the ions. To lowest order in ρi/ā, ions and electrons drift
across the magnetic surface with the same velocity ve = c(E× e||)/B. The last
two terms in equation (6) are of the same order ∼ Vthiδi, where Vthi is the ion
thermal velocity. As we previously pointed out we consider an unmagnetised
plasma so that δi is formally of the order of unity. In this case corrections of
O(δ2

i ) and higher can substantially modify the ion guiding-centre velocity (6).
Corrections of order δ2

i involve the manipulation of tensorial quantities for the
confining magnetic field. In curvilinear coordinates the explicit calculations of
such quantities becomes rapidly complicated, the degree of complexity increasing
sharply for p ≥ 2 for corrections O(δpi ).

For electrons the curvature drift can be safely neglected so that vgce =
ve + O(Vtheme/mi) ≈ ve (Vthe is the electron thermal velocity). The electron
population is magnetised.

In order to retain the effects of the magnetic field inhomogeneity to all orders
in ρi/ā one has to numerically integrate the equation of motion for the ions:

mi
dVi

dt
= Zi e

(
E +

Vi ×B
c

)
+
∑
j 6=i

Fij + Fh , (7)
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where E and B are the equilibrium electric and magnetic fields respectively, Zi is
the ion charge and Fh represents the force on the ions due to the heating system.
The timescale of the heating force is F−1

h ∂Fh/∂t ∼ ωh, where ωh is the rf heating
frequency. The force induced by a fluctuating electric field, presumably generated
by unstable drift waves (Shats et al. 1996), will be entirely neglected. The first
term on the right-hand side of equation (7) is the usual Lorentz force. The second
term represents the transfer of momentum to ion species i due to collisions with
ion species j. Following Trubnikov (1965) the collisional momentum transfer can
be written as Fij = −miVi/τij where τij is the average deflection time given by

τij =
4πVi

3

(1 +mi/mj)njLijf(y)
, (8)

where Lij ≡ Λ(4πe2ZiZj)2/m2
i ; y ≡ mjV

2
i /2Tj is the kinetic energy for ion

species i normalised to the ion temperature for species j; and f(x) ≡
2
∫ x

0
exp(−t)

√
t dt/

√
π is the so-called Maxwell integral (Spitzer 1956). Let

τ
(0)
ij ≡ (4πV 3

thi0)/[(1 +mi/mj)njLijf(1)], where Vthi0 is the ion thermal velocity
evaluated at the magnetic axis, so that the collision term may be rewritten as∑

j 6=i
Fij = −miVthi0

τ̄i

vi

v3
i

G(vi) , (9)

where vi ≡ Vi/Vthi0 is the normalised ion velocity and τ̄−1
i ≡

∑
j 6=i 1/τ (0)

ij . We
have defined G(vi) ≡ f(v2

i )/f(1) where f(1) ' 0 ·4276 is a constant. We have
assumed Ti/Tj ' 1.

The conservation of kinetic energy for i− j collisions is

1
2miv

2
i + 1

2mjv
2
j = 1

2miv
?2
i + 1

2mjv
?2

j , (10)

where v?i and v?j are the ion velocities (for species i and j respectively) after
the collision. Formally one has to consider all possible i− j collisions; however
this approach would require the simultaneous solution of ∼

∑
j Nj equations of

motions, where Nj is the prescribed number of ions for species j. For practical
applications, the limits set by computer speed and memory do not allow the
simultaneous solution of such a system. For simplicity we shall assume that the
ion i interacts with the bulk of ions of species j. Operating with n−1

j

∫
...fjdv

on equation (10), where nj and fj are the density and distribution function for
species j, leads to v2

j = v?2i , i.e. the kinetic energy for species i is conserved in
the average sense. The change in direction for the ion velocity can be written as

vi (before collision) 7→ vi

ξ̄
[(ξ1 − 1

2 ) x̂ + (ξ2 − 1
2 )ŷ

+ (ξ3 − 1
2 ) ẑ] (after collision) , (11)

where ξ1, ξ2 and ξ3 are random numbers between 0 and 1. Here (x̂, ŷ, ẑ) are unit
vectors in Cartesian coordinates. Since the kinetic energy for ion i is conserved
(in the average sense) this implies that ξ̄ = [(ξ1 − 1

2 )2 + (ξ2 − 1
2 )2 + (ξ3 − 1

2 )2] 1
2 .
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The heating system induces an oscillating (parallel) electric field with frequency
ωh much larger that the ion gyro-frequency. The parallel component of
the ion velocity induced by the heating system is approximately given by
Vi|| ≈ Vthi cos(ωht + ϕ) where ϕ is an arbitrary phase. The ion momentum
equation (7) will be numerically integrated with a time step ∆t ωci ¿ 1. For a
time step not too short, ∆t ωh À 1, the change in the parallel ion velocity due
to the rf-induced parallel electric field during ∆t is negligible compared to the
change in its perpendicular component,

∆Vi|| ≡
1

∆t

∫ ∆t

0

Vi||(t′)dt′ ¿ ∆Vi⊥ . (12)

Therefore, as long as the condition ∆t ωh À 1 is satisfied, the interaction of the
heating system with the ion dynamics can be safely neglected.

The (equilibrium) electrostatic potential is assumed to be a flux surface quantity
Φ = Φ(s) so that the confining electric field reads E = −dφ/ds∇s. Neglecting the
rapid, oscillating parallel ion motion due to the heating system, the Cartesian
components of the ion equation of motion are:

dvix

dt′′
= − P dΦ̃

ds
Cx + bzviy − byviz −

G(vi)(ξ1 − 1
2 )

ξMv2
i

dviy

dt′′
= − P dΦ̃

ds
Cy + bxviz − bzvix −

G(vi)(ξ2 − 1
2 )

ξMv2
i

,

dviz

dt′′
= − P dΦ̃

ds
Cz + byvix − bxviy −

G(vi)(ξ3 − 1
2 )

ξMv2
i

. (13)

In the last term of each equation, we note that v2
i = v2

ix + v2
iy + v2

iz. Here we
have introduced the normalised magnetic field b ≡ B/B0 ∼ 1 (where B0 is the
magnetic field strength at the magnetic axis), t′′ ≡ ωci0t is the normalised time,
Φ̃ ≡ eΦ/Ti0 is the normalised electrostatic potential, P ≡ (micTi0Vthi0)/(2aeB0),
C ≡ a∇s is a nondimensional quantity describing the noncircularity of the
magnetic surface, and M(s) ≡ ωci0τ i is a nondimensional parameter related to
the plasma collisionality.

For an almost collisionless plasma, MÀ 1, the last terms in equations (13)
can be neglected. The resulting equations describe the ion motion in the presence
of an accelerating (or decelerating) electric field and an inhomogeneous magnetic
field ∇B 6= 0. All the quantities bx, by and bz are evaluated at the particle
position ri. Therefore, corrections of all orders in ρi/a are retained exactly.

The parameter M depends on the density of the ion species j as well as the
kinetic energy for the ion species i through the Maxwell integral. Shats et al.
(1997) have suggested that, for H1-NF plasma conditions, a coronal model can
be used to determine the ionisation balance. It was also pointed out that ions
with Zi = 1, 2, 3 can be simultaneously present in an H1-NF argon plasma (Shats
et al. 1997). For a low magnetic field the ions assume a Boltzmann distribution
in the electrostatic potential,
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nj = ne0 Dj exp(−Zj∆Φ̃) , (14)

where ne0 is the electron density at the magnetic axis; Dj is the fraction of ions
with charge Zj ; and ∆Φ̃ ≡ Φ̃(s)− Φ̃(0) is the difference between the normalised
electrostatic potential Φ̃(s) ≡ eΦ(s)/Ti0 at the radial position s and its value
evaluated at the magnetic axis. The coefficients Dj were obtained by using a fit
to the experimental data for the quasineutrality condition. Shats et al. (1997)
have found D1 = 0 ·2, D2 = 0 ·4 and D3 = 0 ·4 for the argon species Ar+, Ar++

and Ar+++ respectively.
It is worth noting that for ions with low velocity, vi ≤ 1, the collision

term is important because of the V −3
i dependence of the Coulomb collision

term. This effect is increased in the region for which the collisional parameter
becomes of order unity. In the low-confinement mode the electrostatic potential
increase monotonically from the magnetic axis (s = 0) to the plasma edge
(s = 1). The high-Zi ions therefore tend to ‘accumulate’ in the plasma centre.
The average deflection time (8) is strongly dependent on the charge number,
τij ∝ Z−2

j exp(Zj∆Φ̃). As it turns out the collision parameter is of the order
unity at the magnetic axis and increases by a factor ∼20 at the plasma edge.
The parameter P for the radial electric field is of the order unity. In particular
in the low-confinement of H1-NF with B0 ' 0 ·06 T, Ti0 ' 40 eV, a ' 12 cm,
Z = 1 and Φ̃ ' 1, we find P ' 0 ·3. Therefore the electric and magnetic terms
in equation (13) are of comparable magnitude.

Equations (13) are supplemented with

dxi

dt′′
= vix,

dyi

dt′′
= viy,

dzi

dt′′
= viz , (15)

where xi, yi and zi are the x , y and z components of the position vector
r normalised to the ion thermal gyro-radius evaluated at the magnetic axis,
ρi0 = Vthi0/ωci0. The numerical solution of equations (13) and (15) is discussed
in the next section.

4. Numerical Simulations and Discussion

Equations (13) and (15) have been integrated numerically with a fifth-order
Runge–Kutta method (Press et al. 1983). All the physical quantities depending
on the magnetic field topology (bx, by, bz, Cx, Cy and Cz) are evaluated on a
discrete grid. For example, the x component of the normalised magnetic field
is computed at each grid point b[tmp]

x ≡ bx(st, θm, φp), where t = 1, ..., Ns labels
the magnetic surface, θm = (m − 1

2 )∆θ for m = 1, ..., Nθ and φp = (p − 1
2 )∆φ

for p = 1, ..., Nφ. Here ∆θj ≡ 2π/Nθ and ∆φ ≡ 2π/Nφ are the mesh size in
the poloidal and toroidal directions, respectively. At each time step and for
each particle, the closest neighbour between the particle position r[k]

i (k labels
the ion, k = 1, ..., Ni where Ni is the number of ions) and the position vector
r?(st, θm, φp), defined on a magnetic surface, is determined.

The numbers Nθ and Nφ must be chosen sufficiently large so that the ion
FLR effects can be treated accurately. In this paper we have used Nθ = 70 and
Nφ = 620. The normalised time step is taken to be ∆t′′ = ωci0∆t = 5× 10−3.
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The curvature of the magnetic surface enters in equation (13) through the
vector C. From equation (5) the position vector on a magnetic surface can be
written in cylindrical coordinates as r? = R cosφ x̂ + R sinφ ŷ + Z ẑ. Making
use of the relation ∇s = J−1(eθ × eφ) we can easily compute the Cartesian
components of the vector C. These components are:

Cx = aJ−1 [sinφ ∂φZ ∂θR− ∂θZ (R cosφ− sinφ ∂φR)] ,

Cy = aJ−1 [sinφ ∂θR (cosφ ∂φR−R sinφ)− cosφ ∂θR ∂φZ] , (16)

Cz = aJ−1 [cosφ ∂θR (sinφ ∂φR+R cosφ)

− sinφ ∂θR (cosφ ∂φR−R sinφ)] ,

where ∂θ ≡ ∂/∂θ and ∂φ ≡ ∂/∂φ.
The (normalised) magnetic field strength on the magnetic surface s = 0 ·96 of

the toroidal heliac H1-NF is shown in Fig. 1. The regions of high magnetic field
strength are indicated in white, while regions of low magnetic field strength are
shown in black. The effects of the toroidal field coil ripples are clearly visible
on the outside of the magnetic surface.

Fig. 1. Normalised magnetic field strength on a magnetic surface of the toroidal heliac H1-NF
at s = 0 ·96. The shaded regions in black (white) correspond to low (high) magnetic field
strength.
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A poloidal cross section, at φ = 0, for the same configuration as in Fig. 1, is
shown in Fig. 2. For the sake of clarity a reduced set of 21 magnetic surfaces is
shown. We note the characteristic ‘bean shape’ of the H1-NF plasma.

Fig. 2. Poloidal cross section of the H1-NF plasma at the plane φ = 0.
A set of 21 nested magnetic surfaces is shown.

At the beginning of the simulations the ions were randomly distributed along
the magnetic axis (s = 0). The trajectories of a set of Ni = 2 × 103 Ar+ ions
were integrated. At t = 0 the ion distribution is assumed to be isotropic with a
zero mean velocity. Specifically, at t = 0, the kth ion has the following velocity
components:

v[k]
x = v0 sin(2πξ1) cos(2πξ2) ,

v[k]
y = v0 sin(2πξ1) sin(2πξ2) ,

v[k]
z = v0 cos(2πξ1) , (17)

where, as before, ξ1 and ξ2 are two random numbers between 0 and 1. We have
chosen v0 = 1 ·0.

Experimental measurements (Shats et al. 1996) indicate that the radial electric
field changes sign at the last closed magnetic surface (defined as s = 1). In the
low-confinement mode the radial electric field becomes positive for s > 1, so that
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the ions are pushed out of the plasma bulk. For simplicity we assume that ions
satisfying s > 1 are lost.

In order to study the effects of the magnetic field inhomogeneity, electric force
and collisional force, we have considered two cases. In case A all the terms in
equation (13) were retained; and in case B the collisional term (M 7→ ∞) and
the radial electric field were neglected.

The collisional parameters forAr+−Ar++,Ar+−Ar+++ andAr+−Ar++/Ar+++

(= M) collisions are shown in Fig. 3. The mean collisional parameter (solid
curve) increases by more than one order of magnitude from the magnetic axis
(s = 0) to the last closed magnetic surface (s = 1). Therefore collisional effects
can be important in the bulk of the plasma. Near s = 1, the plasma is almost
collisionless.

Fig. 3. Collisional parameters (1) for Ar+ − Ar++ collisions, (2) for
Ar+ − Ar+++ collisions and (3) for Ar+ − Ar++/Ar+++ collisions as a
function of the normalised radial label.

The fraction of confined ions as a function of the (normalised) time is shown
in Fig. 4. The two profiles display different behaviours for t′′ ≥ 1 ·5. When
collisional effects and the radial electric field are neglected (case B) the ions
are continuously lost from the plasma bulk. In case A however, the fraction of
confined ions indicates an asymptotic saturation. In this regime approximately
1
3 of the ions remain well confined.
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Fig. 4. Fraction of confined ions as a function of the normalised time
t′′ ≡ ωci0t for case A (solid curve) and for case B (dotted curve).

The average radial displacement defined as

〈s(t′′)〉 ≡ 1
Nc(t′′)

Nc(t′′)∑
k=1

s[k] , (18)

where Nc is the number of confined ions, is shown in Fig. 5. A transition at
t′′ ∼ 1 ·5 is clearly visible. In case A the average radial position of the ions
decreases for t′′ ≥ 1 ·5, indicating good confinement properties of the configuration.
In case B the average radial position saturates around s ' 0 ·25.

Finally we have computed the average velocity normal to a magnetic surface.
The normal velocity is defined as

vn ≡ v · n̂ , (19)

where n̂ ≡ ∇s/(∇s ·∇s) 1
2 is a unit vector normal to the magnetic surface and

pointing outwards. The average normal velocity 〈vn〉 is shown in Fig. 6. The
normal velocity changes sign at t′′ ' 1 ·6 for case A and at t′′ ' 3 ·0 for case B.
Therefore the integrated normal drift,

s(t′′) ≡ s(0) +
∫ t′′

0

〈vn〉(t) dt , (20)
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Fig. 5. Average radial position 〈s〉 for the Ar+ ion population as a function
of the normalised time for case A (solid curve) and for case B (dotted
curve).

is smaller in case A than in case B. This is again the signature of improved ion
confinement.

5. Concluding Remarks

In this paper a model to describe the ion population of a 3D unmagnetised
plasma has been presented. A velocity-dependent collision term has been included
in the equations of motion for the ions. Finite-Larmor radius effects are retained
exactly. The electron population is magnetised.

For plasma parameters relevant to the low-confinement mode of the toroidal
heliac H1-NF, it has been shown that collisional effects can be important in the
plasma centre. The plasma edge, however, is almost in the collisionless regime.
Numerical simulations have shown that the combined effects of a negative radial
field and ion–ion collisions lead to a global improvement of the ion confinement.
The formation of a negative radial electric field is mainly responsible for the
improvement in confinement. However, collisional effects are important near the
magnetic axis; this can lead to an effective randomisation of the ion population
in this region. Away from the magnetic axis the plasma is almost collisionless.
Experimental measurements have shown a dramatic reduction of the fluctuation
level in the high-confinement mode; this phenomenon is followed by an increase
in the plasma density (Shats et al. 1996), which is consistent with our numerical
results.
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Fig. 6. Average normal velocity 〈vn〉 for the Ar+ ion population as function
of the normalised time for case A (solid curve) and for case B (dotted
curve).

The dramatic reduction in the fluctuation level has not been explained. It
is worth pointing out that the ion collisional parameter ν?i ≡ ωbi/νi, where ωbi

is the ion bounce frequency and νi is the effective ion collision frequency, is
of the order of unity for H1-NF plasma parameters. This suggests that the
ion trapping can be important. In particular the trapped-ion instability can
be excited in such a plasma. However, a correct treatment of the trapped-ion
instability in stellarator geometry is beyond the scope of this paper. Current
theoretical research work focuses on the 3D gyro-kinetic formalism, in which
collisional and trapping effects are modeled very accurately. We hope to report
quantitative results in a separate paper.
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