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Abstract

Partial conservation of the nine axial currents Aβµ for β = 0, 1, ..., 8 applied to the vacuum
expectation values of the equal-time commutators of the nine axial charges QαA(x0) for
α = 0, 1, ..., 8 and the corresponding axial current divergences ∂µAβµ implies that the non-
vanishing current quark masses mu,md,ms of the light quarks u, d, s have the same sign.
Under the more realistic assumption of partial conservation of only the eight axial currents
of SU(3) ⊗ SU(3), i.e. α = 1, ..., 8 and β = 1, ..., 8 in the above, inequalities for the quark
masses follow. They are trivially fulfilled if the three light quark masses have the same sign
and imply, for non-vanishing quark masses mu,md, ms, that at least two of these masses
have the same sign as their sum mu +md +ms. If one of the three quark masses vanishes,
one of the other two might also. If both do not, they have the same sign (the same, of course,
as their sum). Our assumptions include the standard vector SU(3) symmetry of the vacuum.

1. Introduction and Conclusions

Since quarks are confined, common sense arguments that all masses must have
the same (positive) sign cannot be applied to them. The present paper derives
restrictions on the signs of the light current quark masses from the principles
of quantum field theory, the standard model and Goldstone chiral symmetry
breaking.

Let us more precisely and maybe unrealistically first assume that in computing
the vacuum expectation values (VEV) 〈[QαA(x0), ∂µAβµ(x)]〉0 of the σ commutators
of the nine axial charges QαA with the nine axial current divergencies ∂µAβµ, we
may use partial conservation of these currents. Thus, for the present purpose the
divergencies of the 16 vector and axial vector currents of SU(3)⊗ SU(3) and of
the SU(3)-neutral ninth axial current A0

µ may be computed from the equation
of motion of the standard model, or equivalently, from equation (8) together
with the definition of u(x) in equation (3). The eight vector charges QaV (x0) for
a = 1, ..., 8 furthermore (almost) annihilate the vacuum such that the VEVs of
the vector σ-terms may be neglected compared to the VEVs of the axial σ-terms.

This feature of chiral symmetry breaking is absolutely essential for our
conclusions. For example, the replacement of the field ψu of the u-quark by γ5ψu
flips the sign of mu and otherwise leaves the QCD Lagrangian invariant. This is
however not a counterexample to our claims since under this transformation some
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of the vector currents such as ψ̄uγµψd are taken into axial currents (ψ̄uγµγ5ψd
in our example) such that, in the new basis, the standard approximate SU(3)
symmetry of the vacuum, which we assume, is replaced by a symmetry that is
generated by a mixture of vector and axial charges.∗

From the vacuum structure of the standard model and the fact that (−i)-times
the VEV of a σ-term of a charge Q(x0) =

∫
d3xJ0(x) and the divergence ∂µJµ

of the corresponding hermitean current Jµ is non-negative,

−i〈[Q, ∂µJµ]〉0 ≥ 0 , (1)

sum rules are derived that are fulfilled if and only if the non-vanishing light quark
current quark masses mu,md and ms have the same (positive or negative) sign.

Restricting the above assumptions more realistically to the 16 vector and axial
vector currents of SU(3)⊗ SU(3) and assuming that the sum mu +md +ms of
the three quark masses is positive, we obtain the relations

mu +md ≥ 0 , (2a)

mu +ms ≥ 0 , (2b)

md +ms ≥ 0 , (2c)

mu +md + 4ms ≥ 0 , (2d)

mumd +mums +mdms ≥ 0 , (2e)

for the quark masses. They are trivially fulfilled if the masses of all three quarks
are non-negative and imply, for example, that at least two of the three masses
must be just that (i.e. non-negative). If one of the three masses vanishes, a second
one might. If not, the non-vanishing masses are both positive. In the presumably
academic case that the sum of the three masses is negative, the greater-or-equal
signs in equations (2a)–(2d) are inverted, whereas (2e) remains unaltered. The
conclusions remain very much the same except that ‘non-negative’ is replaced by
‘non-positive’ and ‘positive’ by ‘negative’. The case of a vanishing sum of the
quark masses is not discussed here.

2. Reminders

It is the purpose of the present section to remind the reader of the rather
old-fashioned methods, going back to Gell-Mann et al. (1968), of chiral symmetry
breaking that we use. The light quark mass term (averaging over colour is always
understood)

u(x) = muψ̄u(x)ψu(x) +mdψ̄d(x)ψd(x) +msψ̄s(x)ψs(x) (3)

of the Hamiltonian density of the standard model and chiral symmetry breaking
(see Leutwyler 1994 for a discussion) is written in the form

∗ A much more detailed discussion of the relation of the quark masses to the Goldstone
nature of the vacuum, which can be traced back to Dashen (1971), is contained in Leutwyler
(1983). An early review is Pagels (1975). I thank G. Ecker for asking a relevant question, an
anonymous referee for hints, and H. Leutwyler for sending me a copy of Leutwyler (1983).
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u(x) = c0u0(x) + c3u3(x) + c8u8(x) , (4)

where the definitions

c0 = (mu +md +ms)/
√

6 , (5a)

c3 = (mu −md)/2 , (5b)

c8 = (mu +md − 2ms)/(2
√

3) , (5c)

together with

uα = ψ̄(x)λαψ(x) (5d)

for α = 0, 1, ..., 8, have been made. In the above, ψ stands for the three quark
fields ψu, ψd, ψs and the λα for α = 0, 1, ..., 8 are the well-known 3× 3 Gell-Mann
matrices acting on the components ψu, ψd, ψs of ψ.

The complete Hamiltonian of the standard model can now be written as

H(x) = H0(x) + u(x) , (6)

where only u(x) breaks SU(3) ⊗ SU(3) chiral symmetry. Namely, defining the
SU(3)⊗SU(3) vector and axial vector currents for a = 1, ..., 8 by V aµ = 1

2 ψ̄γµλaψ and
Aaµ = 1

2 ψ̄γ5γµλaψ, respectively, the corresponding charges QaV (x0) =
∫
d3xV a0 (x)

and QaA(x0) =
∫
d3xAa0(x) commute with H0(x),

[H0(x), Q(x0)] = 0 , (7)

such that

i[u(x), Q(x0)] = ∂µJµ(x) (8)

for Jµ any one of these currents and Q(x0) the corresponding charge.
We remind the reader that equation (8) can be derived from the equation of

motion of the standard model. More generally, equation (8) follows from equation
(6) and (7) by use of the equal-time commutator (summation over k = 1, 2, 3 is
understood)

i[H(x), J0(y)]x0=y0=0 = ∂µJµ(x)δ(3)(~x− ~y) + Jk(x)(∂/∂xk)δ(3)(~x− ~y) , (9)

which expresses (Genz and Katz 1971) the transformation properties of J0(y) under
time translations by H =

∫
d3xH(x) and boosts by M0k = −

∫
d3xxkH(0, ~x).

Namely, by integrating (9) over d3y due to (7) only u(x) survives in the
equal-time commutator of H(x) with the charge Q(x0). Computing the equal-time
commutators of the charges QaV and QαA (with Q0

A included) with the scalar
densities uα(x), which we have already defined, and the pseudoscalar ones
vα = ψ̄(x)γ5λαψ(x) one finds for latin indices between 1 and 8 and greek indices
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between 0 and 8 the equal-time commutation relations [summation over double
indices being understood; f and d are the well-known Clebsch–Gordan coefficients
of SU(3)]

[QaV , uβ ] = ifaβcuc , (10a)

[QaV , vβ ] = ifaβcvc , (10b)

[QαA, uβ ] = idαβγvγ , (10c)

[QαA, vβ ] = −idαβγuγ . (10d)

For α 6= 0 these are the defining relations of the (3, 3̄)⊕ (3̄, 3) representation of
SU(3)⊗ SU(3).

As an immediate consequence, currents for which equation (7) holds are
conserved in the limit of vanishing quark masses. Except for electromagnetic
anomalies, which are not supposed to contribute to the VEV of the σ-commutators,
Goldstone chiral symmetry breaking implies precisely this for the 16 currents
of SU(3) ⊗ SU(3). The ninth SU(3)-neutral axial current A0

µ is however not
assumed to have a vanishing divergence in this limit. Therefore we have stressed
that our results which involve the divergence of this particular current presumably
are of academic interest only.

The current divergencies turn out to be (summation once again being understood)

∂µV aµ = (c3fa3c + c8fa8c)uc , (11a)

∂µAαµ = (c0dα0γ + c3dα3γ + c8dα8γ)vγ . (11b)

It is now an easy exercise to compute the σ-commutators in terms of the
uα and vα. The results for uα imply the reconstruction theorem of the chiral
SU(3)⊗ SU(3) symmetry breaking Hamiltonian density which reads (Genz and
Cornwell 1973)

u(x) = iCR/2([QaV , ∂
µV aµ ] + [QaA, ∂

µAaµ]) , (12)

where CR = 3/16. Summation over a = 1, ..., 8 is understood. For the group-
theoretically inclined reader we note that (12) with CR > 0 follows for any u
that belongs to an irreducible representation of SU(3)⊗ SU(3) except the unit
representation. The reason is that the Casimir operator 1

2 (QaVQ
a
V + QaAQ

a
A) of

SU(3)⊗ SU(3) acting on u multiplies it with its (positive) eigenvalue C−1
R .

Thus, from (1), we see that the VEV of −u is non-negative (Genz and Cornwell
1973):

〈−u(x)〉0 ≥ 0 , (13)
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for any u that belongs to an irreducible representation of SU(3)⊗ SU(3). If the
equals sign applies, the divergences of all partially conserved currents vanish.

Following Rausch (1982) we will exploit the VEV 〈[QαA, ∂µAβµ]〉0 of the axial
σ-terms and start with the remark that nothing additional could be gained
by also considering the VEV of the others, i.e. 〈[QaV , ∂µV bµ ]〉0, 〈[QaV , ∂µAβµ]〉0
and 〈[QαA, ∂µV bµ ]〉0, since these either vanish trivially due to current or parity
conservation or since in the approximation in which we work the vector
charges QaV (a = 1, ..., 8) annihilate the vacuum. This also implies that all scalar
densities uα except u0 have vanishing VEVs since they can be represented as linear
combinations of commutators of the type [QaV , ub] such as e.g. u3 = −i[Q1

V , u2] and
u8 = i

√
3[Q1

V , u2]− i2/
√

3[Q4
V , u5]. The vanishing of the VEVs of u1, u2, u4, u5, u6

and u7 is also implied by the even stronger argument that—except for special
values of c3 and c8—they are proportional to a vector current divergence, the
VEV of which vanishes due to translation invariance. In any case, we may
conclude

〈uα〉0 = δ0α〈u0〉0 . (14)

Returning to the VEV −i〈[QαA, ∂µAβµ]〉0 we will have to distinguish between
the 8×8 matrix for α and β between 1 and 8 and the 9×9 matrix for the indices
between 0 and 8. The 9× 9 matrix can be written under our assumptions as

σαβ ≡ − i〈[QαA, ∂µAβµ]〉0

=
√

2
3 〈−c0u0〉0[δαβ + (c3/c0)d3αβ + (c8/c0)d8αβ ] , (15)

which incidentally also shows that the matrix σαβ is symmetric under exchange
of α and β. Making the definitions

G = 2
3 〈u〉0 = 2

3 〈c0u0〉0 , (16a)

A = c8/c0 , (16b)

B = c3/c0 , (16c)

we can write the non-vanishing elements of the symmetric and real matrix σ as

σ00 = −G , (17a)

σ08 = σ80 = −GA , (17b)

σ03 = σ30 = −GB , (17c)

σ38 = σ83 = −GB/
√

2 , (17d)

σ11 = σ22 = σ33 = −G(1 +A/
√

2) , (17e)

σ44 = σ55 = −G[1 +B
√

3
2/2−A/(2

√
2)] , (17f)
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σ66 = σ77 = −G[1−B
√

3
2/2−A/(2

√
2)] , (17g)

σ88 = −G(1−A/
√

2) . (17h)

Effectively, we therefore are dealing with a 4× 4 or 5× 5 matrix rather than an
8 × 8 or 9 × 9 matrix, respectively. It should be noted that the fact that σ38

does not vanish immediately implies mixing of states with π0 and η quantum
numbers.

3. The Derivation

From (1) and the definition in (15) it follows that for zm with m = 0, 8, 3, 4, 6
any five real numbers we have

zmznσmn ≥ 0 , (18)

where summation over m and n is understood. To exploit this condition of
positivity of the real symmetric 4× 4 or 5× 5 matrix σ, we may apply (Rausch
1982) the Hausdorff criterion which states that an N ×N matrix Mik is positive
if and only if for every k between 1 and N

det

M11 ... M1k

... ... ...
Mk1 ... Mkk

 ≥ 0 .

We start by exploiting partial conservation of the eight axial currents of
SU(3)⊗ SU(3). From σ33 + σ44 + σ66 being non-negative we obtain −G ≥ 0, i.e.
under more restrictive assumptions once again (13). It is gratifying that this
result is in agreement with σ00 in (17a) being non-negative. From σ33 ≥ 0 we
obtain the further result

A ≥ −
√

2 . (19a)

That the 2× 2 submatrix σmn for m = 3, 8 and n = 3, 8 is non-negative yields

2 ≥ A2 +B2 (19b)

and from considering σ44 and σ55 separately we get

B ≥ a/
√

3−−2
√

2
3 , (19c)

2
√

2
3 −A/

√
3 ≥ B . (19d)

Taken together, these relations are evidently somewhat redundant.
Replacing Ac0, Bc0 and c0 by the corresponding linear combinations of the

quark masses and assuming that their sum is positive,

mu +md +ms > 0 , (20)
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we obtain equations (2) as restrictions on these masses themselves. The changes
that occur if mu +md +ms < 0 and the corresponding conclusions have already
be stated in connection with (2).

Finally, if our assumptions are extended to also cover the ninth axial current
A0
µ, we may apply the Hurwitz criterion to the full 5× 5 matrix σ. It suffices

to consider the cases k = 0, 8, 3 with the results

−G ≥ 0, (21a)

1−A/
√

2−A2 ≥ 0 , (21b)

(
√

2a− 1)[3
2B

2 − (1 +A/
√

2)2] ≥ 0 . (21c)

As has already been said, (21a) already follows from our previous results. One
easily sees that (21b) is equivalent to

1/
√

2 ≥ A ≥ −
√

2 , (22a)

such that from (20c)

(1 + a/
√

2)2 ≥ 3B2 , (22b)

or equivalently

2 +A2 + 2
√

2A ≥ 3B2 . (22c)

The relation A ≥ −
√

2 has already been obtained in the above. Under the
assumption that the sum of the three quark masses is positive, the additional
relations are equivalent to

ms ≥ 0 , (23a)

mumd ≥ 0 . (23b)

Since we know that mu and md cannot both be negative, they must be positive
(or at least one of them must be zero). If the sum of the quark masses is negative,
the greater-or-equal sign in (23a) is inverted, whereas (23b) remains unaltered.
It then follows that that none of the three quark masses can be positive.

Our conclusions have already been noted in connection with (2). Under the
assumption that none of the three quark masses vanishes, they can be stated
as follows: (1) Partial conservation of the nine axial currents applied to the
computation of the VEV of the σ-terms in the standard model implies that all
three quark masses mu,md and ms have the same (positive or negative) sign.
(2) From partial conservation of only the eight axial currents of SU(3)⊗ SU(3)
the inequalities in (2) follow. They imply for example that at least two of the
three quark masses have the same sign as the sum mu +md +ms of all of them.
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The reader is reminded that our assumptions include the standard vector SU(3)
symmetry of the vacuum.
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